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Abstract. We provide a self-contained proof of the multilinear extension of the
Marcinkiewicz real method interpolation theorem with initial assumptions a set
of restricted weak type estimates, considering possible degenerate situations that
may arise. The advantage of this proof is that it yields a logarithmically convex
bound for the norm of the operator on the intermediate spaces in terms of the
initial restricted weak type bounds; it also provides an explicit estimate in terms
of the exponents of the initial estimates: the constant blows up like a negative
power of the distance from the intermediate point to the boundary of the convex
hull of the initial points.

In memory of Nigel Kalton

1. Introduction

Multilinear interpolation is a powerful tool that yields intermediate estimates
from a finite set of initial estimates for operators of several variables. In particular,
the real multilinear interpolation method yields strong type bounds for multilin-
ear (or multi-sublinear) operators as a consequence of initial weak type estimates.
Versions of this theorem have been obtained in the literature by Strichartz [11],
Sharpley [9], [10], Zafran [13], Christ [1], Janson [5], Grafakos and Kalton [3], and
Grafakos and Tao [4]. In this article we give a version of Marcinkiewicz’s real inter-
polation theorem for multilinear operators starting from a finite number of initial
restricted weak type estimates. Our result is closest to the one in [3] but contains
certain improvements. It yields a constant on the intermediate space that contains
an optimal multiplicative factor in terms of the initial restricted weak type bounds
and also describes an explicit behavior in terms of the location of the intermediate
point inside the convex hull of the initial points. These elements were previously
missing from the literature.
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Let m ≥ 1 be an integer. For 1 ≤ j ≤ m, let (Xj, µj) be measure spaces and
let (Y, ν) be another measure space. All measures are assumed to be positive and
σ-finite. For 0 < p ≤ ∞, we denote by Lp(Xj, µj) or simply by Lp the Lebesgue
space of all complex-valued functions whose pth power is integrable with respect to
µj on the space Xj.

Let S(Xj) be the space of simple functions on Xj. Let T be a map defined on
S(X1) × · · · × S(Xm) that takes values in the measure space Y . Then T is called
multilinear if for all fj, gj in S(Xj) and all scalars λ we have

T (f1, . . . , λfj, . . . , fm) = λT (f1, . . . , fj, . . . , fm)

and

T (. . . , fj + gj, . . . ) = T (. . . , fj, . . . ) + T (. . . , gj, . . . ).

The operator T is called multi-quasilinear if there is a constant K ≥ 1 such that
for all 1 ≤ j ≤ m, all fj, gj in S(Xj), and all λ ∈ C we have

(1) |T (f1, . . . , λfj, . . . , fm)| = |λ| |T (f1, . . . , fj, . . . , fm)|

and also

(2) |T (. . . , fj + gj, . . . )| ≤ K(|T (. . . , fj, . . . )|+ |T (. . . , gj, . . . )|).

In the case where K = 1, T is called multi-sublinear.
Given a measure space X, we denote by Γ(X) the space of all simple functions on

X that have the form f =
∑n2

i=n1
2−iχEi , where Ei are subsets of X of finite measure

with µ(En1) 6= 0 and µ(En2) 6= 0, and n1, n2 are integers such that n1 < n2. We also
denote by Γ(X) − Γ(X) the set of functions of the form f − g, where f, g ∈ Γ(X).
This space is shown to be dense in the real Lorentz space Lp,s(X,µ) if 0 < p, s <∞,
see [8]. Thus, the space (Γ(X) − Γ(X)) + i(Γ(X) − Γ(X)) of all functions of the
form f1 + if2, where f1, f2 ∈ Γ(X) − Γ(X), is dense in the complex Lorentz space
Lp,s(X,µ) with 0 < p, s <∞. Lorentz spaces in this paper will be complex-valued.

We introduce some notation. First, 1/q is defined to be zero when q = ∞. Let
m be a positive integer. For 1 ≤ k ≤ m + 1 and 1 ≤ j ≤ m, we are given pk,j with
0 < pk,j ≤ ∞ and 0 < qk ≤ ∞. We define determinants γj depending on these given
numbers as follows:

γ0 = det


1/p1,1 1/p1,2 . . . . . . 1/p1,m 1
1/p2,1 1/p2,2 . . . . . . 1/p2,m 1

...
...

...
...

...
...

1/pm,1 1/pm,2 . . . . . . 1/pm,m 1
1/pm+1,1 1/pm+1,2 . . . . . . 1/pm+1,m 1
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and for each j = 1, 2, . . . ,m we define

(3) γj = det


1/p1,1 1/p1,2 . . . −1/q1 . . . 1/p1,m 1
1/p2,1 1/p2,2 . . . −1/q2 . . . 1/p2,m 1

...
...

...
...

...
...

...
1/pm,1 1/pm,2 . . . −1/qm . . . 1/pm,m 1

1/pm+1,1 1/pm+1,2 . . . −1/qm+1 . . . 1/pm+1,m 1

 ,

where the jth column of the determinant defining γj is obtained by replacing the
jth column of the determinant defining γ0 by the vector −(1/q1, . . . , 1/qm, 1/qm+1).

We explain the geometric meaning of these determinants: for k = 1, 2, . . . ,m+1,
let

~Pk :=
( 1

pk,1
,

1

pk,2
, . . . ,

1

pk,m

)
be points in Rm. Let H be the open convex hull of the points ~P1, . . . , ~Pm+1. Then
H is an open subset of Rm whose m-dimensional volume is

Volume(H) = m! |γ0| .

Hence H is a nonempty set if and only if γ0 6= 0. Thus, the condition γ0 6= 0 is
equivalent to the fact that the open convex hull of ~P1, . . . , ~Pm+1 is a nontrivial open
simplex in Rm. The boundary of H will be denoted by ∂H.

Analogous geometric meaning is valid for the remaining γj’s. But it might be
useful to think of each γj as the jth dual of γ0 in the following sense: suppose that
for each k = 1, 2, . . . ,m+ 1, there is a correspondence of the form:( 1

pk,1
,

1

pk,2
, . . . ,

1

pk,m

)
7−→ 1

qk
.

Then the jth dual of this correspondence is( 1

pk,1
, . . . ,

1

pk,j−1

, 1− 1

qk
,

1

pk,j+1

, . . . ,
1

pk,m

)
7−→ 1− 1

pk,j

for all j = 1, 2, . . . ,m. Then γj plays the role of γ0 for the jth dual of this corre-
spondence of indices.

We now state the main result of this paper. It is a multilinear version of the
Marcinkiewicz interpolation theorem with initial restricted weak-type conditions
and multiplicative bounds for the intermediate spaces.

Theorem 1.1. Let m be a positive integer and let T be a multi-quasilinear operator
defined on S(X1)×· · ·×S(Xm) and taking values in the set of measurable functions
of a space (Y, ν). For 1 ≤ k ≤ m + 1 and 1 ≤ j ≤ m, we are given pk,j with
0 < pk,j ≤ ∞, and 0 < qk ≤ ∞. Suppose that the open convex hull of the points

~Pk =
( 1

pk,1
,

1

pk,2
, . . . ,

1

pk,m

)
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is an open set in Rm, in other words γ0 6= 0. Assume that T satisfies

(4) ‖T (χE1 , . . . , χEm)‖Lqk,∞ ≤ Bk

m∏
j=1

µj(Ej)
1

pk,j ,

for all 1 ≤ k ≤ m+ 1 and for all subsets Ej of Xj with µj(Ej) <∞. Let

(5) ~P =
( 1

p1

, . . . ,
1

pm

)
=

m+1∑
k=1

ηk ~Pk ,

for some ηk ∈ (0, 1) such that
∑m+1

k=1 ηk = 1 , and define

(6)
1

q
=

m+1∑
k=1

ηk
qk
.

