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Abstract. We study Lr (or Lr,∞) boundedness for bilinear translation-invariant
operators with nonnegative kernels acting on functions on Rn. We prove that
if such operators are bounded on some products of Lebesgue spaces, then
their kernels must necessarily be integrable functions on R2n, while via a
counterexample we show that the converse statement is not valid. We provide
certain necessary and some sufficient conditions on nonnegative kernels yield-
ing boundedness for the corresponding operators on products of Lebesgue
spaces. We also prove that, unlike the linear case where boundedness from
L1 to L1 and from L1 to L1,∞ are equivalent properties, boundedness from
L1×L1 to L1/2 and from L1×L1 to L1/2,∞ may not be equivalent properties
for bilinear translation-invariant operators with nonnegative kernels.
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1. Introduction

For a nonnegative regular Borel measure µ on Rn × Rn, we define the bilinear
convolution operator:

Tµ(f, g)(x) =
∫

Rn×Rn

f(x− y)g(x− z) dµ(y, z), (1)

where x ∈ Rn and f, g are nonnegative functions on Rn. If dµ(y, z) = K(y, z) dydz,
for some nonnegative function K, then we denote

TK(f, g)(x) =
∫

Rn

∫
Rn

f(x− y)g(x− z)K(y, z) dydz,
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assuming no confusion occurs in the notation. We are interested in studying bound-
edness properties of these operators on different products of Lp(Rn) spaces and
on more general rearrangement-invariant quasi-Banach function spaces.

We discuss necessary conditions for boundedness in terms of the range of
the Lebesgue indices and of the kernels of such operators. A sufficient condition
for boundedness is obtained in a particular case, see Theorem 3.2. Theorem 4.3
provides a characterization, in terms of the Lorentz space L1/2n,1/2(R+), of the
boundedness of TK from L1 × L1 to L1/2, if K(y, z) = ϕ(|y| + |z|) and ϕ is
decreasing.

The study of bilinear operators within the context of harmonic analysis was
initiated by Coifman and Meyer [2, 3] in the late seventies but recent attention in
the subject was rekindled by the breakthrough work of Lacey and Thiele [9, 10]
on the bilinear Hilbert transform. The behavior of this operator is still not under-
stood on spaces near L1×L1. Although the results obtained in this paper are not
applicable to the bilinear Hilbert transform, they suggest that bilinear translation-
invariant operators may exhibit behavior at the endpoint L1 × L1 different from
that of their linear counterparts on L1 (see Theorems 3.4 and 4.1).

An interesting example of an operator of type (1) is given by the measure
µ = δ0(y + z)χ|y|≤1 on Rn × Rn, where δ0 denotes the Dirac delta mass on the
diagonal in Rn. This operator (which appeared in the study of bilinear fractional
integrals) can be written as

B(f, g)(x) =
∫

Rn

f(x− y)g(x+ y)χ|y|≤1 dy ,

and maps L1(Rn) × L1(Rn) to L1/2(Rn), as proved independently by Kenig and
Stein [8] and Grafakos and Kalton [5]. The bilinear fractional integrals are also
operators of the form (1) associated with the singular measures µα = δ0(y +
z)|y|−n+α on Rn × Rn, where 0 < α < n, and they map Lp × Lq → Lr, when
1/p+ 1/q = α/n+ 1/r.

2. Necessary conditions

We begin by exhibiting a general restriction on a set of indices p, q, r for which
an operator Tµ of the form (1) is bounded. The next result is analogous to
Hörmander’s [7] in the linear case; see also [6].

Proposition 2.1. Let µ be a nonnegative regular Borel measure on Rn×Rn. Suppose
that the bilinear operator Tµ maps Lp(Rn) × Lq(Rn) to Lr(Rn) for some 0 <
p, q, r ≤ ∞. Then one has 1/p+1/q ≥ 1/r. In particular, if Tµ : L1(Rn)×L1(Rn)→
Lp(Rn), then p ≥ 1/2.

