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Abstract. We provide an improvement of the Hörmander multiplier theorem in which
the Sobolev space Lr

s(Rn) with integrability index r and smoothness index s > n/r is re-
placed by the Sobolev space with smoothness s built upon the Lorentz space Ln/s,1(Rn).

1. Introduction

Given a bounded function σ on Rn, we define a linear operator

Tσ(f)(x) =

∫
Rn
f̂(ξ)σ(ξ)e2πix·ξdξ

acting on Schwartz functions f on Rn; here f̂(ξ) =
∫
Rn f(x)e−2πix·ξdx is the Fourier

transform of f . An old problem in harmonic analysis is to find optimal sufficient condi-

tions on σ to be an Lp Fourier multiplier, i.e., for the operator Tσ to admit a bounded

extension from Lp(Rn) to itself for a given p ∈ (1,∞).

Mikhlin’s [13] classical multiplier theorem states that if the condition

(1.1) |∂ασ(ξ)| ≤ Cα|ξ|−|α|, ξ 6= 0,

holds for all multi-indices α with size |α| ≤ [n/2]+1, then Tσ admits a bounded extension

from Lp(Rn) to itself for all 1 < p < ∞. This theorem is well suited for dealing with

multipliers whose derivatives have a singularity at one point, such as functions which are

homogeneous of degree zero and indefinitely differentiable on the unit sphere.

An extension of the Mikhlin theorem was obtained by Hörmander [12]. It asserts the

following: for s > 0 let (I − ∆)s/2 denote the operator given on the Fourier trans-

form by multiplication by (1 + 4π2|ξ|2)s/2 and let Ψ be a Schwartz function whose
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Fourier transform is supported in the annulus {ξ : 1/2 < |ξ| < 2} and which satis-

fies
∑

j∈Z Ψ̂(2−jξ) = 1 for all ξ 6= 0. If for some 1 ≤ r ≤ 2 and s > n/r, σ satisfies

(1.2) sup
k∈Z

∥∥(I −∆)s/2
[
Ψ̂σ(2k·)

]∥∥
Lr(Rn)

<∞,

then Tσ admits a bounded extension from Lp(Rn) to itself for all 1 < p <∞.

It is natural to ask whether condition (1.2) can still guarantee that σ is an Lp Fourier

multiplier for some p ∈ (1,∞) if s ≤ n
2
. Via an interpolation argument, Calderón and

Torchinsky [2, Theorem 4.6] showed that Tσ is bounded from Lp(Rn) to itself whenever

condition (1.2) holds with p satisfying
∣∣1
p
− 1

2

∣∣ < s
n

and
∣∣1
p
− 1

2

∣∣ = 1
r
. It was observed

in [9] that the assumption
∣∣1
p
− 1

2

∣∣ = 1
r

can be replaced by a weaker one, namely, by
1
r
< s

n
. Moreover, it is known that if Tσ is bounded from Lp(Rn) to itself for every σ

satisfying (1.2), then
∣∣1
p
− 1

2

∣∣ ≤ s
n
, see Hirschman [11], Wainger [21], Miyachi [14], Miyachi

and Tomita [15], Grafakos, He, Honźık, and Nguyen [9]. In other words, when rs > n,

then the condition
∣∣1
p
− 1

2

∣∣ < s
n

is essentially optimal for assumption (1.2). Observe also

that the condition rs > n is dictated by the embedding of Lrs(Rn) ↪→ L∞(Rn). It is still

unknown to us if Lp boundedness holds on the line
∣∣1
p
− 1

2

∣∣ = s
n
. Positive endpoint results

on Lp and on H1 involving Besov spaces can be found in Seeger [16], [17], [18].

Unlike the Mikhlin multiplier theorem, the Hörmander and Calderón-Torchinsky the-

orems can treat multipliers whose derivatives have infinitely many singularities, such as

the multiplier

(1.3) σ(x) =
∑
k∈Z

φ(2−kx)|2−kx− ak|β,

where β > 0, φ is a smooth function supported in the set {x ∈ Rn : 1
2
< |x| < 2} and,

for every k ∈ N, ak ∈ Rn belongs to the same set.

In this paper, we improve the result of [2, Theorem 4.6] by replacing the Lebesgue

space Lr(Rn), r > n
s
, in condition (1.2) by the locally larger Lorentz space L

n
s
,1(Rn),

defined in terms of the norm

‖f‖
L
n
s ,1(Rn)

=

∫ ∞
0

f ∗(r)r
s
n
−1 dr.

Here, f ∗ stands for the nonincreasing rearrangement of the function f , namely, for the

unique nonincreasing left-continuous function on (0,∞) equimeasurable with f , given

by the explicit expression

f ∗(t) = inf
{
r ≥ 0 : |{y ∈ Rn : |f(y)| > r}| < t

}
.
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We point out that the Lorentz space L
n
s
,1(Rn) appears naturally in this context, since it

is known to be, at least for integer values of s, locally the largest rearrangement-invariant

function space such that membership of (I −∆)
s
2f to this space forces f to be bounded,

see [20, 3].

