A LIMITED-RANGE CALDERÓN-ZYGMUND THEOREM

LOUKAS GRAFAKOS AND CODY B. STOCKDALE

Abstract

For a limited range of indices p, we obtain $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for singular integral operators whose kernels satisfy a condition weaker than the typical Hörmander smoothness estimate. These operators are assumed to be bounded (or weakly bounded) on $L^{s}\left(\mathbb{R}^{n}\right)$ for some index s. Our estimates are obtained via interpolation from the appropriate weak-type estimates. We provide two proofs of this result. One proof is based on the Calderón-Zygmund decomposition, while the other uses ideas of Nazarov, Treil, and Volberg.

1. Introduction

The classical theory of singular integral operators was introduced by Calderón and Zygmund in [3] and says that for certain kernels defined on $\mathbb{R}^{n} \backslash\{0\}$, the weak-type $(1,1)$ bound holds for the associated singular integral operator, assuming that an $L^{s}\left(\mathbb{R}^{n}\right)$ bound is known for some $1<s \leq \infty$. Hörmander extended this theory in [9] to more general kernels K satisfying the smoothness condition

$$
[K]_{H}:=\sup _{y \in \mathbb{R}^{n}} \int_{|x| \geq 2|y|}|K(x-y)-K(x)| d x<\infty
$$

The Hörmander condition is an $L^{1}\left(\mathbb{R}^{n}\right)$-type smoothness condition and has some variants. For example, Watson introduced the following $L^{r}\left(\mathbb{R}^{n}\right)$ versions in [18]: for $1 \leq r \leq \infty$, we say a kernel K is in the class H^{r} if

$$
[K]_{H^{r}}:=\sup _{R>0} \sup _{\substack{y \in \mathbb{R}^{n} \\|y| \leq R^{n}}} \sum_{m=1}^{\infty}\left(2^{m} R\right)^{\frac{n}{r^{\prime}}}\left[\int_{\substack{|x| \geq 2^{m} R \\|x|<2^{m+1} R}}|K(x-y)-K(x)|^{r} d x\right]^{\frac{1}{r}}<\infty,
$$

where r^{\prime} is the Hölder conjugate of r. Observe that Watson's condition coincides with Hörmander's condition when $r=1$, and for $r_{1}, r_{2} \in[1, \infty]$ with $r_{1} \leq r_{2}$,

$$
H^{r_{2}} \subseteq H^{r_{1}} \subseteq H^{1}=H
$$

In this paper, we focus on a different set of $L^{r}\left(\mathbb{R}^{n}\right)$-adapted conditions defined as follows.
Definition 1. Let $1 \leq r \leq \infty$. A kernel K defined on $\mathbb{R}^{n} \backslash\{0\}$ is in the class H_{r} if

$$
[K]_{H_{r}}:=\sup _{R>0}\left[\frac{1}{v_{n} R^{n}} \int_{|y| \leq R}\left(\int_{|x| \geq 2 R}|K(x-y)-K(x)| d x\right)^{r} d y\right]^{\frac{1}{r}}<\infty
$$

where v_{n} is the volume of the unit ball $B(0,1)$ in \mathbb{R}^{n}.

[^0]Notice that this condition coincides with the Hörmander condition when $r=\infty$. Moreover, for $r_{1}, r_{2} \in[1, \infty]$ with $r_{1} \leq r_{2}$,

$$
H=H_{\infty} \subseteq H_{r_{2}} \subseteq H_{r_{1}}
$$

meaning the H_{r} conditions are weaker than Hörmander's smoothness condition.
We prove boundedness results for the associated singular integral operators.
Definition 2. Let $K \in H_{r}$ for some $1 \leq r \leq \infty$ and suppose K satisfies the size estimate $|K(x)| \leq \frac{A}{|x|^{n}}$ for all $x \neq 0$. We associate K with a linear operator T given by

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

for smooth functions f and $x \notin \operatorname{supp} f$.
Notice that this definition also makes sense if f is an integrable, compactly supported function and $x \notin \operatorname{supp} f$. Moreover, there is no unique way to define $T f$ in terms of K for general functions f (see the relevant discussions in $[5,6,14]$).