Proof. Fix 0 < p, q, r ≤ ∞. By translating µ if necessary, we may assume that
there exists a compact set E ⊂ [1,M ]n × [1,M ]n (for some M > 1), such that
0 < µ(E) <∞.
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Let x = (x1, . . . , xn) in Rn. Taking f(x) =
∏n
j=1 |xj |−αχ(1,∞)n(x), with

α > 1/p, and g(x) =
∏n
j=1 |xj |−βχ(1,∞)n(x), with β > 1/q we have, for xj > M+1,

j = 1, . . . , n:

Tµ(f, g)(x) ≥
∫
E

f(x− y)g(x− z) dµ(y, z)

≥ µ(E)
n∏
j=1

(xj − 1)−(α+β).

Since Tµ(f, g) ∈ Lr(Rn), this implies that α + β > 1/r, for all α > 1/p and all
β > 1/q; i.e., 1/p+ 1/q ≥ 1/r. �

In the endpoint case 1/p + 1/q = 1/r, we prove that the boundedness of
the bilinear operator Tµ necessarily implies that the measure µ must be finite. In
fact, this result is valid even under the weaker assumption that Tµ is of weak-
type (p, q, r). We study this condition in detail in Section 3 where we give an
example showing that, in general and contrary to what happens in the linear case,
the finiteness of the measure (or the integrability of the kernel) is not a sufficient
condition for the boundedness of the associated operator.

Proposition 2.2. If µ is a nonnegative regular Borel measure and the operator Tµ :
Lp(Rn)× Lq(Rn)→ Lr,∞(Rn) for some 0 < p, q ≤ ∞ satisfying 1/p+ 1/q = 1/r,
then µ is a finite measure. In particular, if K ≥ 0 and TK : Lp(Rn) × Lq(Rn) →
Lr,∞(Rn), for some 0 < p, q ≤ ∞ with 1/p+ 1/q = 1/r, then K ∈ L1(Rn × Rn).

Proof. We consider first the case 0 < r <∞. Fix R > 0, such that µ(BR×BR) > 0,
where BR is the ball B(0, R) ⊂ Rn. Then, for every x ∈ BR we have:

Tµ(χB2R
, χB2R

)(x) = µ(B(x, 2R)×B(x, 2R)) ≥ µ(BR ×BR) = λ > 0.

Therefore BR j
{
Tµ(χB2R

, χB2R
) > λ/2

}
, and

|BR| ≤
∣∣{Tµ(χB2R

, χB2R
) > λ/2

}∣∣
≤ 2rCr

λr
|B2R|r/p|B2R|r/q

=
Cr2r+n

λr
|BR|.

Hence, for every R > 0, we have that µ(BR × BR) ≤ 21+n/rC, which proves the
result when r <∞ letting R→∞. When r =∞ we have

µ(BR ×BR) ≤
∥∥Tµ(χB2R

, χB2R
)
∥∥
L∞
≤ C

∥∥χB2R

∥∥2

L∞
= C,

and the conclusion follows letting R→∞ as well. �
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3. Sufficient conditions

We now study certain sufficient conditions for boundedness of operators of the
form (1). We start with a couple of observations:

If K ∈ L1(Rn×Rn), then TK : Lp(Rn)×Lq(Rn)→ Lr(Rn), where 1 ≤ p, q ≤
∞ and 1/p+1/q = 1/r ≤ 1. In fact, this statement can be strengthened as follows:

Proposition 3.1. If µ is a nonnegative regular Borel measure and 1/p + 1/q =
1/r ≤ 1, then the following statements are equivalent:

(a) Tµ : Lp(Rn)× Lq(Rn)→ Lr(Rn).
(b) Tµ : Lp(Rn)× Lq(Rn)→ Lr,∞(Rn).
(c) µ is a finite measure.