Theorem 1.1. Let Ψ be a Schwartz function on Rn whose Fourier transform is supported

in the annulus 1/2 < |ξ| < 2 and satisfies
∑

j∈Z Ψ̂(2−jξ) = 1, ξ 6= 0. Let p ∈ (1,∞),

n ∈ N, and let s ∈ (0, n) satisfy ∣∣∣∣1p − 1

2

∣∣∣∣ < s

n
.

Then for all functions f in the Schwartz class of Rn we have the a priori estimate

(1.4) ‖Tσf‖Lp(Rn) ≤ C sup
j∈Z

∥∥(I −∆)
s
2 [Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

‖f‖Lp(Rn).

As an application of Theorem 1.1 we show that the function σ from (1.3) continues to

be an Lp Fourier multiplier for any p ∈ (1,∞) if |2−kx− ak| is replaced by log e4n

|2−kx−ak|n
.

In fact, we can even allow an arbitrary iteration of logarithms in this example.

Example 1.2. Assume that n ∈ N, n ≥ 2, and β < 0. Let φ be a smooth function

supported in the set A = {x ∈ Rn : 1/2 < |x| < 2} and let ak ∈ A, k ∈ Z. Then the

function

(1.5) σ(x) =
∑
k∈Z

φ(2−kx)

(
log

e4n

|2−kx− ak|n

)β
is an Lp Fourier multiplier for any p ∈ (1,∞).

To verify the statement of Example 1.2, we fix a positive integer s and observe that

for any j ∈ Z,

‖(I −∆)
s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

≤

∥∥∥∥∥(I −∆)
s
2

[
Ψ̂(x)φ(x)

(
log

e4n

|x− aj|n

)β]∥∥∥∥∥
L
n
s ,1(Rn)

+

∥∥∥∥∥(I −∆)
s
2

[
Ψ̂(x)φ(2x)

(
log

e4n

|2x− aj−1|n

)β]∥∥∥∥∥
L
n
s ,1(Rn)

+

∥∥∥∥∥(I −∆)
s
2

[
Ψ̂(x)φ

(x
2

)(
log

e4n

|x
2
− aj+1|n

)β]∥∥∥∥∥
L
n
s ,1(Rn)

.

In what follows, let us deal with the first term only, since the last two terms can be

estimated in a similar way.
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Fix j ∈ Z and denote

fj(x) = Ψ̂(x)φ(x)

(
log

e4n

|x− aj|n

)β
.

Also, for any multiindex α satisfying |α| ≥ 1, let ∂α

∂xα
fj stand for the weak derivative of

fj with respect to α. We have∣∣∣∣ ∂α∂xαfj(x)

∣∣∣∣ ≤ CχA(x)

(
log

e4n

|x− aj|n

)β−1

|x− aj|−|α|.

Since |A| ≤ 2nωn, where ωn stands for the volume of the unit ball in Rn, the previous

estimate implies (
∂α

∂xα
fj

)∗
(t) ≤ Cχ(0,2nωn)(t)

(
log

e4nωn
t

)β−1

t−
|α|
n ,

where the constant C is independent of j. Therefore, if s is a positive integer and α is a

multiindex with 1 ≤ |α| ≤ s, then(
∂α

∂xα
fj

)∗
(t) ≤ Cχ(0,2nωn)(t)

(
log

e4nωn
t

)β−1

t−
s
n .

Consequently,

(1.6) sup
1≤|α|≤s

∥∥∥∥ ∂α∂xαfj
∥∥∥∥
L
n
s ,1(Rn)

≤ C

∫ 2nωn

0

(
log

e4nωn
t

)β−1

t−1 dt <∞.

Since each |fj| is bounded by a constant independent of j and compactly supported in

the set A, we also have

‖fj‖Lns (Rn)
≤ C <∞.

It remains to observe that the quantity ‖(I −∆)
s
2fj‖Lns ,1(Rn)

is equivalent to

∑
|α|≤s

∥∥∥∥ ∂α∂xαfj
∥∥∥∥
L
n
s ,1(Rn)

.

This can be proved in exactly the same way as the corresponding result for the Lebesgue

spaces, see, e.g., [19, Theorem 3, Chapter 5]. Therefore, we deduce that

sup
j∈Z
‖(I −∆)

s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

<∞

for any positive integer s. Theorem 1.1 now yields that σ is an Lp Fourier multiplier for

any p ∈ (1,∞).
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Finally, notice that we can in fact replace the logarithm in (1.5) by any iteration of

logarithms, namely, we can consider the more general symbol

σ(x) =
∑
k∈Z

φ(2−kx)

log · · · log︸ ︷︷ ︸
`−times

4n e.
..e︸︷︷︸

`−times

|2−kx− ak|n


β

,

where ` is any positive integer. A computation similar to the one we performed above

shows that σ is an Lp Fourier multiplier for any p ∈ (1,∞) as well.

