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Abstract. This article contains an expanded version of the material covered by
the author in two 90-minute lectures at the 9th international school on Nonlinear
Analysis, Function spaces, and Applications, held in Třešt’, Czech Republic during
the period September 11 to September 17, 2010.

In memory of Nigel Kalton

1. Introduction

An operator acting on function spaces may not only depend on a main variable
but also on several other function-variables that are often treated as parameters.
Examples of such operators are ubiquitous in harmonic analysis: multiplier operators,
homogeneous singular integrals associated with functions on the sphere, Littlewood-
Paley operators, the Calderón commutators, and the Cauchy integral along Lipschitz
curves.

Of the aforementioned examples, we discuss the latter: The Cauchy integral along
a Lipschitz curve Γ is given by

CΓ(h)(z) =
1

2πi
p.v.

∫
Γ

h(ζ)

ζ − z
dζ ,

where h is a function on Γ, which is taken to be the graph of a Lipschitz function
A : R→ R, and z is a point on the curve Γ. A. Calderón wrote

(1) CΓ(h)(z) =
1

2πi

∞∑
m=0

(−i)mCm(f ;A)(x) ,

where z = x+ iA(x), f(y) = h(y + iA(y))(1 + iA′(y)), and

Cm(f ;A)(x) = p.v.

∫
R

(
A(x)− A(y)

x− y

)m
f(y)

x− y
dy .

The operators Cm(f ;A) are called the mth Calderón commutators and they provide
examples of singular integrals whose action on the function 1 has inspired the funda-
mental work on the T1 theorem [11].

Identity (1) reduces the boundedness of CΓ(h) to that of the operators Cm(f ;A)
(recall f(y) = h(y+ iA(y))(1 + iA′(y))); certainly for this approach to bear fruit, one
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would also need to know that the operators Cm(f ;A) are bounded with norms having
moderate growth in m. At this point, it seems that we reduced the boundedness of a
linear operator to another operator that contains powers of the function A and thus
it is nonlinear in it. To adopt a truly multilinear point of view, we introduce the
(m+ 1)-linear operator

Em+1(f ;A1, . . . , Am)(x) = p.v.

∫
R

(
A1(x)− A1(y)

x− y

)
. . .

(
Am(x)− Am(y)

x− y

)
f(y)

x− y
dy

and seek estimates for it. Any estimate for Em+1 from a product of function spaces
Z1×Z2× · · · ×Zm+1, where Z2 = · · · = Zm+1 gives yield to an estimate for Cm(f ;A)
in terms of f and A. This point of view leads to the following result:

Theorem 1. ([15]) Let 0 < 1/p =
∑m+1

j=1 1/pj. Then the (m + 1)-linear operator

Em+1 maps Lp1(R) × · · · × Lpm+1(R) to Lp,∞(R) whenever 1 ≤ p1, . . . , pm+1 ≤ ∞
and it also maps Lp1(R) × · · · × Lpm+1(R) to Lp(R) when 1 < pj < ∞ for all j. In
particular it maps L1(R)× · · · × L1(R) to L1/(m+1),∞(R).

The endpoint conclusion L1(R)× · · · × L1(R) to L1/(m+1),∞(R) of Theorem 1 has
been obtained by C. Calderón [2] when m = 1 and Coifman and Meyer [6] when
m = 1, 2 while the case m ≥ 3 was completed by Duong, Grafakos, and Yan [15].

The underlying idea in the proof of Theorem 1 is the simultaneous Calderón-
Zymgund decomposition on all functions that Em+1 acts on. This decomposition
resembles the classical linear Calderón-Zymgund decomposition, but is more compli-
cated due to the presence of several tuples of combinations of good and bad functions.
This decomposition is discussed in Section 3. However, the proof contained in Section
3 does not directly apply to Theorem 1; the latter requires a more flexible version
of the Calderón-Zymgund decomposition, since the kernel of Em+1 does not obey the
standard multilinear Calderón-Zymgund kernel conditions, see Section 3. Indeed the
kernel of Em+1 is the function of (m+ 1)-variables

K(y0, . . . , ym+1) =
(−1)e(ym+1−y0)m

(y0 − ym+1)m+1

m∏
`=1

χ(
min(y0,ym+1),max(y0,ym+1)

)(y`)
which contains characteristic functions. The proof of Theorem 1 is achieved in [15]
and is modeled after the approach devised by Duong and A. McIntosh [16] for linear
operators.