For each j ∈ {1, 2, . . . ,m} let sj satisfy 0 < sj ≤ ∞, and let

(7)
1

s
=
∑

1≤j≤m
γj 6=0

1

sj
,

with the understanding that if there is no j with γj 6= 0, the sum in (7) is zero
and thus s = ∞. Under these assumptions, there is a positive finite constant
C(m,K, δ, pk,i, qk, pi, si) such that

‖T (f1, . . . , fm)‖Lq,s ≤
C(m,K, δ, pk,i, qk, pi, si)

min(1, dist (~P , ∂H))
m
δ

(m+1∏
k=1

Bηk
k

)( m∏
j=1

‖fj‖Lpj,sj
)

(8)

for all fj ∈ Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
. Here

C(m,K, δ, pk,i, qk, pi, si)

= C∗(m,K, δ, pk,i, qk) max(1, 2
m(1−s)

s )
∏

1≤j≤m
γj 6=0

∣∣∣γ0

γj

∣∣∣ 1
sj
∏

1≤j≤m
γj=0

(sj
pj

) 1
sj ,

for some other constant C∗(m,K, δ, pk,i, qk), where

(9) 0 < δ < min
(q1

2
,
q2

2
, . . . ,

qm+1

2
, s1, s2, . . . , sm,

ln 2

ln(2K)

)
.

The passage from Γ(Xj)−Γ(Xj) + i
(
Γ(Xj)−Γ(Xj)

)
to the entire Lorentz space

Lpj ,sj(Xj) is achieved by the following result:

Proposition 1.1. Let T be a multi-sublinear operator (i.e., K = 1) defined on
S(X1)×· · ·×S(Xm) and taking values in the set of measurable functions of a space
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(Y, ν). Let 0 < q, s ≤ ∞ and 0 < pj, tj < ∞ for all 1 ≤ j ≤ m. Suppose that the
estimate holds:

(10) ‖T (f1, . . . , fm)‖Lq,s ≤M

m∏
j=1

‖fj‖Lpj,tj

for some fixed positive constant M and all fj in Γ(Xj)−Γ(Xj) + i
(
Γ(Xj)−Γ(Xj)

)
.

Then T has a unique bounded extension from Lp1,t1(X1) × · · · × Lpm,tm(Xm) to
Lq,s(Y, ν) that satisfies (10) for all functions fj ∈ Lpj ,tj(Xj).

The proof of Proposition 1.1 uses the sublinearity of T and the density of the
space Γ(Xj)− Γ(Xj) + i

(
Γ(Xj)− Γ(Xj)

)
in Lpj ,tj when 0 < pj, tj <∞ and is given

in Section 4. The following are consequences of Theorem 1.1 and of Proposition 1.1:

Corollary 1.1. Suppose that in Theorem 1.1 we have all γj 6= 0 and, instead of
(7), the following holds:

(11)
1

q
≤ 1

p1

+ · · ·+ 1

pm
.

Then there is a positive constant C∗∗(m,K, pk,i, qk) such that T satisfies the strong
bound

‖T (f1, . . . , fm)‖Lq ≤
C∗∗(m,K, pk,i, qk)

min(1, dist (~P , ∂H))
m
δ0

(m+1∏
k=1

Bηk
k

)( m∏
j=1

‖fj‖Lpj
)

(12)

for all fj ∈ Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
, where

0 < δ0 < min
(q1

2
,
q2

2
, . . . ,

qm+1

2
,

ln 2

ln(2K)
, p1,1, . . . , pm+1,m

)
.(13)

Moreover, if K = 1, then T has a unique bounded extension that satisfies (12) for
all fj ∈ Lpj(Xj).

We prove this corollary. Using (5) we see that if pi =∞ for some i, then γ0 = 0.
Thus pj < ∞ for all j and in view of (11), we may take sj = pj < ∞ in (8) and
define s by 1

s
= 1

p1
+ · · ·+ 1

pm
. Since q ≥ s we have

‖T (f1, . . . , fm)‖Lq ≤
(s
q

) 1
s
− 1
q ‖T (f1, . . . , fm)‖Lq,s ≤ ‖T (f1, . . . , fm)‖Lq,s

and thus the required boundedness holds by Theorem 1.1.
As for the form of the constant in (12), using the observations that for 1 ≤ j ≤ m,

(14)
1

pj
≤

m+1∑
k=1

1

pk,j

we can choose some δ0 > 0 satisfying (13) so that (9) holds. Also, observing that
by (14), we have

max(1, 2
m(1−s)

s ) ≤ 1 + 2
m
s ≤ 1 + 2

m
Pm
j=1

Pm+1
k=1

1
pk,j
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and ∏
1≤j≤m
γj 6=0

∣∣∣γ0

γj

∣∣∣ 1
sj
∏

1≤j≤m
γj=0

(sj
pj

) 1
sj ≤

∏
1≤j≤m
γj 6=0

∣∣∣γ0

γj

∣∣∣Pm
k=1

1
pk,j ,

we conclude that the constant

max(1, 2
m(1−s)

s )
∏

1≤j≤m
γj 6=0

∣∣∣γ0

γj

∣∣∣ 1
sj
∏

1≤j≤m
γj=0

(sj
pj

) 1
sj

is bounded by another constant which depends only on m, K, pk,i, and qk. (Recall
sj = pj here). In this way we derive a constant C∗∗(m,K, pk,i, qk) in (12) independent
of δ and of pi.

The passage from Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
to Lpj(Xj) is obtained via

Proposition 1.1 since pj < ∞. A slightly more general version of this corollary
(obtained in the same way) is the following:

Corollary 1.2. Suppose that in Theorem 1.1, at least one γj is nonzero, and instead
of (7), we have

1

q
≤
∑

1≤j≤m
γj 6=0

1

pj
.

Then T satisfies (12) for all fj in Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
. Moreover, if

K = 1, then T has a unique extension that satisfies (12) for all Lpj(Xj).

Corollary 1.3. Suppose that γj = 0 for all j ∈ {1, 2, . . . ,m}. Then we have
q1 = q2 = · · · = qm+1 = q. Moreover, there is a positive constant C∗∗∗(m,K, pk,i, q)
such that T satisfies

‖T (f1, . . . , fm)‖Lq,∞ ≤
C∗∗∗(m,K, pk,i, q)

min(1, dist (~P , ∂H))
m
δ

(m+1∏
k=1

Bηk
k

)( m∏
j=1

‖fj‖Lpj,∞
)
,

for all fj ∈ Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
, where δ satisfies

0 < δ < min
(q

2
,

ln 2

ln(2K)

)
.

Consequently, if sj < ∞ for all j ∈ {1, 2, . . . ,m} and K = 1, then T has a unique
bounded extension from Lp1,s1(X1)× · · · × Lpm,sm(Xm) to Lq,∞(Y, ν).