If $K \in H=H_{\infty}$, Hörmander proved that given $1<s \leq \infty, L^{s}\left(\mathbb{R}^{n}\right)$ bounds for T imply the weak-type $(1,1)$ bound, and hence $L^{p}\left(\mathbb{R}^{n}\right)$ bounds for all $1<p<\infty$. In this note, we prove the following variant of this result, where weak-type $(1,1)$ is replaced by weak-type (q, q).
Theorem 1. Let $1 \leq q<\infty, K \in H_{q^{\prime}}$, and $|K(x)| \leq \frac{A}{|x|^{n}}$ for all $x \neq 0$. If the associated singular integral operator T is bounded on $L^{s}\left(\mathbb{R}^{n}\right)$ for some $s \in(q, \infty]$ with bound B, then T maps $L^{q}\left(\mathbb{R}^{n}\right)$ to $L^{q, \infty}\left(\mathbb{R}^{n}\right)$ with bound at most a constant multiple of $B+[K]_{H_{q^{\prime}}}$. That is,

$$
\|T f\|_{L^{q, \infty}\left(\mathbb{R}^{n}\right)}:=\sup _{\alpha>0} \alpha|\{|T f|>\alpha\}|^{\frac{1}{q}} \leq C_{n, s, q}\left(B+[K]_{H_{q^{\prime}}}\right)\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}
$$

for all $f \in L^{q}\left(\mathbb{R}^{n}\right)$.
We give two proofs of Theorem 1. The first proof uses the $L^{q}\left(\mathbb{R}^{n}\right)$ version of the CalderónZygmund decomposition and is an adaptation of the classical proof given in [3]. The second proof is motivated by Nazarov, Treil, and Volberg's proof for the weak-type $(1,1)$ inequality in the nonhomogeneous setting, given in [11]. Adaptations of the proof in the nonhomogeneous setting are needed in our setting; some modifications include ideas that can be found in [14]. See [15-17] for other applications of the Nazarov, Treil, and Volberg technique to multilinear and weighted settings. Refer to $[8,10,12]$ for related results regarding multilinear and weighted Calderón-Zygmund theory.

By interpolation we obtain the following corollary.
Corollary 1. Under the hypotheses of Theorem 1, the operator T is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for p in the interval $\left(\min \left(s^{\prime}, q\right), \max \left(q^{\prime}, s\right)\right)$.
Remark 1. The constant A does not appear in the conclusion of Theorem 1. The estimate $|K(x)| \leq \frac{A}{|x|^{n}}$ is only needed to ensure that the operator T is well-defined for a dense class of functions.

If $q>1$ and $s<\infty$, then the interval $\left(\min \left(s^{\prime}, q\right), \max \left(q^{\prime}, s\right)\right)$ is properly contained in $(1, \infty)$. Hence in this case, we obtain $L^{p}\left(\mathbb{R}^{n}\right)$ estimates for a limited-range of values of p. Prior to this work, other "limited-range" versions of the Calderón-Zygmund theorem appeared in Baernstein and Sawyer [1], Carbery [4], Seeger [13], and Grafakos, Honzík, Ryabogin [7].

2. Calderón-Zygmund Decomposition Method

The first proof of Theorem 1 relies on the $L^{q}\left(\mathbb{R}^{n}\right)$ version of the Calderón-Zygmund decomposition. See $[5,6,14]$ for details on the decomposition.

Proof. Fix $f \in L^{q}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. We will show that

$$
|\{|T f|>\alpha\}| \leq C_{n, s, q}\left(B+[K]_{H^{q^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}
$$

Apply the $L^{q}\left(\mathbb{R}^{n}\right)$-form of the Calderón-Zygmund decomposition to f at height $\gamma \alpha$ (the constant $\gamma>0$ will be chosen later), to write $f=g+b=g+\sum_{j=1}^{\infty} b_{j}$, where
(1) $\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq 2^{\frac{n}{q}} \gamma \alpha$ and $\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}$,
(2) the b_{j} are supported on pairwise disjoint cubes Q_{j} satisfying $\sum_{j=1}^{\infty}\left|Q_{j}\right| \leq(\gamma \alpha)^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}$,
(3) $\left\|b_{j}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \leq 2^{n+q}(\gamma \alpha)^{q}\left|Q_{j}\right|$,
(4) $\int_{Q_{j}} b_{j}(x) d x=0$, and
(5) $\|b\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq 2^{\frac{n+q}{q}}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}$ and $\|b\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq 2(\gamma \alpha)^{1-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}$.