2. The main estimate

In this section we show that inequality (1.4) holds for any p ∈ (1,∞) provided that

s ∈ (n/2, n), see Theorem 2.2 below. This estimate will serve as one endpoint in the

interpolation argument leading to the proof of Theorem 1.1. The interpolation is the

content of the next section.

Let us start by recalling the definitions of two types of Lorentz spaces that will be

used in the sequel. Suppose that 1 < p < ∞. Then, for any measurable function f on

Rn, we define

‖f‖Lp,1(Rn) =

∫ ∞
0

f ∗(t)t
1
p
−1 dt

and

‖f‖Lp,∞(Rn) = sup
t>0

f ∗(t)t
1
p .

It can be shown that

‖f‖Lp,1(Rn) = p

∫ ∞
0

|{x ∈ Rn : |f(x)| > λ}|
1
p dλ

and

‖f‖Lp,∞(Rn) = sup
λ>0

λ|{x ∈ Rn : |f(x)| > λ}|
1
p .

The space Lp
′,∞(Rn), where p′ = p

p−1
, is a kind of a measure theoretic dual of the space

Lp,1(Rn), in the sense that the following form of Hölder’s inequality∫
Rn
|fg| ≤ ‖f‖Lp,1(Rn)‖g‖Lp′,∞(Rn)

holds.

In what follows, B(x, r) denotes the ball centered at point x and having the radius r.

If a ball of radius r is centered at the origin, we shall denote it simply by Br. Let q ≥ 1
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be a real number. We consider the centered maximal operator MLq defined by

MLqf(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q dy
) 1

q

.

Observe that

MLqf = (M |f |q)
1
q ,

where M stands for the classical Hardy-Littlewood maximal operator.

The crucial step towards proving Theorem 2.2 is the following lemma, which can be

understood as a sharp variant of [8, Theorem 2.1.10].

Lemma 2.1. Assume that n ∈ N, s ∈ (0, n) and q > n
s
. Then there is a positive constant

C depending on n, s and q such that for any j ∈ Z and any measurable function f on

Rn,

(2.7)

∥∥∥∥f(x+ 2−jy)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn)

≤ CMLqf(x), x ∈ Rn.

Proof. We may assume, without loss of generality, that j = 0 and x = 0. Indeed, setting

g(y) = f(x+ 2−jy), we obtain

(2.8)

∥∥∥∥f(x+ 2−jy)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn)

=

∥∥∥∥ g(y)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn)

and

MLqf(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q dy
) 1

q

(2.9)

= sup
r>0

(
1

2jn|B(x, r)|

∫
B(0,2jr)

|f(x+ 2−jz)|q dz
) 1

q

= sup
r′>0

(
1

|B(0, r′)|

∫
B(0,r′)

|g(y)|q dy
) 1

q

= MLqg(0).

Hence, it suffices to show that for any measurable function g on Rn,

(2.10)

∥∥∥∥ g(y)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn)

≤ CMLqg(0).

If MLqg(0) = ∞, then inequality (2.10) holds trivially, so we can assume in what

follows that MLqg(0) < ∞. Since the case MLqg(0) = 0 is trivial as well (as g needs to

vanish a.e. in this case), dividing the function g by the positive constant MLqg(0), we

can in fact assume that MLqg(0) = 1.
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Fix any a > 0 and k ∈ N0. Then

|{y ∈ B2k+1 \B2k : |g(y)| > a}| ≤ 1

aq

∫
B

2k+1\B2k

|g(y)|q dy

≤ |B2k+1|
aq

· 1

|B2k+1|

∫
B

2k+1

|g(y)|q dy ≤ ωn2(k+1)n

aq
,

where ωn denotes the volume of the unit ball in Rn. Combining this with the trivial

estimate

|{y ∈ B2k+1 \B2k : |g(y)| > a}| ≤ ωn2(k+1)n,

we deduce that∣∣∣∣{y ∈ Rn :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣
=

∣∣∣∣{y ∈ B1 :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣+
∞∑
k=0

∣∣∣∣{y ∈ B2k+1 \B2k :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣
≤ |{y ∈ B1 : |g(y)| > a}|+

∞∑
k=0

∣∣{y ∈ B2k+1 \B2k : |g(y)| > 2ksa
}∣∣

≤ |{y ∈ B1 : |g(y)| > a}|+
∞∑
k=0

ωn2(k+1)n min

{
1

2ksqaq
, 1

}
≤ |{y ∈ B1 : |g(y)| > a}|+

∑
k∈N0:2k< 1

a1/s

ωn2n · 2kn +
∑

k∈N0:2k≥ 1

a1/s

ωn2n

aq
· 2k(n−sq)

≤ |{y ∈ B1 : |g(y)| > a}|+ C

a
n
s

.