Corollary 1.3 will be proved in Section 5. The assertion in last sentence is de-
duced from the trivial embedding ‖fj‖Lpj,∞ ≤ (sj/pj)

1/sj‖fj‖Lpj,sj (see [2, Proposi-
tion 1.4.10]) and from the fact that Γ(Xj)− Γ(Xj) + i

(
Γ(Xj)− Γ(Xj)

)
is dense in

Lpj ,sj(Xj). Note that the distinction between sj =∞ and sj <∞ is due to the fact
that Γ(Xj)− Γ(Xj) + i

(
Γ(Xj)− Γ(Xj)

)
may not be dense in Lpj ,∞(Xj).
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2. Background and preliminary material

We first recall the definition of Lorentz spaces.

Definition 2.1. The non-increasing rearrangement f ∗ of a function f on a measure
space (X,µ) is given by

f ∗(t) = inf{s > 0, µ({x ∈ X : |f(x)| > s}) ≤ t}.
Given f a measurable function on a measure space and 0 < p, q ≤ ∞, define a
quasi-norm

‖f‖Lp,q(X,µ) =


(∫ ∞

0

(
t

1
pf ∗(t)

)q dt
t

) 1
q

if 0 < q <∞,

sup
t>0

t
1
pf ∗(t) if q =∞.

The space Lp,q(X,µ) of all functions f with ‖f‖Lp,q(X,µ) < ∞ is called the Lorentz
space with indices p and q.

The Lorentz space Lp,q(X,µ) is complete with respect to the quasi-norm previ-
ously defined and thus it is a quasi-Banach space.

We will make use of the following proposition due to Kalton (see page 56 in [2]),
modified by Liang, Liu, and Yang [8].

Proposition 2.1. Let T be an operator defined on the set of simple functions of
a measure space (X,µ) and taking values into the set of measurable functions of a
measure space (Y, ν) that satisfies the conditions

|T (f + g)| ≤ K
(
|T (f)|+ |T (g)|

)
|T (λf)| = |λ| |T (f)|

for some K ≥ 1 and for all simple functions f , g on X and all λ ∈ C. Let
0 < p < ∞ and 0 < q ≤ ∞. Suppose that for some constant M > 0 and for all
measurable subsets A of X of finite measure we have

‖T (χA)‖Lq,∞ ≤M µ(A)
1
p .

Fix δ0 > 0 such that δ0 < q and δ0 ≤ ln 2/ ln(2K). Then there exists a constant
C(p, q,K, δ) <∞ such that for all 0 < δ ≤ δ0 and all functions f in Γ(X)−Γ(X) +
i
(
Γ(X)− Γ(X)

)
, we have

‖T (f)‖Lq,∞ ≤ C(p, q,K, δ)M ‖f‖Lp,δ ,

where C(p, q,K, δ) = 100 K34
1
p

+ 1
q
(

q
q−δ

) 2
δ (1− 2−δ)−

1
δ (ln 2)−

1
δ .

An repeated application of this result yields its multilinear extension:

Proposition 2.2. Let T be an operator of m variables defined on the set of simple
functions of (X1, µ1)× · · · × (Xm, µm) and taking values into the set of measurable
functions of a measure space (Y, ν) that satisfies (1) and (2) for some K ≥ 1. For
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j = 1, . . . ,m, let 0 < pj < ∞ and 0 < q ≤ ∞. Suppose that for some constant
M > 0 and for all measurable subsets Ej of Xj of finite measure we have

‖T (χE1 , . . . , χEm)‖Lq,∞ ≤M
m∏
j=1

µj(Ej)
1
pj .

Fix δ0 > 0 such that δ0 < q and δ0 ≤ ln 2/ ln(2K). Then there exists a constant
C0(m,K, δ, p1, . . . , pm, q) <∞ such that for all numbers 0 < δ ≤ δ0 and all functions
fj in Γ(Xj)− Γ(Xj) + i

(
Γ(Xj)− Γ(Xj)

)
we have

‖T (f1, . . . , fm)‖Lq,∞ ≤ C0(m,K, δ, p1, . . . , pm, q)M
m∏
j=1

‖fj‖Lpj,δ ,

where

C0(m,K, δ, p1, . . . , pm, q) =
m∏
i=1

C(pi, q,K, δ),

where C(pi, p,K, δ) are the constants appearing in Proposition 2.1, i.e.,

C0(m,K, δ, p1, . . . , pm, q) =
(

100 K3
(

q
q−δ

) 2
δ (1− 2−δ)−

1
δ (ln 2)−

1
δ

)m
4

1
p1

+···+ 1
pm

+m
q .

3. The proof of the main result

Proof of Theorem 1.1. If some pj0 = ∞, then (5) implies that pk,j0 = ∞ for all
k = 1, 2, . . . ,m+ 1, thus γ0 = 0. Thus we have 0 < pj <∞ for all j = 1, 2, . . . ,m.

Suppose that 0 < ρk < 1 for all 1 ≤ k ≤ m+ 1, and
∑m+1

k=1 ρk = 1. Let

~R =
( 1

r1

,
1

r2

. . . ,
1

rm

)
=

m+1∑
k=1

ρk ~Pk

be a point in H and define

1

r
=

m+1∑
k=1

ρk
qk
.

It is a simple consequence of (4) that for all Ej ⊆ Xj, 1 ≤ j ≤ m of finite measure
we have

m+1∏
k=1

‖T (χE1 , . . . , χEm)‖ρkLqk,∞ ≤

(
m+1∏
k=1

Bρk
k

)
m∏
j=1

µj(Ej)
1
rj .

But for any measurable function G, by using
∑m+1

k=1 ρk = 1 one has

‖G‖Lr,∞ ≤
m+1∏
k=1

‖G‖ρkLqk,∞ ,
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and this implies that

(15) ‖T (χE1 , . . . , χEm)‖Lr,∞ ≤

(
m+1∏
k=1

Bρk
k

)
m∏
j=1

µj(Ej)
1
rj .

In other words, when restricted to characteristic functions, T maps Lr1,1×· · ·×Lrm,1
to Lr,∞ with the “correct” logarithmically convex bound in terms of the initial
bounds Bk. It will be a considerable effort to extend this estimate to general func-
tions keeping the multiplicative nature of the constant in (15).

In the sequel we will make use of the set

Sm =
{

(σ`,1, σ`,2, . . . , σ`,m) : ` = 1, 2, . . . , 2m
}

of all possible m-tuples of the form (±1,±1, . . . ,±1). Notice that elements of Sm
lie in different 2m-orthants of Rm. Since all pj < ∞ and ~P lies in the open convex
hull H, we choose ε > 0 small enough such that 2

√
mε is smaller than the distance

from ~P to the boundary of the convex hull H, i.e.,

ε < min
(

1,
dist(~P , ∂H)

2
√
m

)
,

where ∂H is the set of all (m−1)-dimensional faces of H. For all ` ∈ {1, 2, . . . , 2m},
we pick points

~R` =
( 1

r`,1
, . . . ,

1

r`,m

)
=

m+1∑
k=1

θ`,k ~Pk

such that
∑m+1

k=1 θ`,k = 1 and, for all j ∈ {1, 2, . . . ,m},

(16)
1

r`,j
− 1

pj
= εσ`,j.

The choice of ε implies that the cube of side length 2ε centered at ~P belongs to
the open H. Moreover, since H lies in the orthant [0,∞)m, it follows that for all
j ∈ {1, 2, . . . ,m}

(17) 2
√
mε < dist(~P , ∂H) ≤ 1

pj
.

From these and (16), we see that each ~R` belongs to the open convex hull H and
every r`,j is finite. Consequently, each θ`,k ∈ (0, 1).