Another class of operators closely related to the commutators of Calderón is the
family

Hα1,α2(f1, f2)(x) = p.v.

∫
R

f1(x− α1t)f2(x− α2t)
dt

t
, α1, α2, x ∈ R,

called today the bilinear Hilbert transforms. These were also introduced by A.
Calderón in an attempt to show that the commutator C1(f ;A) is bounded on L2(R)
when A(t) is a function on the line with bounded derivative. The idea of this approach
is that the linear operator f → C1(f ;A) can be expressed as the average

(2) C1(f ;A)(x) =

∫ 1

0

H1,α(f, A′)(x) dα ,
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and thus the boundedness of C1(f ;A) can be reduced to the (uniform in α) bound-
edness of H1,α. Naturally, the estimates for H1,α should depend (linearly) on both
functions f and A′. This operator is discussed in Section 7

The previous discussion leads to the conclusion that treating the function A as a
frozen parameter provides limited results in terms of its smoothness. If we have esti-
mates in terms of a few function space norms of both f and A, we may use the power
of multilinear interpolation, to deduce boundedness of C1(f ;A) on various function
spaces, of ranging degree of regularity. Certainly this fact is not only pertinent to
Calderón’s first commutator C1, but all multilinear operators.

In summary, we advocate the following point of view in the study of multivariable
operators: unfreeze the functions serving the roles of a parameter and treat them as
input variables. This approach often yields sharper results in terms of the regularity
of the input functions. In these notes we pursue this idea in a systematic way.
We present certain fundamental results concerning linear (or sublinear) operators
of several variables, henceforth called multilinear (or multisublinear), that contain
challenges that appear in their study, despite the great resemblances with their linear
analogues. The proofs given in the next sections contain most necessary details but
references are provided for the sake of completeness in the exposition.

2. Examples of multivariable operators

We embark on the study of multilinear harmonic analysis with the class of operators
that extends the concept of Calderón-Zygmund operators in the multilinear setting.
These operators have kernels that satisfy standard estimates and possess boundedness
properties analogous to those of the classical linear ones. This class of operators has
been previously studied by Coifman and Meyer [6], [7], [8], [9], [34], assuming sufficient
smoothness on their symbols and kernels.

If an m-linear operator T commutes with translations in the sense that

(3) T (f1, . . . , fm)(x+ t) = T (f1(·+ t), . . . , fm(·+ t))(x)

for all t, x ∈ Rn, then it incorporates a certain amount of homogeneity. Indeed, if it
maps Lp1 × · · ·×Lpm to Lp, then one must necessarily have 1/p1 + · · ·+ 1/pm ≥ 1/p;
this was proved in [25] for compactly supported kernels but extended for general
kernels in [13].

We use the following definition for the Fourier transform in n-dimensional Eu-
clidean space

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx,

while f∨(ξ) = f̂(−ξ) denotes the inverse Fourier transform. Multilinear operators
that commute with translations as in (3) are exactly the multilinear multiplier oper-
ators that have the form
(4)

T (f1, . . . , fm)(x) =

∫
(Rn)m

σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm)dξ1 . . . dξm

for some bounded function σ.
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Endpoint estimates for linear singular integrals are usually estimates of the form
L1 → L1 or L1 → L1,∞. The analogous m-linear estimates are L1 × · · · × L1 →
L1/m,∞. Although one expects some similarities with the linear case, there exist
some differences as well. For example, if a linear translation-invariant operator has
a positive kernel and it maps L1 → L1,∞, then it must have an integrable kernel
and thus it actually maps L1 to L1. In the multilinear case, it is still true that if a
multilinear translation-invariant operator has a positive kernel and maps L1×· · ·×L1

to L1/m,∞, then it must have an integrable kernel, but having an integrable positive
kernel does not necessarily imply that the corresponding operator maps L1×· · ·×L1

to L1/m. Results of this type have been obtained in [23].
We provide a few examples of mutlivariable (multilinear and multisublinear) oper-

ators:
Example 1: The identity operator in the m-linear setting is the product operator

T1(f1, . . . , fm)(x) = f1(x) · · · fm(x).