Now,

$$
|\{|T f|>\alpha\}| \leq\left|\left\{|T g|>\frac{\alpha}{2}\right\}\right|+\left|\left\{|T b|>\frac{\alpha}{2}\right\}\right|
$$

Assume first that $s<\infty$. Choose $\gamma=\left(B+[K]_{\mathcal{q}^{\prime}}\right)^{-1}$. Using Chebyshev's inequality, the bound of T on $L^{s}\left(\mathbb{R}^{n}\right)$, property (1), and trivial estimates, we have that

$$
\begin{aligned}
\left|\left\{|T g|>\frac{\alpha}{2}\right\}\right| & \leq 2^{s} \alpha^{-s}\|T g\|_{L^{s}\left(\mathbb{R}^{n}\right)}^{s} \\
& \leq(2 B)^{s} \alpha^{-s}\|g\|_{L^{s}\left(\mathbb{R}^{n}\right)}^{s} \\
& \leq 2^{s-n+\frac{n s}{q}} B^{s} \alpha^{-s}(\gamma \alpha)^{s-q}\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \\
& \leq 2^{s-n+\frac{n s}{q}}\left(B+[K]_{H_{r^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
\end{aligned}
$$

We next control the second term. Let c_{j} denote the center of Q_{j}, let $Q_{j}^{*}:=Q\left(c_{j}, 2 \sqrt{n} l\left(Q_{j}\right)\right)$ be the cube centered at c_{j} and having side length $2 \sqrt{n}$ times the side length of Q_{j}, and set $\Omega^{*}:=\bigcup_{j=1}^{\infty} Q_{j}^{*}$. Then

$$
\left|\left\{|T b|>\frac{\alpha}{2}\right\}\right| \leq\left|\Omega^{*}\right|+\left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:|T b(x)|>\frac{\alpha}{2}\right\}\right| .
$$

Notice that since $\left|Q_{j}^{*}\right|=(2 \sqrt{n})^{n}\left|Q_{j}\right|$ and by property (2), we have

$$
\left|\Omega^{*}\right| \leq \sum_{j=1}^{\infty}\left|Q_{j}^{*}\right|=(2 \sqrt{n})^{n} \sum_{j=1}^{\infty}\left|Q_{j}\right| \leq(2 \sqrt{n})^{n}\left(B+[K]_{H_{q}^{\prime}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}
$$

It remains to control the last term. Use Chebyshev's inequality, property (4), Fubini's theorem, Hölder's inequality, property (3), and property (2) to estimate

$$
\begin{aligned}
& \left|\left\{\mathbb{R}^{n} \backslash \Omega^{*}:|T b|>\frac{\alpha}{2}\right\}\right| \leq 2 \alpha^{-1} \int_{\mathbb{R}^{n} \backslash \Omega^{*}}|T b(x)| d x \\
& \quad \leq 2 \alpha^{-1} \sum_{j=1}^{\infty} \int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|T b_{j}(x)\right| d x \\
& \quad \leq 2 \alpha^{-1} \sum_{j=1}^{\infty} \int_{Q_{j}}\left[\int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right]\left|b_{j}(y)\right| d y \\
& \quad \leq 2 \alpha^{-1} \sum_{j=1}^{\infty}\left\|\int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|K(x-\cdot)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}\left(Q_{j}\right)}\left\|b_{j}\right\|_{L^{q}} \\
& \quad \leq 2 \alpha^{-1} \sup _{j \in \mathbb{N}}\left\|\int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|K(x-\cdot)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}}\left(Q_{\left.Q_{j}, \left\lvert\, \frac{d y}{\left|Q_{j}\right|}\right.\right)} \sum_{j=1}^{\infty}\left|Q_{j}\right| \frac{1}{q^{\prime}}\left\|b_{j}\right\|_{L^{q}}\right. \\
& \quad \leq 2^{\frac{n}{q}+2} \gamma \sup _{j \in \mathbb{N}}\left\|\int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|K(x-\cdot)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}}\left(Q_{j}, \left\lvert\, \frac{d y}{\left|Q_{j}\right|}\right.\right) \\
& \sum_{j=1}^{\infty}\left|Q_{j}\right| \\
& \quad \leq 2^{\frac{n}{q}+2} \gamma^{1-q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \sup _{j \in \mathbb{N}}\left\|\int_{\mathbb{R}^{n} \backslash \Omega^{*}}\left|K(x-\cdot)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}}\left(Q_{j}, \frac{d y}{\left|Q_{j}\right|}\right)
\end{aligned}
$$