Consider the system of equations

1
p1,1

θ`,1 + 1
p2,1

θ`,2 + · · ·+ 1
pm+1,1

θ`,m+1 = 1
r`,1

1
p1,2

θ`,1 + 1
p2,2

θ`,2 + · · ·+ 1
pm+1,2

θ`,m+1 = 1
r`,2

...
...

...
...

...
1

p1,m
θ`,1 + 1

p2,m
θ`,2 + · · ·+ 1

pm+1,m
θ`,m+1 = 1

r`,m

θ`,1 + θ`,2 + · · ·+ θ`,m+1 = 1 ,



10 LOUKAS GRAFAKOS, LIGUANG LIU, SHANZHEN LU, AND FAYOU ZHAO

which has a (unique) solution (θ`,1, θ`,2, . . . , θ`,m+1).
Denote by A the matrix below

A =


1/p1,1 1/p2,1 . . . 1/pm+1,1

1/p1,2 1/p2,2 . . . 1/pm+1,2
...

...
...

...
1/p1,m 1/p2,m . . . 1/pm+1,m

1 1 . . . 1

 .

For all i, k ∈ {1, 2, . . . ,m + 1}, we denote by Di,k the determinant of the matrix
obtained by deleting the ith row and kth column of the matrix A. Since γ0 6= 0, it
follows that not all these minor determinants are zero. Expanding the determinant
(3) defining γj along its jth column we obtain

(18) γj =
m+1∑
k=1

(−1)j+k
1

−qk
Dj,k = −

m+1∑
k=1

(−1)j+k
1

qk
Dj,k .

For all ` = 1, 2, . . . , 2m, in view of (5) and
∑m+1

k=1 ηk = 1, we have that the
(m+1)-tuple

(θ`,1 − η1, θ`,2 − η2, . . . , θ`,m+1 − ηm+1)

is a solution of the system

1
p1,1

(θ`,1 − η1) + · · ·+ 1
pm+1,1

(θ`,m+1 − ηm+1) = 1
r`,1
− 1

p1

1
p1,2

(θ`,1 − η1) + · · ·+ 1
pm+1,2

(θ`,m+1 − ηm+1) = 1
r`,2
− 1

p2

...
...

...
...

1
p1,m

(θ`,1 − η1) + · · ·+ 1
pm+1,m

(θ`,m+1 − ηm+1) = 1
r`,m
− 1

pm

(θ`,1 − η1) + · · ·+ (θ`,m+1 − ηm+1) = 0.

This unique solution can be expressed as the ratio

θ`,k − ηk =

det


1/p1,1 1/p2,1 . . . 1/r`,1 − 1/p1 . . . 1/pm+1,1

1/p1,2 1/p2,2 . . . 1/r`,2 − 1/p2 . . . 1/pm+1,2
...

...
...

...
...

...
1/p1,m 1/p2,m . . . 1/r`,m − 1/pm . . . 1/pm+1,m

1 1 . . . 0 . . . 1



det


1/p1,1 1/p2,1 . . . 1/pm+1,1

1/p1,2 1/p2,2 . . . 1/pm+1,2
...

...
...

...
1/p1,m 1/p2,m . . . 1/pm+1,m

1 1 . . . 1


,

where these determinants are different only in the kth column. Expanding the
determinant in the numerator, we deduce that for all k ∈ {1, 2, . . . ,m + 1} and all
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` ∈ {1, 2, . . . , 2m},

(19) θ`,k − ηk =
m∑
j=1

( 1

r`,j
− 1

pj

)
(−1)j+k

Dj,k

γ0

.

For any ` ∈ {1, 2, . . . , 2m}, we also define

(20)
1

r`
=

m+1∑
k=1

θ`,k
qk

.

Using these expressions and (6), we write

1

q
− 1

r`
=

m+1∑
k=1

ηk − θ`,k
qk

= −
m+1∑
k=1

1

qk

m∑
j=1

( 1

r`,j
− 1

pj

)
(−1)j+k

Dj,k

γ0

= −
m∑
j=1

( 1

r`,j
− 1

pj

)m+1∑
k=1

1

qk
(−1)j+k

Dj,k

γ0

=
m∑
j=1

( 1

r`,j
− 1

pj

)γj
γ0

,(21)

where the last identity follows from (18).
We introduce some more notation. For any j ∈ {1, 2, . . . ,m} and any k in

{1, 2, . . . ,m+ 1}, set

tj,k = (−1)j+k
Dj,k

γ0

and then (19) can be written as

(22) ηk = θ`,k −
m∑
j=1

( 1

r`,j
− 1

pj

)
tj,k .

Since the points ~R` lie in the open convex hull H, estimate (15) is valid for each
~R` (with θ`,k in the place of ρk). To simplify notation, set

B̃` =
m+1∏
k=1

B
θ`,k
k .

In view of (15) we have

‖T (χE1 , . . . , χEm)‖Lr`,∞ ≤ B̃`

m∏
j=1

µj(Ej)
1
r`,j

for all subsets Ej of Xj of finite measure. Let δ be a positive number satisfying (9).
Observe that (9) and (20) imply

(23) δ < min
(r1

2
,
r2

2
, . . . ,

r2m

2
,

ln 2

ln(2K)

)
.
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Then, it follows from Proposition 2.2 that

(24) ‖T (f1, . . . , fm)‖Lr`,∞ ≤ C0(m,K, δ, r`,i, r`) B̃`

m∏
j=1

‖fj‖Lr`,j ,δ

for all functions fj ∈ Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
, where

C0(m,K, δ, r`,i, r`) =
(

100 K3
(

r`
r`−δ

) 2
δ (1− 2−δ)−

1
δ (ln 2)−

1
δ

)m
4

1
r`,1

+···+ 1
r`,m

+m
r` .

Notice that (16) and (21) together with the fact ε < 1 imply that

4
1
r`,1

+···+ 1
r`,m

+m
r` ≤ 4

1
p1

+···+ 1
pm

+m
q 4
| 1
r`,1
− 1
p1
|+···+| 1

r`,m
− 1
pm
|+m| 1

r`
− 1
q
|

≤ 4
1
p1

+···+ 1
pm

+m
q 4

m+m
Pm
j=1

|γj |
|γ0|

≤ 4
Pm
j=1

Pm+1
k=1

1
pk,j

+m
Pm+1
k=1

1
qk 4

m+m
Pm
j=1

|γj |
|γ0| ,

where the last inequality is a consequence of the observation (14). Also, it fol-
lows from (23) that r`

r`−δ
< 2 for all 1 ≤ ` ≤ 2m. Therefore, we can bound

C0(m,K, δ, r`,i, r`) by(
100 K32

2
δ (1− 2−δ)−

1
δ (ln 2)−

1
δ

)m
4

Pm
j=1

Pm+1
k=1

1
pk,j

+m
Pm+1
k=1

1
qk 4

m+m
Pm
j=1

|γj |
|γ0| .(25)

for every `. We denote the constant in (25) by C ′0(m,K, δ, pk,i, qk). From this and
(24), we obtain that for all functions fj ∈ Γ(Xj)− Γ(Xj) + i

(
Γ(Xj)− Γ(Xj)

)
,

(26) ‖T (f1, . . . , fm)‖Lr`,∞ ≤ C ′0(m,K, δ, pk,i, qk) B̃`

m∏
j=1

‖fj‖Lr`,j ,δ .