By Hölder’s inequality T1 maps Lp1×· · ·×Lpm → Lp whenever 1/p1+· · ·+1/pm = 1/p.
Example 2: The action of a linear operator L on the product f1 · · · fm gives rise to
a more general degenerate m-linear operator

T2(f1, . . . , fm)(x) = L(f1 · · · fm)(x).

that still maps Lp1 × · · · × Lpm → Lp whenever 1/p1 + · · ·+ 1/pm = 1/p, provided L
is a bounded operator on Lp.
Example 3: The previous example captures “the majority of interesting” m-linear
operators. Let L0 be a linear operator acting on functions defined on Rmn. We define

T3(f1, . . . , fm)(x) = L0(f1 ⊗ · · · ⊗ fm)(x).

Here f1 ⊗ · · · ⊗ fm is the tensor product of these functions, defined as a function
on Rmn as follows: (f1 ⊗ · · · ⊗ fm)(x1, . . . , xm) = f1(x1) . . . fm(xm). In particular,
L0 could be a singular integral acting on functions on Rmn. The boundedness of T3

from Lp1 × · · · ×Lpm → Lp whenever 1/p1 + · · ·+ 1/pm = 1/p may not always be an
easy task. It often requires a delicate study aspects of which are investigated in this
article for certain classes of linear (and also sublinear) operators L0.

The situation where 1/p1 + · · · + 1/pm = 1/p will be referred to as the singular
integral case. This is because, it needs to be distinguished from the fractional integral
case in which 1/p < 1/p1+· · ·+1/pm. This name is due to the fact that most examples
of multilinear operators bounded in this case have fractional integral homogeneity,
such as these:

(f1, . . . , fm)→
∫

Rmn

f1(x−y1) . . . fm(x−ym)(|x−y1|+· · ·+|x−ym|)−mn+αdy1 . . . dym .

Example 4: Taking L0 to be a linear multiplier operator on (Rn)m with symbol
σ, we obtain a multilinear multiplier operator of the form (4) Then σ is called the
symbol or multiplier of the m-linear multiplier.
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Multilinear multipliers operators arise in many situations. For instance, to prove
the Kato-Ponce inequality [28] (Leibniz rule for fractional derivatives Dα, α > 0)∥∥Dα(fg)

∥∥
Lr
≤ Cp,q,r

[∥∥Dαf
∥∥
Lp

∥∥g∥∥
Lq

+
∥∥f∥∥

Lp

∥∥Dαg
∥∥
Lq

]
where 1/p + 1/q = 1/r, one would have to study bilinear multiplier operators with
symbols

(5) |ξ + η|α
∑
j

[
Ψ(2−jξ)Φ(2−jη) + Φ(2−jξ)Ψ(2−jη) +

∑
|j−k|≤2

Ψ(2−jξ)Ψ(2−kη)

]
.

Here Ψ and Φ are smooth functions supported in an annulus and in small disjoint ball,
both centered at the origin, respectively. The main idea is in the first term in (5) we
have |ξ+η| ≈ |ξ| and so |ξ+η|α could be replaced by |ξ|α via some multiplier theorem.
This would yield the term ‖Dαf‖Lp‖g ‖Lq in Lr norm. An analogous estimate with
the roles of f and g interchanged holds for the second term in (5), while the third
term is easier. Such a study requires a multiplier theory for multilinear operators.
The topic of multilinear multipliers will be addressed in Section 5.
Example 5: The maximal function

M(f1, . . . , fm)(x) = sup
Q3x

(
1

|Q|m

∫
Q

. . .

∫
Q

|f1(y1)| . . . |fm(ym)| dy1 . . . dym

)
where the supremum is taken over all cubes in Rn with sides parallel to the axes. This
was introduced in the work of Lerner, Ombrosi, Pérez, Torres and Trujillo-González
[32] and plays an important role in the characterization of the class of multiple Ap
weights.
Example 6: A larger operator is the strong multilinear maximal function. It is
defined for x ∈ Rn as

MR(f1, . . . , fm)(x) = sup
R3x

(
1

|R|m

∫
R

. . .

∫
R

|f1(y1)| . . . |fm(ym)| dy1 . . . dym

)
,

where the supremum is taken over all rectangles R in Rn with sides parallel to the
axes. When m = 1, this operator reduces to the strong maximal function on Rn.

3. Multilinear Calderón-Zygmund operators

In this section we set up the background of the theory of multilinear Calderón-
Zygmund operators. We will be working on n-dimensional space Rn. We denote by
S (Rn) the space of all Schwartz functions on Rn and by S ′(Rn) its dual space, the
set of all tempered distributions on Rn.