Proof. Obviously (a) implies (b) while the fact that (b) implies (c) is proved in
Proposition 2.2. Using Minkowski’s integral inequality, we have:

‖Tµ(f, g)‖r ≤
∫

Rn×Rn

‖f(· − y)g(· − z)‖r dµ(y, z)

≤
∫

Rn×Rn

‖f(· − y)‖p‖g(· − z)‖q dµ(y, z)

= µ(Rn × Rn)‖f‖p‖g‖q.

�

It is interesting that this result is false, in general, when 0 < r < 1. We show
that there exists K ≥ 0, K ∈ L1 (in fact K ∈ L1 ∩ L∞) such that TK does not
map L1 × L1 to L1/2,∞; see Theorem 3.4.

A second observation is that if a kernel K satisfies

|K(y, z)| ≤ K1(y)K2(z), (2)

where 0 ≤ Kj ∈ L1(Rn), then TK : Lp(Rn) × Lq(Rn) → Lr(Rn), whenever 1 ≤
p, q ≤ ∞ and 1/p + 1/q = 1/r. In this case r ≥ 1/2 and K lies in L1(Rn × Rn),
which is a necessary condition by Proposition 2.2.

We now provide a weaker sufficient condition than (2), that yields the bound-
edness of TK in the nontrivial case 0 < r < 1:

Theorem 3.2. Suppose that 1/p+ 1/q = 1/r ≥ 1 and ϕ is a nonnegative function
on R+ × R+, decreasing in each variable separately and obeying the estimate:∑

j1∈Z

∑
j2∈Z

(ϕ(2j1 , 2j2)2j1n2j2n)r <∞.

Let K be a function on Rn × Rn that satisfies

|K(y1, y2)| ≤ ϕ(|y1|, |y2|).

Then TK maps Lp(Rn)× Lq(Rn) to Lr(Rn).
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Proof. For each j1, j2 integers we set

Kj1,j2(y1, y2) = K(y1, y2)χIj1
(y1)χIj2

(y2),

where Ijl = {2jl < |yl| ≤ 2jl+1}. Then we have

T (f1, f2)(x) ≤
∑
j1∈Z

∑
j2∈Z

ϕ(2j1 , 2j2)
2∏
l=1

∫
Ijl

|fl(x− yl)| dyl.

We raise this expression to the power r and integrate over Rn. As we can pass the
power r inside the sum we obtain that∫

Rn

|T (f1, f2)(x)|rdx ≤
∑
j1∈Z

∑
j2∈Z

ϕ(2j1 , 2j2)r

×
∫

Rn

∣∣∣∣ 2∏
l=1

∫
Ijl

|fl(x− yl)| dyl
∣∣∣∣rdx

and we apply Hölder’s inequality to control the previous quantity by

C
∑
j1∈Z

∑
j2∈Z

ϕ(2j1 , 2j2)r
(∫

Rn

(∫
Ij1

|f1(x− y1)| dy1
)p

dx

)r/p

×
(∫

Rn

(∫
Ij2

|f2(x− y2)| dy2
)q

dx

)r/q
≤ C ′

∑
j1∈Z

∑
j2∈Z

ϕ(2j1 , 2j2)r
(∫

Rn

∫
Ij1

|f1(x− y1)|p dy1 2j1n(p−1) dx

)r/p

×
(∫

Rn

∫
Ij2

|f2(x− y2)|q dy2 2j2n(q−1) dx

)r/q
= C ′′

∑
j1∈Z

∑
j2∈Z

(ϕ(2j1 , 2j2)2j1n2j2n)r(
∥∥f1∥∥Lp

∥∥f2∥∥Lq )r

≤ C ′′′(
∥∥f1∥∥Lp

∥∥f2∥∥Lq )r.

This proves the result. �

Remark 3.3. It is easy to see that the hypothesis on K can be equivalently written
as ∫

Rn

∫
Rn

|K(y1, y2)|r

(|y1|n|y2|n)1−r
dy1dy2 <∞,

and in this case the monotonicity condition on ϕ is replaced by the condition:
whenever |y1| ≤ |y′1| we have |K(y1, y2)| ≥ |K(y′1, y2)| and whenever |y2| ≤ |y′2| we
have |K(y1, y2)| ≥ |K(y1, y′2)|.