For all j = 1, 2, . . . ,m, fix functions fj in Γ(Xj)−Γ(Xj) + i
(
Γ(Xj)−Γ(Xj)

)
and

for any t > 0 write fj = fj,1,t + fj,−1,t, by setting

(27) fj,−1,t = fj χ
{|fj |>f∗j (λj t

−
γj
γ0 )}

and fj,1,t = fj χ
{|fj |≤f∗j (λj t

−
γj
γ0 )}

for some λj > 0 to be determined later.
Proposition 1.4.5 (6) in [2, p. 46] and Exercise 1.1.5 (c) in [2, p. 12] together with

the multi-quasilinearity of the operator T and of Lorentz norms imply

‖T (f1, . . . , fm)‖Lq,s

= ‖t
1
qT (f1, . . . , fm)∗(t)‖Ls(dt/t)

≤ Km
∥∥∥t 1

q

( ∑
i1,...,im∈{1,−1}

|T (f1,i1,t, . . . , fm,im,t)|
)∗

(t)
∥∥∥
Ls(dt/t)

≤ Km
∥∥∥t 1

q

∑
i1,...,im∈{1,−1}

(|T (f1,i1,t, . . . , fm,im,t)|)∗(t/2m)
∥∥∥
Ls(dt/t)

≤ 2
m
q max(1, 2

m(1−s)
s )Km

∑
i1,...,im∈{1,−1}

‖t
1
q (|T (f1,i1,t, . . . , fm,im,t)|)∗(t)‖Ls(dt/t)
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= 2
m
q max(1, 2

m(1−s)
s )Km

2m∑
`=1

‖t
1
q (|T (f1,σ`,1,t, . . . , fm,σ`,m,t)|)∗(t)‖Ls(dt/t) ,

since each m-tuple (i1, . . . , im) with ij ∈ {1,−1} corresponds to a unique ` in
{1, 2, . . . , 2m} such that (i1, . . . , im) = σ` ∈ Sm. It follows from (21) and (24)
that for all ` ∈ {1, 2, . . . , 2m} and t > 0,

t
1
q (|T (f1,σ`,1,t, . . . , fm,σ`,m,t)|)∗(t)

≤ t
1
q
− 1
r` sup

s>0
s

1
r` (|T (f1,σ`,1,t, . . . , fm,σ`,m,t)|)∗(s)

≤ t
1
q
− 1
r`

∥∥T (f1,σ`,1,t, . . . , fm,σ`,m,t)
∥∥
Lr`,∞

≤ t
1
q
− 1
r`C ′0(m,K, δ, pk,i, qk) B̃`

m∏
j=1

‖fj,σ`,j ,t‖Lr`,j ,δ

= C ′0(m,K, δ, pk,i, qk) B̃`

m∏
j=1

t
γj
γ0

( 1
r`,j
− 1
pj

)‖fj,σ`,j ,t‖Lr`,j ,δ .(28)

We now introduce sets

Λ = {1 ≤ j ≤ m : γj 6= 0}
Λ′ = {1 ≤ j ≤ m : γj = 0}

and we rewrite (28) as

t
1
q (|T (f1,σ`,1,t, . . . , fm,σ`,m,t)|)∗(t)

≤ C ′0(m,K, δ, pk,i, qk)B̃`

(∏
j∈Λ

t
γj
γ0

( 1
r`,j
− 1
pj

)‖fj,σ`,j ,t‖Lr`,j ,δ
)( ∏

j∈Λ′

‖fj,σ`,j ,1‖Lr`,j ,δ
)
,(29)

where we made use of the observation that for j ∈ Λ′ we have γj = 0 and hence for
all t > 0,

‖fj,σ`,j ,t‖Lr`,j ,δ = ‖fj,σ`,j ,1‖Lr`,j ,δ .
To estimate the Ls(dt/t) quasi-norm of (29), we need the following lemmas, whose

proofs are presented in the next section.

Lemma 3.1. For all j ∈ Λ let sj satisfy 0 < sj ≤ ∞. Then for all ` in {1, 2, . . . , 2m},
the following inequalities are valid: when pj > r`,j we have

(30)

∥∥∥∥t γjγ0
( 1
r`,j
− 1
pj

)‖fj,−1,t‖Lr`,j ,δ
∥∥∥∥
Lsj ( dt

t
)

≤ C1(r`,j, pj, δ)∣∣ γj
γ0

∣∣ 1
sj

λ
1
r`,j
− 1
pj

j ‖fj‖Lpj,sj

and when pj < r`,j we have

(31)

∥∥∥∥t γjγ0
( 1
r`,j
− 1
pj

)‖fj,1,t‖Lr`,j ,δ
∥∥∥∥
Lsj ( dt

t
)

≤ C1(r`,j, pj, δ)∣∣ γj
γ0

∣∣ 1
sj

λ
1
r`,j
− 1
pj

j ‖fj‖Lpj,sj ,
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where

C1(r`,j, pj, δ) =

[
max(1,

r`,j
pj

)

δ| 1
pj
− 1

r`,j
|

] 1
δ

=

[
max(1,

r`,j
pj

)

δε

] 1
δ

.

We note that each C1(r`,j, pj, δ) in Lemma 3.1 satisfies the following estimate:

(32) C1(r`,j, pj, δ) <
( 2

δε

) 1
δ

;

indeed, using (16) and the fact εpj <
1

2
√
m

(see (17)) we have

max
(

1,
r`,j
pj

)
= max

(
1,

1

1 + εpjσ`,j

)
< max

(
1,

1

1− 1
2
√
m

)
< 2.

Lemma 3.2. For all j ∈ Λ′ and all ` ∈ {1, 2, . . . , 2m}, when pj > r`,j we have

(33) ‖fj,−1,1‖Lr`,j ,δ ≤ C1(r`,j, pj, δ)λ
1
r`,j
− 1
pj

j ‖fj‖Lpj,∞

and when pj < r`,j we have

(34) ‖fj,1,1‖Lr`,j ,δ ≤ C1(r`,j, pj, δ)λ
1
r`,j
− 1
pj

j ‖fj‖Lpj,∞ ,

where C1(r`,j, pj, δ) is as in Lemma 3.1.

Then, we take the Ls(dt/t) quasi-norm of (29), by virtue of Hölder’s inequality
with exponents 1

s
=
∑

j∈Λ
1
sj

, and use Lemma 3.1 when j ∈ Λ or Lemma 3.2 when

j ∈ Λ′. Summing over ` and invoking (32), we obtain that for all functions fj in
Γ(Xj)−Γ(Xj) + i

(
Γ(Xj)−Γ(Xj)

)
the expression ‖T (f1, . . . , fm)‖Lq,s is bounded by

2
m
q max(1, 2

m(1−s)
s )Km

2m∑
`=1

C ′0(m,K, δ, pk,i, qk)B̃`{(∏
j∈Λ

( 2

δε

) 1
δ
∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j ‖fj‖Lpj,sj
)( ∏

j∈Λ′

( 2

δε

) 1
δ
λ

1
r`,j
− 1
pj

j ‖fj‖Lpj,∞
)}

.

To obtain (8), for each j ∈ {1, 2, . . . ,m} we choose

λj =
(
B
tj,1
1 B

tj,2
2 · · ·Btj,m+1

m+1

)−1

.