An m-linear operator T : S (Rn) × · · · × S (Rn) → S ′(Rn) is linear in every
entry and consequently it has m formal transposes. The first transpose T ∗1 of T is
defined via

〈T ∗1(f1, f2, . . . , fm) , h〉 = 〈T (h, f2, . . . , fm) , f1〉,
for all f1, f2, . . . , fm, h in S (Rn). Analogously one defines T ∗j, for j ≥ 2 and we also
set T ∗0 = T .
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Let K(x, y1, . . . , ym) be a locally integrable function defined away from the diagonal
x = y1 = · · · = ym in (Rn)m+1, which satisfies the size estimate

(6) |K(x, y1, . . . , ym)| ≤ A

(|x− y1|+ · · ·+ |x− ym|)mn

for some A > 0 and all (x, y1, . . . , ym) ∈ (Rn)m+1 with x 6= yj for some j. Further-
more, assume that for some ε > 0 we have the smoothness estimates

|K(x, y1, . . . , ym)−K(x′, y1, . . . , ym)| ≤ A |x− x′|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
(7)

whenever |x− x′| ≤ 1
2

max
(
|x− y1|, . . . , |x− ym|

)
and also that

|K(x, y1, y2, . . . , ym)−K(x, y′1, y2, . . . , ym)| ≤
A |yj − y′j|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
(8)

whenever |y1−y′1| ≤ 1
2

max
(
|x−y1|, . . . , |x−ym|

)
as well as a similar estimate with the

roles of y1 and yj reversed. Kernels satisfying these conditions are called multilinear
Calderón-Zygmund kernels and are denoted by m-CZK(A, ε). A multilinear operator
T is said to be associated with K if

T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym ,

whenever f1, . . . , fm are smooth functions with compact support and x does not lie
in the intersection of the support of fj.

Certain homogeneous distributions of order −mn are examples of kernels in the
class m-CZK(A, ε). For this reason, boundedness properties of operators T with
kernels in m-CZK(A, ε) from a product Lp1 × · · · × Lpm into another Lp space can
only hold when

1

p1

+ · · ·+ 1

pm
=

1

p

as dictated by homogeneity. If such boundedness holds for a certain triple of Lebesgue
spaces, then the corresponding operator is called multilinear Calderón-Zygmund.

A fundamental result concerning these operators is the multilinear extension of
the classical Calderón-Zygmund [3]; the linear result states that if an operator with
smooth enough kernel is bounded on a certain Lr space, then it is of weak type (1, 1)
and is also bounded on all Lp spaces for 1 < p < ∞. A version of this theorem for
operators with kernels in the class m-CZK(A, ε) has been obtained by Grafakos and
Torres [25]. A special case of this result was also obtained by Kenig and Stein [29];
both approaches build on previous work by Coifman and Meyer [6].

Theorem 2. ([25]) Let T be a multilinear operator with kernel K in m-CZK(A, ε).
Assume that for some 1 ≤ q1, . . . , qm ≤ ∞ and some 0 < q <∞ with

1

q1

+ · · ·+ 1

qm
=

1

q
,

T maps Lq1 ×· · ·×Lqm → Lq,∞. Then T can be extended to a bounded operator from
L1×· · ·×L1 into L1/m,∞. Moreover, for some constant Cn (that depends only on the
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parameters indicated) we have that

(9) ‖T‖L1×···×L1→L1/m,∞ ≤ Cn
(
A+ ‖T‖Lq1×···×Lqm→Lq,∞

)
.

Proof. Set B = ‖T‖Lq1×···×Lqm→Lq,∞ . Fix an α > 0 and consider functions fj ∈ L1 for
1 ≤ j ≤ m. Without loss of generality we may assume that ‖f1‖L1 = · · · = ‖fm‖L1 =
1. Set Eα = {x : |T (f1, . . . , fm)(x)| > α}. We need to show that there is a constant
C = Cm,n such that

(10) |Eα| ≤ C(A+B)1/mα−1/m.