Under no extra conditions on K, and for the case 0 < r < 1, no positive
results can be obtained, as the following result indicates:
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Theorem 3.4. There exists a nonnegative function K on Rn × Rn such that, if X
is an r.i. quasi Banach space, then TK : L1 × L1 → X if and only if L∞ is a
subspace of X.

Proof. We work the details in the case n = 1, although the construction can be
easily extended to Rn for n ≥ 2. For a < 0 and r > 0 set

fa,r(x) =
1
2r
χ(a−r,a+r)(x) .

Also let

`a = {(x− a, x) : x ∈ R}

be the line of slope 1 passing through the point (0, a). Then for almost all (x −
a, x) ∈ R2 we have

TK(fa,r, f0,r)(x) =
1

4r2

∫
(x−a−r,x−a+r)

∫
(x−r,x+r)

K(y, z) dzdy

and from this we deduce that

TK(fa,r, f0,r)(x)→ K(x− a, x) (3)

as r → 0. In other words, (3) holds for almost every a < 0 and almost every point
on the line `a with respect to one-dimensional Lebesgue measure.

For each k ∈ N, we construct a sequence of disjoint rectangles Rk as in
Figure 1 with base length equal to 1/k3, height equal to 2k, and longest side
parallel to the line `a. We arrange that all these rectangles touch each other and
are contained in the right angle −|x| ≤ y ≤ |x| on the (x, y) plane. We let P (Rk)
be the intersection of the smallest strip containing the longest side of Rk and the
negative y-axis. Set

R =
∞⋃
k=1

Rk

and K = χR. Then

‖K‖1 = |R| =
∞∑
k=1

2/k2 <∞.
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R1

R2

R3

...P (R1)

P (R2)

P (R3)

u

`a

(0, a)

Figure 1.

Suppose that for this kernel K the following estimate holds:

‖TK(f, g)‖X ≤ C‖f‖1‖g‖1
for all f, g nonnegative functions in L1(Rn). Then for any k ≥ 1, (3) holds for
almost all −

√
2
∑∞
k=1 k

−3 < a < 0, with (0, a) in P (Rk) (in particular for one
such a), and for almost all points (x− a, x) in `a. Since

χ(0,k)(x) ≤ χRk
(x− a, x) ≤ K(x− a, x),

for all real x, using Fatou’s lemma and (3) we deduce that

‖χ(0,k)‖X ≤ lim inf
r→0

‖TK(fa,r, f0,r)‖X ≤ C‖fa,r‖1‖f0,r‖1 = C,

for every k ∈ N. Thus, the fundamental function ϕX of X (see [1]) is bounded,
which is equivalent to saying that L∞ is a subspace of X.

Conversely, if L∞ is a subspace of X and K ∈ L∞, then it is clear that
TK : L1 × L1 → L∞ and thus TK maps L1 × L1 to X. �

Remark 3.5. If K ∈ L∞, then we have just observed that, trivially, TK : L1×L1 →
L∞. Therefore, if K ∈ L1 ∩ L∞, 1/p + 1/q ≤ 1 and 0 ≤ θ ≤ 1, using bilinear
interpolation [1] for this estimate and Proposition 3.1, we obtain:

TK : Lp
′/(p′−θ) × Lq

′/(q′−θ) → Lpq/(θ(p+q)).
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In particular, TK : Lp ×Lp → Lp/2 whenever for 2 ≤ p ≤ ∞, and TK : Lp ×Lp →
Lp

′/2 whenever 1 ≤ p ≤ 2.