For each j, setting $R_{j}=\frac{\sqrt{n}}{2} l\left(Q_{j}\right)$, we have

$$
Q_{j} \subseteq B\left(c_{j}, R_{j}\right) \subseteq B\left(c_{j}, 2 R_{j}\right) \subseteq Q_{j}^{*}
$$

where $B(x, r)$ denotes the ball centered at x and with radius r. Then the factor involving the supremum is less than or equal to

$$
\sup _{j \in \mathbb{N}}\left[\int_{B\left(c_{j}, R_{j}\right)}\left(\int_{\mathbb{R}^{n} \backslash B\left(c_{j}, 2 R_{j}\right)}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right)^{q^{\prime}} \frac{d y}{\left|Q_{j}\right|}\right]^{\frac{1}{q^{\prime}}}
$$

which is bounded by $\left(\frac{\sqrt{n}}{2}\right)^{n} v_{n}[K]_{H_{q^{\prime}}}$ by changing variables $x^{\prime}=x-c_{j}, y^{\prime}=y-c_{j}$ and by replacing the supremum over R_{j} by the supremum over all $R>0$.

Putting all of the estimates together, we get

$$
|\{|T f|>\alpha\}| \leq\left(2^{s-n+\frac{n s}{q}}+(2 \sqrt{n})^{n}+2^{\frac{n}{q}+2-n} n^{\frac{n}{2}}\right)\left(B+[K]_{H_{q^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
$$

When $s=\infty$, set $\gamma=2^{-\frac{n}{q}}\left(4\left([K]_{H_{q^{\prime}}}+B\right)\right)^{-1}$. Then

$$
\|T g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq B\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq 2^{\frac{n}{q}} B \gamma \alpha \leq \frac{\alpha}{4}
$$

so

$$
\left|\left\{|T g|>\frac{\alpha}{2}\right\}\right|=0
$$

The part of the argument involving $\left\{|T b|>\frac{\alpha}{2}\right\}$ is the same as in the case $s<\infty$.
3. Method of Nazarov, Treil, and Volberg

We provide a second proof of Theorem 1. This proof is motivated by the argument given by Nazarov, Treil, and Volberg in [11]. See also [15-17] for other applications of this technique.

Proof. Fix $f \in L^{q}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. We will show that

$$
|\{|T f|>\alpha\}| \leq C_{n, s, q}\left(B+[K]_{H_{q^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}
$$

By density, we may assume f is a nonnegative continuous function with compact support. Set

$$
\Omega:=\left\{M\left(f^{q}\right)>(\gamma \alpha)^{q}\right\}
$$

where $\gamma>0$ is to be chosen later and where M denotes the Hardy-Littlewood maximal operator. Apply a Whitney decomposition to write

$$
\Omega=\bigcup_{j=1}^{\infty} Q_{j}
$$

a disjoint union of dyadic cubes where

$$
2 \operatorname{diam}\left(Q_{j}\right) \leq d\left(Q_{j}, \mathbb{R}^{n} \backslash \Omega\right) \leq 8 \operatorname{diam}\left(Q_{j}\right)
$$

Put

$$
g:=f \mathbb{1}_{\mathbb{R}^{n} \backslash \Omega}, \quad b:=f \mathbb{1}_{\Omega}, \quad \text { and } \quad b_{j}:=f \mathbb{1}_{Q_{j}} .
$$

Then

$$
f=g+b=g+\sum_{j=1}^{\infty} b_{j}
$$

where we claim that
(1) $\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \gamma \alpha$ and $\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}$,
(2) the b_{j} are supported on pairwise disjoint cubes Q_{j} satisfying

$$
\sum_{j=1}^{\infty}\left|Q_{j}\right| \leq 3^{n}(\gamma \alpha)^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}
$$

(3) $\left\|b_{j}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \leq(17 \sqrt{n})^{n}(\gamma \alpha)^{q}\left|Q_{j}\right|$, and
(4) $\|b\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}$ and $\|b\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq(17 \sqrt{n})^{\frac{n}{q}} 3^{n}(\gamma \alpha)^{1-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}$.