Then, for each 1 ≤ k ≤ m + 1, the dependence of the preceding expression on the
Bk’s is

m+1∏
k=1

B
θ`,k−

P
j∈Λ

(
1
r`,j
− 1
pj

)
tj,k−

P
j∈Λ′

(
1
r`,j
− 1
pj

)
tj,k

k =
m+1∏
k=1

Bηk
k ,

in view of (22).
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From this, we conclude that for all fj ∈ Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
, the

expression ‖T (f1, . . . , fm)‖Lq,s is at most

C ′∗(m,K, δ, pk,i, qk, sj, s)ε
−m/δ

(m+1∏
k=1

Bηk
k

)(∏
j∈Λ

‖fj‖Lpj,sj
)( ∏

j∈Λ′

‖fj‖Lpj,∞
)
,

where C ′∗(m, pk,j, qk, ηk, sj, s,K) is equal to

2
m
q max(1, 2

m(1−s)
s )Km 2mC ′0(m,K, δ, pk,i, qk)

(2

δ

)m
δ
∏
j∈Λ

∣∣∣γ0

γj

∣∣∣ 1
sj .

If j ∈ Λ′ then it is a simple fact (see [2, Proposition 1.4.10]) that for any sj ∈ (0,∞]
we have

‖fj‖Lpj,∞ ≤
(sj
pj

) 1
sj ‖fj‖Lpj,sj .

Thus for all functions fj ∈ Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
we conclude

(35) ‖T (f1, . . . , fm)‖Lq,s ≤ C
′′

∗ (m,K, δ, pk,i, qk, si, s)ε
−m/δ

(m+1∏
k=1

Bηk
k

) m∏
j=1

‖fj‖Lpj,sj ,

where C ′′∗ (m,K, δ, pk,i, qk, si, s) is equal to

2
m
q max(1, 2

m(1−s)
s )Km 2mC ′0(m,K, δ, pk,i, qk)

(2

δ

)m
δ
∏
j∈Λ

∣∣∣γ0

γj

∣∣∣ 1
sj
∏
j∈Λ′

(sj
pj

) 1
sj .

Since (35) is valid for all ε < min(1, dist (~P ,∂H)
2
√
m

), letting ε → min(1, dist (~P ,∂H)
2
√
m

),

and noticing that 1
q
≤
∑m+1

k=1
1
qk

, we then obtain estimate (8) for all functions fj in

Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
, 1 ≤ j ≤ m, where

C∗(m,K, δ, pk,i, qk) = 2
m

Pm+1
k=1

1
qk Km 2mC ′0(m,K, δ, pk,i, qk)

(2

δ

)m
δ (

2
√
m
)m/δ

.

This concludes the proof of Theorem 1.1. �

4. The proof of Proposition 1.1

We need to show that (10) is valid for general functions in Lp1,t1 × · · · × Lpm,tm .
For any j = 1, 2, . . . ,m and fj ∈ Lpj ,tj , since Γ(Xj) − Γ(Xj) + i

(
Γ(Xj) − Γ(Xj)

)
is dense in Lpj ,tj when 0 < tj < ∞, there exists a sequence {f (n)

j }∞n=1 contained in

Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
such that

lim
n→∞

‖f (n)
j − fj‖Lpj,tj = 0

and

‖f (n)
j ‖Lpj,tj ≤ 2‖fj‖Lpj,tj
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for all n ≥ 1. For all positive integers n and i, we use the multi-sublinearity to
deduce that

|T (f
(n)
1 , . . . , f (n)

m )− T (f
(i)
1 , . . . , f (i)

m )|

≤
m∑
j=1

|T (f
(i)
1 , . . . , f

(i)
j−1, f

(n)
j , . . . , f (n)

m )− T (f
(i)
1 , . . . , f

(i)
j , f

(n)
j+1 . . . , f

(n)
m )|

≤
m∑
j=1

|T (f
(i)
1 , . . . , f

(i)
j−1, f

(n)
j − f

(i)
j , f

(n)
j+1, . . . , f

(n)
m )| ,

where the jth entry is f
(n)
j − f

(i)
j . This implies that

‖T (f
(n)
1 , . . . , f (n)

m )− T (f
(i)
1 , . . . , f (i)

m )‖Lq,s

≤ max(1, 2
m(1−s)

s )
m∑
j=1

‖T (f
(i)
1 , . . . , f

(i)
j−1, f

(n)
j − f

(i)
j , f

(n)
j+1, . . . , f

(n)
m )‖Lq,s

≤ max(1, 2
m(1−s)

s )M
m∑
j=1

‖f (n)
j − f

(i)
j ‖Lqj ,tj

∏
1≤k≤m
k 6=j

2‖fk‖Lqk,tk ,

which tends to 0 as n, i→∞. Thus, {T (f
(n)
1 , . . . , f

(n)
m )}∞n=1 is a Cauchy sequence in

Lq,s and it converges to some element in Lq,s, so it makes sense to define

T̃ (f1, . . . , fm) = lim
n→∞

T (f
(n)
1 , . . . , f (n)

m ) in Lq,s .

Similar arguments show that if, for j = 1, 2, . . . ,m, {g(n)
j }∞n=1 is another sequence

contained in Γ(Xj)− Γ(Xj) + i
(
Γ(Xj)− Γ(Xj)

)
that converges to fj in Lqj ,tj , then

T̃ (f1, . . . , fm) = lim
n→∞

T (g
(n)
1 , . . . , g(n)

m ) in Lq,s .

Therefore, T̃ is a well-defined multi-sublinear operator. Consequently, for all func-
tions (f1, . . . , fm) ∈ Lp1,t1 × · · · × Lpm,tm , we have

‖T̃ (f1, . . . , fm)‖Lq,s ≤ lim
n→∞

‖T (f
(n)
1 , . . . , f (n)

m )‖Lq,s

≤M lim
n→∞

m∏
j=1

‖f (n)
j ‖Lpj,tj

= M
m∏
j=1

‖fj‖Lpj,tj .

This concludes the proof of Proposition 1.1. �
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5. Proof of Corollary 1.3

We first show that if γj = 0 for all j, then q1 = · · · = qm+1. We define vectors

~1 = (1, 1, . . . , 1), ~Q = (1/q1, . . . , 1/qm+1),

and for each j ∈ {1, 2, . . . ,m}, we also define

~Aj = (1/p1,j, 1/p2,j, . . . , 1/pm+1,j).

Then ( ~A1, ~A2, . . . , ~Am,~1) is linearly independent since γ0 6= 0. If all γj = 0, this
means that for each j ∈ {1, 2, . . . ,m},

( ~A1, ~A2, . . . , ~Aj−1, ~Q, ~Aj+1, . . . , ~Am,~1)

is linearly dependent. Therefore, for any j ∈ {1, 2, . . . ,m}, we can write

~Q =
∑

1≤i≤m, i 6=j

a
(j)
i
~Ai + c(j)~1,

where a
(j)
i and c(j) are constants. Equivalently,

~Q = 0 + a
(1)
2
~A2 + a

(1)
3
~A3 + · · ·+ a

(1)
m−1

~Am−1 + a
(1)
m
~Am +c(1)~1

~Q = a
(2)
1
~A1 + 0 + a

(2)
3
~A3 + · · ·+ a

(2)
m−1

~Am−1 + a
(2)
m
~Am +c(2)~1

...
...

...
...

...
...

...

~Q = a
(m)
1

~A1 + a
(m)
2

~A2 + a
(m)
3

~A3 + · · ·+ a
(m)
m−1

~Am−1 + 0 +c(m)~1.