Once (10) has been established for fj’s with norm one, the general case follows by
replacing each fj by fj/‖fj‖L1 . Let γ be a positive real number to be determined later.
Apply the Calderón-Zygmund decomposition to the function fj at height (αγ)1/m to
obtain ‘good’ and ‘bad’ functions gj and bj, and families of cubes {Qj,k}k with disjoint
interiors such that

fj = gj + bj

and

bj =
∑
k

bj,k

where

support(bj,k) ⊂ Qj,k∫
bj,k(x)dx = 0∫

|bj,k(x)|dx ≤ C(αγ)1/m|Qj,k|

| ∪k Qj,k| ≤ C(αγ)−1/m

‖bj‖L1 ≤ C

‖gj‖Ls ≤ C(αγ)1/ms′

for all j = 1, 2, . . . ,m and any 1 ≤ s ≤ ∞. Define the sets

E1 ={x : |T (g1, g2, . . . , gm)(x)| > α/2m}
E2 ={x : |T (b1, g2, . . . , gm)(x)| > α/2m}
E3 ={x : |T (g1, b2, . . . , gm)(x)| > α/2m}

. . .

E2m ={x : |T (b1, b2, . . . , bm)(x)| > α/2m},

where each set Es has the form {x : |T (h1, h2, . . . , hm)(x)| > α/2m} with hj ∈ {gj, bj}
and all the sets Es are distinct. Since |{x : |T (f1, . . . , fm)(x)| > α}| ≤

∑2m

s=1 |Es|, it
will suffice to prove estimate (10) for each one of the 2m sets Es.
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Chebychev’s inequality and the Lq1 × · · · × Lqm → Lq,∞ boundedness give

|E1| ≤
(2mB)q

αq
‖g1‖qLq1 . . . ‖gm‖

q
Lqm ≤

CBq

αq

m∏
j=1

(αγ)
q

mq′
j

=
C ′Bq

αq
(αγ)(m− 1

q
) q
m = C ′Bqα−

1
mγq−

1
m .

(11)

Consider now a set Es defined above with 2 ≤ s ≤ 2m. Suppose that for some 1 ≤
l ≤ m we have l bad functions and m− l good functions appearing in T (h1, . . . , hm),
where hj ∈ {gj, bj} and assume that the bad functions appear at the entries j1, . . . , jl.
We will show that

(12) |Es| ≤ Cα−1/m
(
γ−1/m + γ−1/m(Aγ)1/l

)
.

Let l(Q) denote the side-length of a cube Q and let Q∗ be a certain dimensional
dilate of Q with the same center. Fix an x /∈ ∪mj=1∪k (Qj,k)

∗. Also fix for the moment
the cubes Qj1,k1 , . . . , Qjl,kl and without loss of generality suppose that Qj1,k1 has the
smallest size among them. Let cj1,k1 be the center ofQj1,k1 . For fixed yj2 , . . . , yjl ∈ Rn,
the mean value property of the function bj1,k1 gives

∣∣∣∣∣
∫
Qj1,k1

K(x, y1, . . . , yj1 , . . . , ym)bj1,k1(yj1) dyj1

∣∣∣∣∣
=

∣∣∣∣∣
∫
Qj1,k1

(
K(x, y1, . . . , yj1 , . . . , ym)−K(x, y1, . . . , cj1,k1 , . . . , ym)

)
bj1,k1(yj1) dyj1

∣∣∣∣∣
≤
∫
Qj1,k1

|bj1,k1(yj1)|
A |yj1 − cj1,k1 |ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1

≤
∫
Qj1,k1

|bj1,k1(yj1)|
C A l(Qj1,k1)

ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1 ,

where the previous to last inequality above is due to the fact that

|yj1 − cj1,k1| ≤ cn l(Qj1,k1) ≤
1

2
|x− yj1| ≤

1

2
max

1≤j≤m
|x− yj|.

Multiplying the just derived inequality

∣∣∣∣∣
∫
Qj1,k1

K(x, ~y)bj1,k1(yj1) dyj1

∣∣∣∣∣ ≤
∫
Qj1,k1

C A |bj1,k1(yj1)| l(Qj1,k1)
ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1
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by
∏

i/∈{j1,...,jl}
|gi(yi)| and integrating over all yi with i /∈ {j1, . . . , jl}, we obtain the

estimate ∫
(Rn)m−l

∏
i/∈{j1,...,jl}

|gi(yi)|

∣∣∣∣∣
∫
Qj1,k1

K(x, ~y)bj1,k1(yj1) dyj1

∣∣∣∣∣ ∏
i/∈{j1,...,jl}

dyi

≤
∏

i/∈{j1,...,jl}

‖gi‖L∞
∫
Qj1,k1

|bj1,k1(yj1)|
AC l(Qj1,k1)

ε

(
∑l

j=1 |x− yj|)mn−(m−l)n+ε
dyj1

≤C A
∏

i/∈{j1,...,jl}

‖gi‖L∞ ‖bj1,k1‖L1

l(Qj1,k1)
ε(∑l

j=1(l(Qi,ki) + |x− ci,ki |)
)nl+ε

≤C A
∏

i/∈{j1,...,jl}

‖gi‖L∞ ‖bj1,k1‖L1

l∏
i=1

l(Qji,ki)
ε
l

(l(Qi,ki) + |x− ci,ki |)n+ ε
l

.