Indeed, since for any $x \notin \Omega$, we have

$$
|g(x)|^{q}=|f(x)|^{q} \leq M\left(f^{q}\right)(x) \leq(\gamma \alpha)^{q},
$$

it follows that $\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \gamma \alpha$. Since g is a restriction of f, we have $\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}$, and so (1) holds. Using the weak-type (1,1) bound for M with $\|M\|_{L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1, \infty}\left(\mathbb{R}^{n}\right)} \leq 3^{n}$, we obtain property (2) as follows

$$
\sum_{j=1}^{\infty}\left|Q_{j}\right|=|\Omega| \leq 3^{n}(\gamma \alpha)^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}
$$

Addressing (3) and (4), let $Q_{j}^{*}:=Q\left(c_{j}, 17 \sqrt{n} l\left(Q_{j}\right)\right)$ be the cube with the same center as Q_{j} but side length $17 \sqrt{n}$ times as large. Then $Q_{j}^{*} \cap\left(\mathbb{R}^{n} \backslash \Omega\right) \neq \emptyset$, so there is a point $x \in Q_{j}^{*}$ such
that $M\left(f^{q}\right)(x) \leq(\gamma \alpha)^{q}$. In particular, $\int_{Q_{j}^{*}}|f(y)|^{q} d y \leq(\gamma \alpha)^{q}\left|Q_{j}^{*}\right|$. Since $\left|Q_{j}^{*}\right|=(17 \sqrt{n})^{n}\left|Q_{j}\right|$, we have

$$
\left\|b_{j}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}=\int_{Q_{j}}|f(y)|^{q} d y \leq \int_{Q_{j}^{*}}|f(y)|^{q} d y \leq(\gamma \alpha)^{q}\left|Q_{j}^{*}\right|=(17 \sqrt{n})^{n}(\gamma \alpha)^{q}\left|Q_{j}\right|
$$

This proves (3). We use Hölder's inequality, property (3), and property and (2) to justify property (4)

$$
\begin{gathered}
\|b\|_{L^{1}\left(\mathbb{R}^{n}\right)}=\sum_{j=1}^{\infty}\left\|b_{j}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq \sum_{j=1}^{\infty}\left\|b_{j}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}\left|Q_{j}\right|^{\frac{1}{q^{\prime}}} \leq(17 \sqrt{n})^{\frac{n}{q}}(\gamma \alpha) \sum_{j=1}^{\infty}\left|Q_{j}\right| \\
\leq(17 \sqrt{n})^{\frac{n}{q}} 3^{n}(\gamma \alpha)^{1-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
\end{gathered}
$$

Now,

$$
|\{|T f|>\alpha\}| \leq\left|\left\{|T g|>\frac{\alpha}{2}\right\}\right|+\left|\left\{|T b|>\frac{\alpha}{2}\right\}\right|
$$

Assume first that $s<\infty$. Choose $\gamma=\left(B+[K]_{H_{q^{\prime}}}\right)^{-1}$. Use Chebyshev's inequality, the bound of T on $L^{s}\left(\mathbb{R}^{n}\right)$, and property (1) to see

$$
\begin{aligned}
\left|\left\{|T g|>\frac{\alpha}{2}\right\}\right| & \leq 2^{s} \alpha^{-s}\|T g\|_{L^{s}\left(\mathbb{R}^{n}\right)}^{s} \\
& \leq(2 B)^{s} \alpha^{-s}\|g\|_{L^{s}\left(\mathbb{R}^{n}\right)}^{s} \\
& \leq(2 B)^{s}(\gamma \alpha)^{s-q} \alpha^{-s}\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \\
& \leq 2^{s}\left(B+[K]_{H_{q^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
\end{aligned}
$$

We will now control the second term. Let E_{j} be a concentric dilate of Q_{j}; precisely,

$$
E_{j}:=Q\left(c_{j}, r_{j}\right)
$$

where c_{j} is the center of Q_{j} and $r_{j}>0$ is chosen so that $\left|E_{j}\right|=\frac{1}{(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha} \int_{Q_{j}} b_{j}(x) d x$. Note that such E_{j} exist since the function $r \mapsto|Q(x, r)|$ is continuous for each $x \in \mathbb{R}^{n}$. Applying Hölder's inequality and property (3), we have

$$
\left|E_{j}\right|=\frac{1}{(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha} \int_{Q_{j}} b_{j}(x) d x \leq \frac{1}{(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha}\left|Q_{j}\right|^{\frac{1}{q^{\prime}}}\left\|b_{j}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\left|Q_{j}\right| .
$$