Consider j = 1 and j = 2. Then

~0 = ~Q− ~Q = −a(2)
1
~A1 + a

(1)
2
~A2 +

m∑
i=3

(a
(1)
i − a

(2)
i ) ~Ai + (c(1) − c(2))~1,

which combined with the fact that ( ~A1, ~A2, . . . , ~Am,~1) is linearly independent implies
that

a
(1)
2 = 0.

Likewise, by considering j = 1 and j = 3, we obtain

~0 = ~Q− ~Q = −a(3)
1
~A1 + a

(1)
3
~A3 +

∑
1≤i≤m, i 6=1,i 6=3

(a
(1)
i − a

(3)
i ) ~Ai + (c(1) − c(3))~1,

and consequently

a
(1)
3 = 0.

Repeating the above process implies that

a
(1)
4 = · · · = a(1)

m = 0.

Therefore, ~Q is a constant multiple of the vector ~1, that is, q1 = · · · = qm+1. Then
q is equal to these numbers as well.

The remaining assertions in the corollary are already proved in Section 3 and
Section 4. �
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6. Proofs of Lemmas 3.1 and 3.2

For each j ∈ {1, 2, . . . ,m} and fj ∈ Γ(Xj) − Γ(Xj) + i
(
Γ(Xj) − Γ(Xj)

)
, with

fj,−1,t and fj,1,t defined as in (27), it is easy to show that the following inequalities
are valid:

(36) f ∗j,−1,t(v) ≤


f ∗j (v) if 0 < v < λj t

−
γj
γ0 ,

0 if v ≥ λj t
−
γj
γ0 ,

and

(37) f ∗j,1,t(v) ≤


f ∗j (λj t

−
γj
γ0 ) if 0 < v < λj t

−
γj
γ0 ,

f ∗j (v) if v ≥ λj t
−
γj
γ0 .

First we prove Lemma 3.1.

Proof of Lemma 3.1. We first prove (30). In view of (36) we have∥∥∥∥t γjγ0
( 1
r`,j
− 1
pj

)‖fj,−1,t‖Lr`,j ,δ
∥∥∥∥
Lsj ( dt

t
)

=

∫ ∞
0

t
sj
γj
γ0

( 1
r`,j
− 1
pj

)


∫ λjt

−
γj
γ0

0

(f ∗j,−1,t(v))δv
δ
r`,j

dv

v


sj
δ

dt

t


1
sj

.

Change variables u = λj t
−
γj
γ0 and use (36) to estimate the preceding expression by

(38)
∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

{∫ ∞
0

u
−sj( 1

r`,j
− 1
pj

)
(∫ u

0

(f ∗j (v))δv
δ
r`,j

dv

v

) sj
δ du

u

} δ
sj


1
δ

.

We now use the following inequality of Hardy (valid for 0 < β <∞, 1 ≤ p <∞)(∫ ∞
0

(∫ x

0

|f(t)| dt
)p
x−β

dx

x

) 1
p

≤ p

β

(∫ ∞
0

|f(t)|p tp−β dt
t

) 1
p

with β = sj(
1
r`,j
− 1

pj
) > 0 and p =

sj
δ

since pj > r`,j and δ ≤ sj. We obtain that

(38) is at most(
1

δ| 1
r`,j
− 1

pj
|

) 1
δ ∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

(∫ ∞
0

((f ∗j (v))δv
δ
r`,j v−1)

sj
δ v

sj
δ
−sj( 1

r`,j
− 1
pj

) dv

v

) 1
sj

=

(
1

δ| 1
r`,j
− 1

pj
|

) 1
δ ∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j ‖fj‖Lpj,sj .
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We now prove (31). We begin with

∥∥∥∥t γjγ0
( 1
r`,j
− 1
pj

)‖fj,1,t‖Lr`,j ,δ
∥∥∥∥
Lsj ( dt

t
)

=

∫ ∞
0

t
sj
γj
γ0

( 1
r`,j
− 1
pj

)

∫ λjt
−
γj
γ0

0

(f ∗j,1,t(v))δv
δ
r`,j

dv

v

+

∫ ∞
λjt
−
γj
γ0

(f ∗j,1,t(v))δv
δ
r`,j

dv

v

) sj
δ
dt

t


1
sj

.

In both integrals we first use (37) and then perform a change of variables u = λj t
−
γj
γ0

to estimate the preceding expression by∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

×

[∫ ∞
0

u
−sj( 1

r`,j
− 1
pj

)
{

(f ∗j (u))δ
∫ u

0

v
δ
r`,j

dv

v
+

∫ ∞
u

(f ∗j (v))δv
δ
r`,j

dv

v

} sj
δ du

u

] δ
sj

1
δ

,

which by Minkowski’s inequality is at most

∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

{∫ ∞
0

u
−sj( 1

r`,j
− 1
pj

)
(

(f ∗j (u))δ
∫ u

0

v
δ
r`,j

dv

v

) sj
δ du

u

} δ
sj

+

{∫ ∞
0

u
−sj( 1

r`,j
− 1
pj

)
(∫ ∞

u

(f ∗j (v))δv
δ
r`,j

dv

v

) sj
δ du

u

} δ
sj


1
δ

.(39)

The first term of the sum is easily evaluated while for the second of the sum we use
the folllowing inequality of Hardy (valid for 0 < β <∞, 1 ≤ p <∞)(∫ ∞

0

(∫ ∞
x

|f(t)| dt
)p
xβ

dx

x

) 1
p

≤ p

β

(∫ ∞
0

|f(t)|p tp+β dt
t

) 1
p

,

with β = −( 1
r`,j
− 1

pj
)sj > 0 and p =

sj
δ

since pj < r`,j and δ ≤ sj. Then (39) can be

estimated by∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

[
1
δ
r`,j

{∫ ∞
0

u
sj
pj (f ∗j (u))sj

du

u

} δ
sj

+
1

δ( 1
pj
− 1

r`,j
)

{∫ ∞
0

(
(f ∗j (v))δv

δ
r`,j v−1

) sj
δ

v
sj
δ

+( 1
pj
− 1
r`,j

)sj dv

v

} δ
sj


1
δ
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=
∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

[
1
δ
r`,j

‖f‖δLpj,sj +
1

δ( 1
pj
− 1

r`,j
)
‖f‖δLpj,sj

] 1
δ

=
∣∣∣γ0

γj

∣∣∣ 1
sj λ

1
r`,j
− 1
pj

j

[ r`,j
pj

δ| 1
pj
− 1

r`,j
|

] 1
δ

‖f‖Lpj,sj ,

which proves (31).
We now consider the case sj = ∞. If pj > r`,j, then we change variables u =

λj t
−
γj
γ0 and use (36) to obtain that for all t > 0,

t
γj
γ0

( 1
r`,j
− 1
pj

)‖fj,−1,t‖Lr`,j ,δ ≤ λ
1
r`,j
− 1
pj

j u
−( 1

r`,j
− 1
pj

)
(∫ u

0

(f ∗j (v))δv
δ
r`,j

dv

v

) 1
δ

≤ λ
1
r`,j
− 1
pj

j u
−( 1

r`,j
− 1
pj

)
(∫ u

0

v
δ
r`,j
− δ
pj
dv

v

) 1
δ

‖fj‖Lpj,∞

=

(
1

δ| 1
r`,j
− 1

pj
|

) 1
δ

λ
1
r`,j
− 1
pj

j ‖fj‖Lpj,∞ ,

which implies (33).