Consequently, for K ∈ L1 ∩ L∞ such that TK : L1 × L1 → Lp for some
p ≥ 1/2 (cf. Proposition 2.1), the boundedness TK : L1 ×L1 → Lq holds for every
q in [p,∞]. It is then an interesting question to determine the least possible value
of p in the interval [1/2,∞], for which such an operator is bounded from L1 × L1

to Lp. We have indicated that there are examples showing that we can have the
best possible situation (boundedness on L1/2 when K is a tensor product of two
kernels in L1) and also the worst case (only bounded on L∞, as in Theorem 3.4).
See also Proposition 4.2. Modifications of bilinear fractional integrals also provide
examples in the intermediate cases.

4. Other examples and estimates

Well-known examples of bilinear singular integral operators, such as the bilinear
Riesz transforms [6], indicate that boundedness from L1×L1 to L1/2 may not hold
although boundedness from L1×L1 to L1/2,∞ is valid. These operators have kernels
that change sign but the next result shows that there exist positive measures
that provide examples of kernels with the same property. This situation should
be contrasted with its linear version that fails: if a convolution operator with a
positive Borel measure on Rn maps L1(Rn) to L1,∞(Rn), then the measure is finite
and therefore the operator maps L1(Rn) to itself!

Theorem 4.1. There exists a nonnegative regular finite Borel measure µ on R×R
with the property that Tµ maps L1 × L1 to L1/2,∞ but does not map L1 × L1 to
L1/2.

Proof. We first observe that if we want Tµ : L1 × L1 → L1/2,∞, then necessar-
ily µ must be a finite measure (Proposition 2.2). We choose a positive sequence
{λj}j∈Z ∈ `1/2,∞ \ `1/2 and define µ =

∑
j λjδaj

, where aj = (j, j) and δaj
is the

Dirac mass at aj . Clearly

µ(R× R) =
∑
j

λj <∞ .

Then, Tµ(f, g)(x) =
∑
j λjf(x− j)g(x− j). Let also Dµ(h)(x) =

∑
j λjh(x−

j). Using that {λj}j∈Z ∈ `1/2,∞ and [4, Lemma 3.5] we have that Dµ : L1/2 →
L1/2,∞, and hence,

‖Tµ(f, g)‖1/2,∞ = ‖Dµ(fg)‖1/2,∞ ≤ C‖fg‖1/2 ≤ C‖f‖1‖g‖1.

Now, since{λj}j∈Z /∈ `1/2, by [4, Theorem 3.1] (see also [11]), we have that Dµ is
not of strong-type L1/2 and, as before,

‖Tµ‖L1×L1→L1/2 ≥ sup
f

‖Tµ(f, f)‖1/2
‖f‖21

= sup
h

‖Dµ(h)‖1/2
‖h‖1/2

=∞.

�
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We now consider some particular cases of kernels, defined in terms of a special
function ϕ. The first example is K(y, z) = ϕ(y + z), where ϕ : Rn → R+.

Proposition 4.2. Let 1 ≤ α ≤ ∞ and ϕ ∈ Lα(Rn) be a positive function. Set
K(y, z) = ϕ(y + z). Then,

TK : Lp(Rn)× Lq(Rn)→ Lr(Rn), (4)

where
0 ≤ 1

r
=

1
p

+
1
q

+
1
α
− 2 ≤ 1.

Moreover, if ϕ ∈ Lα ∩ L∞, then

TK : L1(Rn)× L1(Rn)→ Lr(Rn), (5)

for every α ≤ r ≤ ∞ and the result is false, in general, if r < α.

Proof. The main observation is that TK(f, g)(x) = (f ∗ g ∗ ϕ)(2x), and hence the
result is a reformulation of Young’s inequality:

‖TK(f, g)‖r ≤ ‖f‖p‖g ∗ ϕ‖β ,
if 1 ≤ p ≤ β′ and 1/r = 1/p+ 1/β − 1. Similarly,

‖g ∗ ϕ‖β ≤ ‖g‖q‖ϕ‖α,
if 1 ≤ q ≤ α′ and 1/β = 1/q + 1/α− 1, which proves (4).