Notice that in the last inequality we have used the fact that n− sq < 0. Hence,∥∥∥∥ g(y)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn)

= sup
a>0

a

∣∣∣∣{y ∈ Rn :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣ sn
≤ sup

a>0
a |{y ∈ B1 : |g(y)| > a}|

s
n + C

= ‖g‖
L
n
s ,∞(B1)

+ C

≤ C ′‖g‖Lq(B1) + C

≤ C ′ω
1
q
nMLqg(0) + C ≤ C

′′
,

where C ′ > 0 is the constant from the embedding Lq(B1) ↪→ L
n
s
,∞(B1). Since MLqg(0) =

1, this proves (2.10), and in turn (2.7) as well. �
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Theorem 2.2. Let p ∈ (1,∞), n ∈ N, s ∈ (n
2
, n). Let Ψ be as in Theorem 1.1. Then

(2.11) ‖Tσf‖Lp(Rn) ≤ C sup
j∈Z

∥∥(I −∆)
s
2 [Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

‖f‖Lp(Rn).

Proof. Let

K = sup
j∈Z

∥∥(I −∆)
s
2

[
Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

<∞ .

Introduce the function Θ satisfying

Θ̂(ξ) = Ψ̂(ξ/2) + Ψ̂(ξ) + Ψ̂(2ξ),

and observe that Θ̂ is equal to 1 on the support of the function Ψ̂.

Let us denote by ∆j and ∆Θ
j the Littlewood-Paley operators associated with Ψ and

Θ, respectively. If f is a Schwartz function on Rn, then standard manipulations yield

∆jTσ(f)(x) =

∫
Rn
f̂(ξ)Ψ̂(2−jξ)σ(ξ)e2πix·ξdξ =

∫
Rn

(∆Θ
j f) (̂ξ)Ψ̂(2−jξ)σ(ξ)e2πix·ξdξ

= 2jn
∫
Rn

(∆Θ
j f) (̂2jξ′)Ψ̂(ξ′)σ(2jξ′)e2πix·2jξ′dξ′

=

∫
Rn

(∆Θ
j f)(x+ 2−jy)

[
Ψ̂σ(2j·)

]
(̂y) dy

=

∫
Rn

(∆Θ
j f)(x+ 2−jy)

(1 + |y|)s
(1 + |y|)s

[
Ψ̂σ(2j·)

]
(̂y) dy.

By the Hölder inequality in Lorentz spaces, we therefore obtain

|∆jTσ(f)(x)| ≤

∥∥∥∥∥(∆Θ
j f)(x+ 2−jy)

(1 + |y|)s

∥∥∥∥∥
L
n
s ,∞(Rn)

∥∥∥(1 + |y|)s
[
Ψ̂σ(2j·)

]
(̂y)
∥∥∥
L(ns )′,1(Rn)

.

Since n
s
< 2, we can find a real number q such that n

s
< q < 2. Lemma 2.1 now yields

that ∥∥∥∥∥(∆Θ
j f)(x+ 2−jy)

(1 + |y|)s

∥∥∥∥∥
L
n
s ,∞(Rn)

≤ CMLq(∆
Θ
j f)(x).

Using boundedness properties of the Fourier transform, we deduce that∥∥∥(1 + |y|)s
[
Ψ̂σ(2j·)

]
(̂y)
∥∥∥
L(ns )′,1(Rn)

≤ C
∥∥∥(1 + |y|2)

s
2

[
Ψ̂σ(2j·)

]
(̂y)
∥∥∥
L(ns )′,1(Rn)

≤ C
∥∥(I −∆)

s
2

[
Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

≤ CK.

Altogether, we obtain the estimate

|∆jTσ(f)|(x) ≤ CKMLq(∆
Θ
j f)(x).
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Assume that p ≥ 2. Then we get, by applying the Littlewood-Paley theorem and the

Fefferman-Stein inequality (notice that p
q
≥ 2

q
> 1),∥∥Tσ(f)

∥∥
Lp(Rn)

≤ C
∥∥∥(∑

j∈Z

|∆jTσ(f)|2
) 1

2
∥∥∥
Lp(Rn)

≤ CK
∥∥∥(∑

j∈Z

|MLq(∆
Θ
j f)|2

) 1
2
∥∥∥
Lp(Rn)

= CK
∥∥∥(∑

j∈Z

(M(|∆Θ
j f |q)

2
q

) q
2
∥∥∥ 1
q

L
p
q (Rn)

≤ CK
∥∥∥(∑

j∈Z

|∆Θ
j f |

q· 2
q

) q
2
∥∥∥ 1
q

L
p
q (Rn)

= CK
∥∥∥(∑

j∈Z

|∆Θ
j f |2

) 1
2
∥∥∥
Lp(Rn)

≤ CK‖f‖Lp(Rn).

If p ∈ (1, 2) then the result follows by duality. �

3. Interpolation

Our main goal in this section will be to discuss the following result.

Theorem 3.1. Suppose that 1 < p1 <∞ and 0 < s1 < n. If

(3.12) ‖Tσf‖Lp1 (Rn) ≤ C sup
j∈Z
‖(I −∆)

s1
2 [Ψ̂σ(2j·)]‖

L
n
s1
,1

(Rn)
‖f‖Lp1 (Rn),

then

‖Tσf‖Lp(Rn) ≤ C sup
j∈Z
‖(I −∆)

s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

‖f‖Lp(Rn)

for any 1 < p <∞ and 0 < s < s1 satisfying

(3.13)
1

s

∣∣∣∣1p − 1

2

∣∣∣∣ < 1

s1

∣∣∣∣ 1

p1

− 1

2

∣∣∣∣ .
Assuming Theorem 3.1, and using the estimate from Theorem 2.2 as the assump-

tion (3.12), we finish the proof of our main result, Theorem 1.1, as follows.