Since E_{j} is a cube with the same center as Q_{j} and since $\left|E_{j}\right| \leq\left|Q_{j}\right|$, the containment $E_{j} \subseteq Q_{j}$ holds. In particular, the E_{j} are pairwise disjoint. Set

$$
E:=\bigcup_{j=1}^{\infty} E_{j} .
$$

Then

$$
\left|\left\{|T b|>\frac{\alpha}{2}\right\}\right| \leq \mathrm{I}+\mathrm{II}+\mathrm{III}
$$

where

$$
\begin{aligned}
\mathrm{I} & =|\Omega| \\
\mathrm{II} & =\left|\left\{x \in \mathbb{R}^{n} \backslash \Omega:\left|T\left(b-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E}\right)(x)\right|>\frac{\alpha}{4}\right\}\right|, \text { and } \\
\mathrm{III} & =\left|\left\{(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha\left|T\left(\mathbb{1}_{E}\right)\right|>\frac{\alpha}{4}\right\}\right| .
\end{aligned}
$$

The control of I follows from property (2),

$$
|\Omega|=\sum_{j=1}^{\infty} \leq 3^{n}\left(B+[K]_{H_{q^{\prime}}}\right)\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q}
$$

For II, use Chebyshev's inequality, the fact that $\int_{Q_{j}} b_{j}(y)-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}(y) d y=0$, Fubini's theorem, and Hölder's inequality to estimate

$$
\begin{aligned}
& \mathrm{II} \leq 4 \alpha^{-1} \int_{\mathbb{R}^{n} \backslash \Omega}\left|T\left(b-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E}\right)(x)\right| d x \\
& \leq 4 \alpha^{-1} \sum_{j=1}^{\infty} \int_{\mathbb{R}^{n} \backslash \Omega}\left|T\left(b_{j}-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}\right)(x)\right| d x \\
& \leq 4 \alpha^{-1} \sum_{j=1}^{\infty} \int_{\mathbb{R}^{n} \backslash \Omega} \int_{Q_{j}}\left|K(x-y)-K\left(x-c_{j}\right)\right|\left|b_{j}(y)-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}(y)\right| d y d x \\
&= 4 \alpha^{-1} \sum_{j=1}^{\infty} \int_{Q_{j}}\left(\int_{\mathbb{R}^{n} \backslash \Omega}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right)\left|b_{j}(y)-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}(y)\right| d y \\
& \leq 4 \alpha^{-1} \sum_{j=1}^{\infty}\left\|\int_{\mathbb{R}^{n} \backslash \Omega}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}\left(Q_{j}\right)}\left\|b_{j}-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \\
& \leq 4 \alpha^{-1} \sup _{j \in \mathbb{N}}\left\|\int_{\mathbb{R}^{n} \backslash \Omega}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}}\left(Q_{j}, \frac{d y}{\left|Q_{j}\right|}\right) \\
& \times \sum_{j=1}^{\infty}\left|Q_{j}\right|^{\frac{1}{q^{\prime}}}\left\|b_{j}-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}\right\| \|_{L^{q}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

Using the triangle inequality, property (3), and the fact that $\left|E_{j}\right| \leq\left|Q_{j}\right|$, we have

$$
\left\|b_{j}-(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha \mathbb{1}_{E_{j}}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq\left\|b_{j}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}+(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha\left|E_{j}\right|^{\frac{1}{q}} \leq 2(17 \sqrt{n})^{\frac{n}{q}} \gamma \alpha\left|Q_{j}\right|^{\frac{1}{q}}
$$