If p = q = 1 and ϕ ∈ L∞, then TK : L1(Rn) × L1(Rn) → Lα(Rn) that,
together with the estimate TK : L1(Rn)× L1(Rn)→ L∞(Rn), gives (5).

To finish, take r < α, and define

ϕ(t) = t(−1−ε)/αχ(1,∞)(t) ∈ Lα ∩ L∞,
where 0 < ε < α/r − 1. Set f = g = χ(0,1). Then, if x > 3/2:

TK(f, g)(x) =
∫ x

x−1

(∫ ∞
1−z

χ(x−1,x)(y)(z + y)(−1−ε)/α dy

)
dz

≥
∫ x

x−1

(∫ ∞
1−z

χ(x−1,x)(y) dy
)

(z + x)(−1−ε)/α dz

≥
∫ x

x−1

(z + x)(−1−ε)/α dz ≥ (2x)(−1−ε)/α.

Therefore ‖TK(f, g)‖r = ∞. This proves the result if n = 1. The n-dimensional
case follows by adapting this idea. �

Another example of interest comes when the kernel is defined as K(y, z) =
ϕ(|y| + |z|), where ϕ : R+ → R+ is a decreasing function. We will study the
behaviour of TK at the endpoints p = q = 1 and r = 1/2, for which we give a
complete characterization in terms of the Lorentz space L1/2n,1/2(R+):

Theorem 4.3. Let ϕ : R+ → R+ be a decreasing function and define K(y, z) =
ϕ(|y|+|z|). Then, TK : L1(Rn)×L1(Rn)→ L1/2(Rn) if and only if ϕ ∈ L1/2n,1/2(R+).
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Proof. Assume that TK : L1(Rn)× L1(Rn)→ L1/2(Rn). Set

Rk = {(y, z) ∈ Rn × Rn : 2k < |y|+ |z| ≤ 2k+1},

so that |Rk| ≈ 22kn. Fix 2j−1 < |x| ≤ 2j and δ ≤ 2l, with l ≤ j − 2. Consider also
the functions f(x) = g(x) = χ{|x|<δ}(x). Then∫

Rn

(TK(f, g)(x))1/2 dx ≤ Cδn. (6)

Observe that

{y ∈ Rn : |x− y| < δ} × {z ∈ Rn : |x− z| < δ} ⊂ Rj−1 ∪Rj ∪Rj+1, (7)

since |y|+ |z| ≤ 2δ + 2|x| ≤ 2j+2 and |y|+ |z| ≥ 2|x| − 2δ ≥ 2j−1.

Discretizing the operator, and using (7), we obtain:

TK(f, g)(x) =
∑
k∈Z

∫∫
Rk

f(x− y)g(x− z)ϕ(|y|+ |z|) dydz

≥ ϕ(2j+2)
j+1∑

k=j−1

∫∫
Rk

f(x− y)g(x− z) dydz

= Cnϕ(2j+2)δ2n

≥ Cnϕ(8|x|)δ2n.

Thus, by (6) and the previous estimate:

Cδn ≥ C
∫
{|x|>2δ}

(TK(f, g)(x))1/2 dx ≥ C ′δn
∫
{|x|>2δ}

√
ϕ(8|x|) dx,

and hence, ∫ ∞
16δ

√
ϕ(t) tn

dt

t
≤ C ′′.

Letting δ → 0 we finally obtain:

‖ϕ‖1/21/2n,1/2 =
∫ ∞

0

√
ϕ(t) tn

dt

t
<∞.