(13)

The inequality before the last one is due to the fact that for x /∈ ∪mj=1 ∪k (Qj,k)
∗ and

yj ∈ Qj,k we have that |x − yj| ≈ l(Qj,kj) + |x − cj,kj |, while the last inequality is
due to our assumption that the cube Qj1,k1 has the smallest side length. It is now a
simple consequence of (13) that for x /∈ ∪mj=1 ∪k (Qj,k)

∗ we have

|T (h1, . . . , hm)(x)|

≤CA
∫

(Rn)m−1

∏
i/∈{j1,...,jl}

|gi(yi)|
l∏

i=2

(∑
ki

|bji,ki(yji)|
) ∣∣∣∣∣
∫
Qj1,k1

K(x, ~y ) bj1,k1(yj1) dyj1

∣∣∣∣∣∏
i 6=j1

dyi

≤CA
∏

i/∈{j1,...,jl}

‖gi‖L∞
l∏

i=1

l(Qji,ki)
ε
l

(l(Qi,ki) + |x− ci,ki |)n+ ε
l

∫
(Rn)l−1

l∏
i=2

(∑
ki

|bji,ki(yji)|
)
dyi2 . . . dyil

≤CA
∏

i/∈{j1,...,jl}

‖gi‖L∞
l∏

i=2

(∑
ki

‖bji,ki‖L1 l(Qji,ki)
ε
l

(l(Qi,ki) + |x− ci,ki|)n+ ε
l

)

≤C ′A(αγ)
m−l
m

l∏
i=1

(∑
ki

(αγ)1/m l(Qji,ki)
n+ ε

l

(l(Qi,ki) + |x− ci,ki |)n+ ε
l

)
= C ′′Aαγ

l∏
i=1

Mi,ε/l(x),

where

Mi,ε/l(x) =
∑
ki

l(Qji,ki)
n+ ε

l

(l(Qi,ki) + |x− ci,ki |)n+ ε
l

is the Marcinkiewicz function associated with the union of the cubes {Qi,ki}k. It is a
known fact (see for instance [36]) that∫

Rn

Mi,ε/l(x) dx ≤ C| ∪ki Qi,ki| ≤ C ′(αγ)−1/m.

Now, since

| ∪mj=1 ∪k(Qj,k)
∗| ≤ C(αγ)−1/m,
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inequality (12) will be a consequence of the estimate

(14) |{x /∈ ∪mj=1 ∪k (Qj,k)
∗ : |T (h1, . . . , hm)(x)| > α/2m}| ≤ C(αγ)−1/m(Aγ)1/l.

We prove (14) using an L1/l estimate outside ∪mj=1 ∪k (Qj,k)
∗; recall here that we are

considering the situation where l is not zero. Using the size estimate derived above
for |T (h1, . . . , hm)(x)| outside the exceptional set, we obtain

|{x /∈ ∪mj=1 ∪k (Qj,k)
∗ : |T (h1, . . . , hm)(x)| > α/2m}|

≤Cα−1/l

∫
Rn\∪mj=1∪k(Qj,k)∗

(
αγAM1,ε/l(x) . . .Ml,ε/l(x)

)1/l
dx

≤C(γA)1/l

(∫
Rn

M1,ε/l(x)dx

)1/l

. . .

(∫
Rn

Ml,ε/l(x)dx

)1/l

≤C ′(γA)1/l
(
(αγ)−1/m . . . (αγ)−1/m

)1/l
= C ′α−1/m(Aγ)1/lγ−1/m,

which proves (14) and thus (12).
We have now proved (12) for any γ > 0. Selecting γ = (A + B)−1 in both (11)

and (12) we obtain that all the sets Es satisfy (10). Summing over all 1 ≤ s ≤ 2m

we obtain the conclusion of the theorem. �

Example Let R1 be the bilinear Riesz transform in the first variable

R1(f1, f2)(x) = p.v.