Proof of Theorem 1.1. If s ∈ (n
2
, n), then inequality (1.4) follows from Theorem 2.2. If

s ≤ n
2
, then we denote

α =
1

s

∣∣∣∣1p − 1

2

∣∣∣∣ .
Since α ∈ (0, 1

n
), we can find p1 ∈ (1,∞) and s1 ∈ (n

2
, n) such that

α <
1

s1

∣∣∣∣ 1

p1

− 1

2

∣∣∣∣ .
A combination of Theorems 2.2 and 3.1 thus yields the desired assertion (1.4). �

We now focus on Theorem 3.1. The main idea of its proof consists in applying a

complex interpolation between estimate (3.12) and the usual L2 estimate implied by

Plancherel’s theorem. To prove Theorem 3.1 we shall need a few auxiliary results:
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Lemma 3.2 ([8, 10]). Let F be analytic on the open strip S = {z ∈ C : 0 < <(z) < 1}
and continuous on its closure. Assume that for every 0 ≤ τ ≤ 1 there exists a function

Aτ on the real line such that

|F (τ + it)| ≤ Aτ (t) for all t ∈ R,

and suppose that there exist constants A > 0 and 0 < a < π such that for all t ∈ R we

have

0 < Aτ (t) ≤ exp
{
Aea|t|

}
.

Then for 0 < θ < 1 we have

|F (θ)| ≤ exp

{
sin(πθ)

2

∫ ∞
−∞

[
log |A0(t)|

cosh(πt)− cos(πθ)
+

log |A1(t)|
cosh(πt) + cos(πθ)

]
dt

}
.

We also need the following lemma, whose standard proof is omitted.

Lemma 3.3. Let 1 < p, p1 < ∞ be related as in 1/p = (1 − θ)/2 + θ/p1 for some

θ ∈ (0, 1). Given f ∈ C∞0 (Rn) and ε > 0, there exist smooth functions hεj, j = 1, . . . , Nε,

supported in cubes on Rn with pairwise disjoint interiors, and nonzero complex constants

cεj such that

(3.14) f εz =
Nε∑
j=1

|cεj|
p
2

(1−z)+ p
p1
z
hεj ,

‖f εθ − f‖L2(Rn) < ε, ‖f εit‖L2(Rn) ≤
(
‖f‖Lp(Rn) + ε

) p
2 , and ‖f ε1+it‖Lp1 (Rn) ≤

(
‖f‖Lp(Rn) + ε

) p
p1 .

The next three lemmas generalize results which are well known in the context of

Lebesgue spaces to the setting of Lorentz spaces Lp,1(Rn).

Lemma 3.4. Let 0 < s < n. Then

‖(I −∆)−
s
2f‖L∞(Rn) ≤ C(n)

s

n− s
‖f‖

L
n
s ,1(Rn)

.

Proof. Let Gs be the function defined for any x ∈ Rn by

Gs(x) =
1

(4π)
s
2 Γ( s

2
)

∫ ∞
0

e−
π|x|2
δ e−

δ
4π δ

−n+s
2

dδ

δ
.

It is not difficult to show that Gs(x) ≤ C(n) s
n−s |x|

−n+s. Therefore,

|(I −∆)−
s
2f(x)| = |Gs ∗ f(x)| ≤

∫
Rn
Gs(y)|f(x− y)| dy ≤ C(n)

s

n− s
‖f‖

L
n
s ,1(Rn)

.

�



A SHARP VERSION OF THE HÖRMANDER MULTIPLIER THEOREM 11

Lemma 3.5. Let 1 < a < b <∞. Then, for any p ∈ (a, b) and any t ∈ R,

‖(I −∆)−itf‖Lp,1(Rn) ≤ C(n, a, b)(1 + |t|)
n
2

+1‖f‖Lp,1(Rn).

Proof. Set b0 = 2b. By the Hörmander multiplier theorem, one has

‖(I −∆)−itf‖L1,∞(Rn) ≤ C(n)(1 + |t|)
n
2

+1‖f‖L1(Rn)

and

‖(I −∆)−itf‖Lb0 (Rn) ≤ C(n, b)(1 + |t|)
n
2

+1‖f‖Lb0 (Rn).

Notice that the second estimate implies, in particular, the corresponding weak-type

inequality. An interpolation between these two estimates using the Marcinkiewicz inter-

polation theorem [1, Chapter 4, Theorem 4.13] yields the required assertion. �

Lemma 3.6. Let 1 < p <∞ and s > 0, and let Ψ be as in Theorem 1.1. Then we have

the a priori estimate

(3.15) ‖(I −∆)
s
2 [Ψ̂f ]‖Lp,1(Rn) ≤ C(n, s, p,Ψ)‖(I −∆)

s
2f‖Lp,1(Rn).