Using the above estimate and property (2), we control

$$
\begin{aligned}
\mathrm{II} & \leq 8(17 \sqrt{n})^{\frac{n}{q}} \gamma \sup _{j \in \mathbb{N}}\left\|\int_{\mathbb{R}^{n} \backslash \Omega}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}\left(Q_{j}, \frac{d y}{\left|Q_{j}\right|}\right)} \sum_{j=1}^{\infty}\left|Q_{j}\right| \\
& \leq 8(17 \sqrt{n})^{\frac{n}{q}} 3^{n} \gamma^{1-q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \sup _{j \in \mathbb{N}}\left\|\int_{\mathbb{R}^{n} \backslash \Omega}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right\|_{L^{q^{\prime}}\left(Q_{j}, \frac{d y}{\left|Q_{j}\right|}\right)} .
\end{aligned}
$$

For each j, setting $R_{j}=\frac{\sqrt{n}}{2} l\left(Q_{j}\right)$, we have

$$
Q_{j} \subseteq B\left(c_{j}, R_{j}\right) \subseteq B\left(c_{j}, 2 R_{j}\right) \subseteq \Omega
$$

Then the supremum is bounded by

$$
\sup _{j \in \mathbb{N}}\left[\int_{B\left(c_{j}, R_{j}\right)}\left(\int_{\mathbb{R}^{n} \backslash B\left(c_{j}, 2 R_{j}\right)}\left|K(x-y)-K\left(x-c_{j}\right)\right| d x\right)^{q^{\prime}} \frac{d y}{\left|Q_{j}\right|}\right]^{\frac{1}{q^{\prime}}}
$$

which is bounded by $\left(\frac{\sqrt{n}}{2}\right)^{n} v_{n}[K]_{H_{q^{\prime}}}$ by changing variables $x^{\prime}=x-c_{j}, y^{\prime}=y-c_{j}$ and by replacing the supremum over R_{j} by the supremum over all $R>0$. Therefore

$$
\mathrm{II} \leq 8(17 \sqrt{n})^{\frac{n}{q}}\left(\frac{3 \sqrt{n}}{2}\right)^{n} v_{n}\left(B+[K]_{H_{q^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
$$

To control III, use Chebyshev's inequality, the bound of T on $L^{s}\left(\mathbb{R}^{n}\right)$, the fact that $|E| \leq$ $|\Omega|$, and property (2) to estimate

$$
\begin{aligned}
\mathrm{III} & \leq 4^{s}(17 \sqrt{n})^{\frac{n s}{q}} \gamma^{s} \int_{\mathbb{R}^{n}}\left|T\left(\mathbb{1}_{E}\right)(x)\right|^{s} d x \\
& \leq 4^{s}(17 \sqrt{n})^{\frac{n s}{q}} \gamma^{s} B^{s}|E| \\
& \leq 4^{s}(17 \sqrt{n})^{\frac{n s}{q}}|\Omega| \\
& \leq 4^{s}(17 \sqrt{n})^{\frac{n s}{q}} 3^{n}\left(B+[K]_{H_{q^{\prime}}}\right)^{q} \alpha^{-q}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
\end{aligned}
$$

Putting the estimates together, we get

$$
|\{|T f|>\alpha\}| \leq\left(2^{s}+3^{n}+8(17 \sqrt{n})^{\frac{n}{q}}\left(\frac{3 \sqrt{n}}{2}\right)^{n} v_{n}+4^{s}(17 \sqrt{n})^{\frac{n s}{q}} 3^{n}\right) \frac{\left(B+[K]_{H_{q^{\prime}}}\right)^{q}}{\alpha^{q}}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} .
$$

Since we assumed that f was nonnegative, we must double the constant above to prove the statement for general $f \in L^{q}\left(\mathbb{R}^{n}\right)$.

When $s=\infty$, set $\gamma=\left(4\left(B+[K]_{H_{q^{\prime}}}\right)\right)^{-1}$. Then

$$
\|T g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq B\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq B \gamma \alpha \leq \frac{\alpha}{4}
$$

so $\left|\left\{|T g|>\frac{\alpha}{2}\right\}\right|=0$. The part of the argument involving the set $\left\{|T b|>\frac{\alpha}{2}\right\}$ is the same as in the case $s<\infty$.