Conversely, since ϕ(|y|+ |z|) ≤ ϕ(|y|) and ϕ(|y|+ |z|) ≤ ϕ(|z|), we have

ϕ(|y|+ |z|) ≤
√
ϕ(|y|)

√
ϕ(|z|) ,

and therefore K is bounded from above by the tensor product of two functions in
L1(Rn), since ∫

Rn

√
ϕ(|y|) dy = C‖ϕ‖1/21/2n,1/2 <∞,

which implies the result (see (2)). �
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Remark 4.4. By Proposition 2.2 we know that the boundedness of TK in the
previous theorem would imply that K ∈ L1(Rn × Rn). This condition is, in fact,
equivalent to ϕ ∈ L1/2n,1(R+):

‖K‖1 =
∫

Rn

∫
Rn

ϕ(|y|+ |z|) dydz

= C

∫ ∞
0

(∫ ∞
0

ϕ(s+ t)tn−1 dt

)
sn−1 ds

= C

∫ ∞
0

(∫ ∞
s

ϕ(u)(u− s)n−1 du

)
sn−1 ds

= C

∫ ∞
0

ϕ(u)
(∫ u

0

(u− s)n−1sn−1 ds

)
du

≈
∫ ∞

0

ϕ(u)u2n du

u

= ‖ϕ‖1/2n,1.

Since L1/2n,1/2(R+) & L1/2n,1(R+), we observe that Theorem 4.3 gives a stronger
condition.

We end by giving an analogous version of Proposition 3.1 in the case of
linear convolution operators that, surprisingly enough, seems to be missing from
the literature.

For K ≥ 0, we define the averaging operator:

A(K)(x, r) =
1

|B(x, r)|

∫
B(x,r)

K(y) dy.

We observe that ‖A(K)(x, ·)‖L∞r = M(K)(x), where M is the Hardy-Littlewood
maximal function. We use the following notation for the mixed norm space X[Y ]:
‖F‖X[Y ] denotes the quasinorm in X of the function ‖F (x, ·)‖Y . We consider first
the case p = 1:

Proposition 4.5. Let K ≥ 0, and

TK(f)(x) =
∫

Rn

f(x− y)K(y) dy.

Then, the following statements are equivalent:

(a) A(K) ∈ L1,∞
x [L∞r ].

(b) A(K) ∈ L∞r [L1,∞
x ].

(c) K ∈ L1.
(d) TK : L1 → L1,∞.
(e) TK : L1 → L1.

Moreover, ‖A(K)‖L∞r [L1,∞
x ] ≈ ‖A(K)‖L1,∞

x [L∞r ] ≈ ‖K‖1.
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Proof. It is well known that

‖A(K)‖L∞r [L1,∞
x ] ≤ ‖A(K)‖L1,∞

x [L∞r ] ≈ ‖K‖1,

i.e., (a) ⇔ (c) ⇒ (b). Taking r > 0 such that
∫
B(0,r/2)

K(y) dy > 0 implies

rn ≤ C
∣∣∣∣{TK(χB(0,r)) ≥

∫
B(0,r/2)

K

}∣∣∣∣ ≤ C∫
B(0,r/2)

K
‖A(K)(·, r)‖1,∞rn,

hence (b)⇒ (c). Clearly (c)⇒ (e)⇒ (d). Finally, if (d) holds, taking f = χB(0,r),
we obtain that TK(f)(x) = CrnA(K)(x, r), thus

‖TK(f)‖1,∞ = Crn‖A(K)(·, r)‖1,∞ ≤ Crn.
Therefore (d) ⇒ (b). �

Remark 4.6. (i) It is easy to see that if 1 < p <∞, then we also have that:

K ∈ L1 ⇔ TK : Lp → Lp,∞ ⇔ TK : Lp → Lp.

This should be compared to the bilinear case (cf. Theorem 4.1), where weak-type
estimates do not imply, in general, the strong-type boundedness of the operator.

(ii) For an r.i. BFS X for which the maximal operator M maps X to itself
(e.g., X = Lp, 1 < p ≤ ∞), the equivalences:

‖A(K)‖Xx[L∞r ] ≈ ‖A(K)‖L∞r [Xx] ≈ ‖K‖X ,
are easy consequences of Fatou’s Lemma.

Remark 4.7. The results of this article concerning positive bilinear operators easily
adapt to the setting of m-linear positive convolution operators when m ≥ 3. The
precise formulation of these statements and their proofs are analogous to the case
m = 2 and are omitted.
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