Proof. Pick real numbers p0, p1 satisfying 1 < p0 < p < p1 <∞. Denote by T the linear

operator defined by

Tf = (I −∆)
s
2 [Ψ̂(I −∆)−

s
2f ].

Thanks to the Kato-Ponce inequality, T is bounded on both Lp0(Rn) and Lp1(Rn), so,

in particular, it is of weak type (p0, p0) and (p1, p1). By the Marcinkiewicz interpolation

theorem [1, Chapter 4, Theorem 4.13], T is bounded on Lp,1(Rn), which yields (3.15). �

Lemma 3.7. Let 0 < a < s < n. Then

(3.16)

∫ ∞
0

(f ∗(r)r
s−a
n )∗(y)y

a
n
−1 dy ≤ C(n)

a

∫ ∞
0

f ∗(r)r
s
n
−1 dr.

Proof. Estimates of this type are known in the literature, see, e.g., [7]. For the conve-

nience of the reader, we provide an elementary proof of inequality (3.16). The proof

follows the ideas of [4, Section 9].

We may assume that ∫ ∞
0

f ∗(r)r
s
n
−1 dr <∞.

Then f ∗(r)r
s
n ≤ C, and thus limr→∞ f

∗(r)r
s−a
n = 0. Since the function f ∗ is left-

continuous, supy≤r<∞ f
∗(r)r

s−a
n is attained for any y > 0 and the set

M = {y ∈ (0,∞) : sup
y≤r<∞

f ∗(r)r
s−a
n > f ∗(y)y

s−a
n }
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is open. Hence, M is a countable union of open intervals, namely, M =
⋃
k∈S(ak, bk),

where S is a countable set of positive integers. Also, observe that if y ∈ (ak, bk), then

supy≤r<∞ f
∗(r)r

s−a
n = f ∗(bk)b

s−a
n

k . We have∫ ∞
0

(f ∗(r)r
s−a
n )∗(y)y

a
n
−1 dy ≤

∫ ∞
0

sup
y≤r<∞

f ∗(r)r
s−a
n y

a
n
−1 dy

=

∫
(0,∞)\∪k∈S(ak,bk)

f ∗(y)y
s
n
−1 dy +

∑
k∈S

f ∗(bk)b
s−a
n

k

∫ bk

ak

y
a
n
−1 dy.

Furthermore, for every k ∈ S,

f ∗(bk)b
s−a
n

k

∫ bk

ak

y
a
n
−1 dy ≤ f ∗(bk)b

s−a
n

k

∫ bk

max(ak,
bk
2

)

y
a
n
−1 dy ·

∫ bk
0
y
a
n
−1 dy∫ bk

bk
2

y
a
n
−1 dy

=
1

1− (1
2
)
a
n

f ∗(bk)b
s−a
n

k

∫ bk

max(ak,
bk
2

)

y
a
n
−1 dy

≤ 2
s−a
n

1− (1
2
)
a
n

∫ bk

ak

f ∗(y)y
s
n
−1 dy

≤ C(n)

a

∫ bk

ak

f ∗(y)y
s
n
−1 dy.

Therefore,∫ ∞
0

(f ∗(r)r
s−a
n )∗(y)y

a
n
−1 dy ≤

∫ ∞
0

f ∗(y)y
s
n
−1 dy +

C(n)

a

∑
k∈S

∫ bk

ak

f ∗(y)y
s
n
−1 dy

≤ C(n)

a

∫ ∞
0

f ∗(y)y
s
n
−1 dy.

�

To prove Theorem 3.1 we will also need the notion of a measure preserving transforma-

tion. We say that a mapping h : Rn → (0,∞) is measure preserving if, whenever E is a

measurable subset of (0,∞), the set h−1E = {x ∈ Rn : h(x) ∈ E} is a measurable subset

of Rn and the n-dimensional Lebesgue measure of h−1E is equal to the one-dimensional

Lebesgue measure of E. For more details on measure preserving transformations, see,

e.g., [1, Chapter 2, Section 7].

Proof of Theorem 3.1. We first observe that, by (3.13), we have p1 6= 2. In fact, we can

assume that 1 < p1 < 2 and 1 < p ≤ 2, otherwise the result will follow by duality.

Further, if p = 2 then Theorem 3.1 is a consequence of Plancherel’s theorem and of the

Sobolev embedding from Lemma 3.4, so it is sufficient to focus on the case p < 2 in what
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follows. Define

θ =

1
p
− 1

2

1
p1
− 1

2

.

The assumption (3.13) yields θ ∈ (0, s
s1

), and therefore

θ =
s− s0

s1 − s0

for some s0 ∈ (0, s). Fix a function σ satisfying

(3.17) sup
j∈Z
‖(I −∆)

s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

<∞,

and denote ϕj = (I−∆)
s
2 [Ψ̂σ(2j·)], j ∈ Z. Thanks to (3.17), we have limr→∞ ϕ

∗
j(r) = 0.