4. Conclusion

We end with some remarks and an open question.
Remark 3. The conclusions of Theorem 1 and Corollary 1 also follow under the weaker hypothesis that T is bounded from $L^{s, 1}\left(\mathbb{R}^{n}\right)$ to $L^{s, \infty}\left(\mathbb{R}^{n}\right)$. Here $L^{s, r}\left(\mathbb{R}^{n}\right)$ is the usual Lorentz space.
Remark 4. As in the case $q=1$, there are natural vector-valued extensions of Theorem 1 and Corollary 1, in the spirit of [2].
Remark 5. Theorem 1 and Corollary 1 are also valid if the original kernel is not of convolution type. In this setting, we say a kernel K defined on $\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\{(x, y): x=y\}$ is in H_{r} if

$$
\sup _{R>0}\left[\frac{1}{v_{n} R^{n}} \int_{\left|y-y^{\prime}\right| \leq R}\left(\int_{|x-y| \geq 2 R}\left|K(x, y)-K\left(x, y^{\prime}\right)\right| d x\right)^{r} d y\right]^{\frac{1}{r}}<\infty
$$

and

$$
\sup _{R>0}\left[\frac{1}{v_{n} R^{n}} \int_{\left|x-x^{\prime}\right| \leq R}\left(\int_{|x-y| \geq 2 R}\left|K(x, y)-K\left(x^{\prime}, y\right)\right| d x\right)^{r} d y\right]^{\frac{1}{r}}<\infty
$$

where v_{n} is the volume of the unit ball $B(0,1)$ in \mathbb{R}^{n}.

As stated in Remark 2 in the introduction, if $q>1$ and $s<\infty$, then T satisfies strong $L^{p}\left(\mathbb{R}^{n}\right)$ estimates for $p \in\left(\min \left(s^{\prime}, q\right), \max \left(q^{\prime}, s\right)\right)$, and in this case, the interval $\left(\min \left(s^{\prime}, q\right), \max \left(q^{\prime}, s\right)\right)$ is properly contained in $(1, \infty)$.

Let $q>1$ and $s<\infty$. As of this writing, we are unable to establish whether the interval $\left(\min \left(s^{\prime}, q\right), \max \left(q^{\prime}, s\right)\right)$ is the largest interval (a, b) for which an operator T with kernel in $H_{q^{\prime}}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(a, b)$. This certainly relates to the existence of examples of kernels in $H_{q_{1}}$ but not in $H_{q_{2}}$ for $q_{1}<q_{2}$.

References

[1] A. Baernstein and E. T. Sawyer, Embedding and multiplier theorems for $H^{p}\left(\mathbb{R}^{n}\right)$, Mem. Am. Math. Soc. 53 (1985), no. 318, iv-82.
[2] A. Benedek, A. P. Calderón, and R. Panzone, Convolution operators on Banach-space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365.
[3] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[4] A. Carbery, Variants of the Calderón-Zygmund theory for L^{p}-spaces, Rev. Mat. Iberoamericana 24 (1986), 381-396.
[5] L. Grafakos, Classical Fourier analysis, Third edition, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014.
[6] _, Modern Fourier analysis, Third edition, Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014.
[7] L. Grafakos, P. Honzík, and D Ryabogin, On the p-independence property of Caldern-Zygmund theory, Journal fr die Reine Ang. Math. (Crelles Journal) 602 (2007), 227-234.
[8] L. Grafakos and R. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124164.
[9] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[10] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math 220 (2009), no. 4, 1222-1264.
[11] F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), no. 9, 463-487.
[12] S. Ombrosi, C. Pérez, and J. Recchi, Quantitative weighted mixed weak-type inequalities for classical operators, Indiana U. Math. J. 65 (2016), no. 2, 615-640.
[13] A. Seeger, Some inequalities for singular convolution operators in L^{p}-spaces, Trans. Amer. Math. Soc. 308 (1988), no. 1, 259-272.
[14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
[15] C. B. Stockdale, A different approach to endpoint weak-type estimates for Calderón-Zygmund operators, ArXiv e-prints (December 2018).
[16] _, A weighted endpoint weak-type estimate for multilinear Calderón-Zygmund operators, ArXiv e-prints (February 2019).
[17] C. B. Stockdale and B. D. Wick, An endpoint weak-type estimate for multilinear Calderón-Zygmund operators, J Fourier Anal Appl (2019), https://doi.org/10.1007/s00041-019-09676-y.
[18] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), no. 2, 389-399.

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: grafakosl@missouri.edu
Cody B. Stockdale, Department of Mathematics and Statistics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA

E-mail address: codystockdale@wustl.edu

[^0]: 1991 Mathematics Subject Classification. 42B20.
 The second author would like to acknowledge the Simons Foundation.