If pj < r`,j, again by the same change of variables u = λj t
−
γj
γ0 and via (37) we

obtain for all t > 0,

t
γj
γ0

( 1
r`,j
− 1
pj

)‖fj,1,t‖Lr`,j ,δ

≤ λ
1
r`,j
− 1
pj

j u
−( 1

r`,j
− 1
pj

)
(∫ u

0

(f ∗j (u))δv
δ
r`,j

dv

v
+

∫ ∞
u

(f ∗j (v))δv
δ
r`,j

dv

v

) 1
δ

≤ λ
1
r`,j
− 1
pj

j u
−( 1

r`,j
− 1
pj

)
(∫ u

0

u
− δ
pj v

δ
r`,j

dv

v
+

∫ ∞
u

v
δ
r`,j
− δ
pj
dv

v

) 1
δ

‖fj‖Lpj,∞

≤ λ
1
r`,j
− 1
pj

j

(
1
δ
r`,j

+
1

δ( 1
pj
− 1

r`,j
)

) 1
δ

‖fj‖Lpj,∞

= λ
1
r`,j
− 1
pj

j

( r`,j
pj

δ| 1
pj
− 1

r`,j
|

) 1
δ

‖fj‖Lpj,∞ .

This concludes the proof of Lemma 3.1. �

Proof of Lemma 3.2. When j ∈ Λ′ we have γj = 0 and

fj,−1,1 = fj χ{|fj |>f∗j (λj)}, fj,1,1 = fj χ{|fj |≤f∗j (λj)}
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and

(40) f ∗j,−1,1(v) ≤

f
∗
j (v) if 0 < v < λj,

0 if v ≥ λj,

and

(41) f ∗j,1,1(v) ≤

f
∗
j (λj) if 0 < v < λj,

f ∗j (v) if v ≥ λj.

If pj > r`,j, then by (40) we obtain

‖fj,−1,1‖Lr`,j ,δ ≤
[∫ λj

0

v
δ
r`,j f ∗j (v)δ

dv

v

]1/δ

≤
[∫ λj

0

v
δ
r`,j
− δ
pj
dv

v

]1/δ

‖fj‖Lpj,∞ =
λj

1
r`,j
− 1
pj

| δ
r`,j
− δ

pj
|1/δ
‖fj‖Lpj,∞ ,

which proves (33). Now we suppose pj < r`,j and show (34). To this end, applying
(41) yields that

‖fj,1,1‖Lr`,j ,δ ≤

[∫ λj

0

v
δ
r`,j λ

− δ
pj

j λ
δ
pj

j f
∗
j (λj)

δ dv

v
+

∫ ∞
λj

v
δ
r`,j
− δ
pj v

δ
pj f ∗j (v)δ

dv

v

]1/δ

≤

λj δ
r`,j
− δ
pj

δ
r`,j

+
λj

δ
r`,j
− δ
pj

δ
pj
− δ

r`,j

1/δ

‖fj‖Lpj,∞

=

[ r`,j
pj

δ| 1
pj
− 1

r`,j
|

] 1
δ

λj
1
r`,j
− 1
pj ‖fj‖Lpj,∞ ,

and hence (34) holds. This concludes the proof of Lemma 3.2. �

7. Remarks and applications

Previous proofs of Theorem 1.1 yielded a constant in (8) that was additive in the
Bk’s, i.e., it had the form

m+1∑
k=1

ckBk

for some ck > 0. Obviously, a constant of the form

Bη1

1 B
η2

2 . . . B
ηm+1

m+1

is advantageous since it becomes small when only one Bk0 is small and the other
remain bounded.
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Moreover, previous proofs of Theorem 1.1 did not yield a constant in (8) that

was explicit in terms of the initial points ~Pk. Our proof shows the explicit behavior

dist(~P , ∂H)−m/δ

as ~P tends to the boundary of H. This behavior was used in the study of the
Calderón problem by Thiele [12]. We describe the details of the argument. Using
the notation in [12] we consider the operator

Bα(f1, f2)(x) = p.v.

∫
R

f1(x− αt)f2(x+ (1− α)t)
dt

t

where f1, f2 are Schwartz functions on the line, and x, α are real numbers.
Let us assume that |α| ≤ 1/2. The proof in [6] and [7] shows that for all λ > 0,

(42) λ
1
r |{x ∈ R : |Bα(f1, f2)(x)| > λ}| ≤ C |α|−M‖f1‖Lr1‖f2‖Lr2

when ( 1
r1
, 1
r2

) is a point with 1
r

= 1
r1

+ 1
r2
< 3

2
, 1 < r1, r2 <∞, for some constant M

possibly depending on r1, r2. In particular, there is a constant M > 0 such that (42)
holds when ( 1

r1
, 1
r2

) is one of (1
2
, 3

4
), (3

4
, 1

2
), (1

4
, 1

4
). Theorem 1.1 in [12] claims that

(43) λ|{x ∈ R : |Bα(f1, f2)(x)| > λ}| ≤ C ‖f1‖L2‖f2‖L2

for some constant C independent of |α| ≤ 1/2. Interpolation between (42) and (43)
yields the three bounds

λ
1
ri |{x ∈ R : |Bα(f1, f2)(x)| > λ}| ≤ C ′ |α|−Mε‖f1‖Lri,1‖f2‖Lri,2 ,

where i = 1, 2, 3 and( 1

r1,1

,
1

r1,2

,
1

r1

)
= (1− ε)

(1

2
,
1

2
,
1

1

)
+ ε
(1

2
,
3

4
,
5

4

)
( 1

r2,1

,
1

r2,2

,
1

r2

)
= (1− ε)

(1

2
,
1

2
,
1

1

)
+ ε
(3

4
,
1

2
,
5

4

)
( 1

r3,1

,
1

r3,2

,
1

r3

)
= (1− ε)

(1

2
,
1

2
,
1

1

)
+ ε
(1

4
,
1

4
,
1

2

)
.

Choosing

ε =
log
(
10 + log 1

|α|

)
M log 1

|α|
,

we obtain that

λ
1
ri |{x ∈ R : |Bα(f1, f2)(x)| > λ}| ≤ C ′′

(
10 + log

1

|α|

)
‖f1‖Lri,1‖f2‖Lri,2 .

Clearly the point (1
2
, 1

2
) lies in the interior of the convex hull of the points

( 1
ri,1
, 1
ri,2

), i = 1, 2, 3. Corollary 1.1 yields the strong bound

‖Bα(f1, f2)‖L1 ≤ C ′′′ d
− 2
δ0

(
10 + log

1

|α|

)
‖f1‖L2‖f2‖L2 ,
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where 0 < δ0 < 2/5 and d denotes the distance from the point (1
2
, 1

2
) to the boundary

of the convex hull of the points (1
2
, 3

4
), (3

4
, 1

2
), (1

4
, 1

4
). But d is proportional to ε and

thus one obtains the estimate

‖Bα(f1, f2)‖L1 ≤ C ′′′
(

M log 1
|α|

log
(
10 + log 1

|α|

)) 2
δ0
(

10 + log
1

|α|

)
‖f1‖L2‖f2‖L2 .

This estimate is integrable on [0, 1/2] and a symmetric estimate shows that the
constant is also integrable on [1/2, 1]. These estimates allow one to obtain the L2

boundedness of the first commutator of Calderón by expressing it as an average of
the operators Bα over the interval [0, 1]; see [12] for the remaining details.
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