By [1, Chapter 2, Corollary 7.6], there is a measure preserving transformation hj : Rn →
(0,∞) such that |ϕj| = ϕ∗j ◦ hj.

For a complex number z with 0 ≤ <(z) ≤ 1, we define

(3.18) σz(ξ) =
∑
j∈Z

(I −∆)−
s0(1−z)+s1z

2 [ϕjh
s−(1−z)s0−zs1

n
j ](2−jξ)Φ̂(2−jξ),

where Φ̂ is a Schwartz function supported in the set {ξ ∈ Rn : 1
4
≤ |ξ| ≤ 4} and Φ̂ ≡ 1

on the support of Ψ̂.

Fix f, g ∈ C∞0 . Given ε > 0, let f εz and gεz be functions having the form (3.14), with f

replaced by g and with p replaced by p′ in the latter case, satisfying ‖f εθ − f‖L2(Rn) < ε,

‖gεθ − g‖L2(Rn) < ε, and

‖f εit‖L2(Rn) ≤
(
‖f‖Lp(Rn) + ε

) p
2 ,

∥∥f ε1+it

∥∥
Lp1 (Rn)

≤
(
‖f‖Lp(Rn) + ε

) p
p1 ,(3.19)

‖gεit‖L2(Rn) ≤
(
‖g‖Lp′ (Rn) + ε

) p′
2 ,

∥∥gε1+it

∥∥
Lp
′
1 (Rn)

≤
(
‖g‖Lp′ (Rn) + ε

) p′
p′1 .

For a complex number z with 0 ≤ <(z) ≤ 1, define

F (z) =

∫
Rn
Tσz(f

ε
z )gεz dx =

∫
Rn
σz(ξ)f̂ εz (ξ)ĝεz(ξ) dξ.

It is straightforward (but rather tedious) to verify that F is analytic on the strip S =

{z ∈ C : 0 < <(z) < 1} and continuous on its closure.

Let us write z = τ + it, 0 ≤ τ ≤ 1 and t ∈ R, and denote sτ = s0(1− τ) + s1τ . Then,

applying Lemmas 3.4 and 3.5 and using the fact that hj is measure preserving, we obtain

‖σz‖L∞(Rn) ≤ C(n) sup
j∈Z
‖(I −∆)−

s0(1−z)+s1z
2 [ϕjh

s−(1−z)s0−zs1
n

j ]‖L∞(Rn)

≤ C(n)
sτ

n− sτ
sup
j∈Z
‖(I −∆)−

s0(−it)+s1it
2 [ϕjh

s−(1−τ−it)s0−(τ+it)s1
n

j ]‖
L
n
sτ
,1

(Rn)
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≤ C(n, s0, s1)
sτ

n− sτ
(1 + |t|)

n
2

+1 sup
j∈Z
‖ϕjh

s−(1−τ−it)s0−(τ+it)s1
n

j ‖
L
n
sτ
,1

(Rn)

≤ C(n, s0, s1)(1 + |t|)
n
2

+1 sup
j∈Z
‖ϕ∗j(r)r

s−(1−τ)s0−τs1
n ‖

L
n
sτ
,1

(0,∞)

≤ C(n, s0, s1)(1 + |t|)
n
2

+1 sup
j∈Z
‖ϕ∗j‖Lns ,1(0,∞)

≤ C(n, s0, s1)(1 + |t|)
n
2

+1 sup
j∈Z
‖ϕj‖Lns ,1(Rn)

.

Notice that if τ ∈ [0, θ), then the penultimate inequality follows from Lemma 3.7. Thus,

|F (z)| ≤ ‖σz‖L∞(Rn)‖f εz‖L2(Rn)‖gεz‖L2(Rn)(3.20)

≤ C(n, s0, s1)(1 + |t|)
n
2

+1 sup
j∈Z
‖ϕj‖Lns ,1(Rn)

‖f εz‖L2(Rn)‖gεz‖L2(Rn).

Since ‖f εz‖L2(Rn)‖gεz‖L2(Rn) can be bounded from above by a constant independent of z,

the previous estimate yields

(3.21) |F (z)| ≤ C(n, s0, s1, p, p1, ε, f, g)(1 + |t|)
n
2

+1 sup
j∈Z
‖ϕj‖Lns ,1(Rn)

≤ exp{Aea|t|}

for a suitable choice of constants A > 0 and a ∈ (0, π). Also, if z = it, t ∈ R, then (3.20)

combined with (3.19) yield

(3.22)

|F (it)| ≤ C(n, s0, s1)(1 + |t|)
n
2

+1
(
‖f‖Lp(Rn) + ε

) p
2
(
‖g‖Lp′ (Rn) + ε

) p′
2 sup
j∈Z
‖ϕj‖Lns ,1(Rn)

.

Finally, by Hölder’s inequality and by (3.12),

|F (1 + it)| ≤ ‖Tσ1+it(f ε1+it)‖Lp1 (Rn)‖gε1+it‖Lp′1 (Rn)

≤ C sup
j∈Z
‖(I −∆)

s1
2 [Ψ̂σ1+it(2

j·)]‖
L
n
s1
,1

(Rn)
‖f ε1+it‖Lp1 (Rn)‖gε1+it‖Lp′1 (Rn)

.

Notice that Ψ̂σ1+it(2
k·) picks up only those terms j of (3.18) which differ from k by at

most two units. For simplicity, we may therefore take j = k in the calculation below.

We have

‖(I −∆)
s1
2 [Ψ̂(I −∆)−

s1+it(s1−s0)
2 [ϕjh

s−s1+it(s0−s1)
n

j ]]‖
L
n
s1
,1

(Rn)

≤ C‖(I −∆)
s1
2 [(I −∆)−

s1+it(s1−s0)
2 [ϕjh

s−s1+it(s0−s1)
n

j ]]‖
L
n
s1
,1

(Rn)

≤ C‖(I −∆)−
it(s1−s0)

2 [ϕjh
s−s1+it(s0−s1)

n
j ]‖

L
n
s1
,1

(Rn)

≤ C(1 + |t|)
n
2

+1‖ϕjh
s−s1
n

j ‖
L
n
s1
,1

(Rn)
= C(1 + |t|)

n
2

+1‖ϕ∗j(r)r
s−s1
n ‖

L
n
s1
,1

(0,∞)

= C(1 + |t|)
n
2

+1‖ϕ∗j‖Lns ,1(0,∞)
= C(1 + |t|)

n
2

+1‖ϕj‖Lns ,1(Rn)
.
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Notice that in the previous estimate we consecutively used Lemmas 3.6 and 3.5 and the

fact that hj is measure preserving. Therefore,

(3.23) |F (1 + it)| ≤ C(1 + |t|)
n
2

+1 sup
j∈Z
‖ϕj‖Lns ,1(Rn)

(‖f‖Lp(Rn) + ε)
p
p1 (‖g‖Lp′ (Rn) + ε)

p′
p′1 .

A combination of (3.21), (3.22), (3.23) and Lemma 3.2 yields

(3.24) |F (θ)| ≤ C sup
j∈Z
‖ϕj‖Lns ,1(Rn)

(‖f‖Lp(Rn) + ε)(‖g‖Lp′ (Rn) + ε).

Observe that F (θ) =
∫
Rn σ(ξ)f̂ εθ (ξ)ĝεθ(ξ) dξ as for every ξ 6= 0,

σθ(ξ) =
∑
j∈Z

(I −∆)−
s
2 [(I −∆)

s
2 [σ(2j·)Ψ̂]](2−jξ)Φ̂(2−jξ)

=
∑
j∈Z

σ(ξ)Ψ̂(2−jξ)Φ̂(2−jξ) =
∑
j∈Z

σ(ξ)Ψ̂(2−jξ) = σ(ξ).

Notice that∣∣∣∣ ∫
Rn
σ(ξ)f̂ εθ (ξ)ĝεθ(ξ) dξ −

∫
Rn
σ(ξ)f̂(ξ)ĝ(ξ) dξ

∣∣∣∣
=

∣∣∣∣ ∫
Rn
σ(ξ)

[
f̂ εθ (ξ)

(
ĝεθ(ξ)− ĝ(ξ)

)
+ ĝ(ξ)

(
f̂ εθ (ξ)− f̂(ξ)

)]
dξ

∣∣∣∣
≤‖σ‖L∞(Rn)

[
‖f εθ‖L2(Rn)‖gεθ − g‖L2(Rn) + ‖g‖L2(Rn)‖f εθ − f‖L2(Rn)

]
≤C sup

j∈Z
‖(I −∆)

s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

[
‖f εθ‖L2(Rn)‖gεθ − g‖L2(Rn) + ‖g‖L2(Rn)‖f εθ − f‖L2(Rn)

]
.

Recall that f εθ − f and gεθ − g converge to zero in L2(Rn) as ε → 0. Letting ε → 0

in (3.24) yields∣∣∣∣ ∫
Rn
σ(ξ)f̂(ξ)ĝ(ξ) dξ

∣∣∣∣ ≤ C sup
j∈Z

∥∥(I −∆)
s
2 [σ(2j·)Ψ̂]

∥∥
L
n
s ,1(Rn)

‖f‖Lp(Rn) ‖g‖Lp′ (Rn).

Taking the supremum over all functions g ∈ Lp′(Rn) with ‖g‖Lp′ (Rn) ≤ 1 we obtain

‖Tσ(f)‖Lp(Rn) ≤ C sup
j∈Z

∥∥(I −∆)
s
2 [σ(2j·)Ψ̂]

∥∥
L
n
s ,1(Rn)

‖f‖Lp(Rn) .

This completes the proof of Theorem 3.1. �

We would like to thank the referee who pointed out that Theorem 3.1 in Section 3

could also be obtained by an argument using the idea in Connett and Schwartz [5], [6].
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