∫
R

∫
R

x− y1

|(x− y1, x− y2)|3
f1(y1)f2(y2) dy1dy2.

Using an m-linear T1 theorem, it was shown in [25]) that R1 maps Lp1(R)×Lp2(R)
to Lp(R) for 1/p1 + 1/p2 = 1/p, 1 < p1, p1 < ∞, 1/2 < p < ∞. Thus by Theorem
2 it also maps L1 × L1 to L1/2,∞. However, it does not map L1 × L1 to any Lorentz
space L1/2,q for q < ∞. In fact, letting f1 = f2 = χ[0,1], an easy computation shows
that R1(f1, f2)(x) behaves at infinity like |x|−2. This fact indicates that in Theorem
2 the space L1/2,∞ is best possible and cannot be replaced by any smaller space, in
particular, it cannot be replaced by L1/2.

4. Endpoint estimates and interpolation for multilinear
Calderón-Zygmund operators

The theory of multilinear interpolation according to the real method is significantly
more complicated than the linear one. Early versions appeared in the work of Janson
[27] and Strichartz [37]. In this exposition we will use a version of real multilinear
interpolation appearing in [18]. This makes use of the notion of multilinear restricted
weak type (p1, . . . pm, p) estimates. These are estimates of the form

sup
λ>0

λ
∣∣{x : |T (χA1 , . . . , χAm)(x)| > λ

}∣∣1/p ≤M |A1|1/p1 . . . |Am|1/pm

and have a wonderful interpolation property: if an operator T satisfies restricted
weak type (p1, . . . , pm, p) and (q1, . . . , qm, q) estimates with constants M0 and M1,
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respectively, then it also satisfies a restricted weak type (r1, . . . , rm, r) estimate with
constant M1−θ

0 M θ
1 , where(

1

r1

, . . . ,
1

rm
,
1

r

)
= (1− θ)

(
1

p1

, . . . ,
1

pm
,
1

p

)
+ θ

(
1

q1

, . . . ,
1

qm
,
1

q

)
.

More refined ideas can be employed to obtain the following multilinear interpolation
result; for a precise formulation and a proof see [18].

Theorem 3. Let 0 < pij, pi ≤ ∞, i = 1, . . . ,m + 1, j = 1, . . . ,m, and suppose that
the points (1/p11, . . . , 1/p1m), (1/p21, . . . , 1/pm2), (1/p(m+1)1, . . . , 1/p(m+1)m) satisfy a
certain nondegeneracy condition. Let (1/q1, . . . , 1/qm) be in the interior of the convex
hull of these m + 1 points. Suppose that a multilinear operator T satisfies restricted
weak type (pi1, . . . , pim, pi) estimates for i = 1, . . . ,m + 1. Then T has a bounded
extension from Lq1 × · · · × Lqm → Lq whenever 1/q ≤ 1/q1 + · · ·+ 1/qm.

There is also an interpolation theorem saying that if a linear operator (that satisfies
a mild assumption) and its transpose are of restricted weak type (1, 1), then the
operator is L2 bounded. We prove here a multilinear analogue of this result due to
Grafakos and Tao [24]:

Theorem 4. ([24]) Let 1 < p1, . . . , pm <∞ be such that 1/p1 + · · ·+1/pm = 1/p < 1.
Suppose that an m-linear operator has the property that

(15) sup
A0,A1,...,Am

|A0|−1/p′|A1|−1/p1 . . . |Am|−1/pm

∣∣∣∣ ∫
A0

T (χA1 , . . . , χAm) dx

∣∣∣∣ <∞
where the supremum is taken over all subsets A0, A1, . . . , Am of finite measure. Also
suppose that T ∗j, j = 0, 1, . . . ,m are of restricted weak type (1, 1, . . . , 1/m); this
means that these operators map L1×· · ·×L1 to L1/m,∞ when restricted to character-
istic functions with constants B0, B1, . . . , Bm, respectively. Then there is a constant
Cp1,...,pm such that T maps the product of Lorentz spaces Lp1,1 × · · · × Lpm,1 to weak
Lp when restricted to characteristic functions with norm at most

Cp1,...,pmB
1/(2p)
0 B

1/(2p′1)
1 . . . B1/(2p′m)

m .

Proof. We will make use of the following characterization of weak Lp (due to Tao):

(16)
∥∥g∥∥

Lp,∞
≈ sup
|E|<∞

inf
E′⊂E
|E′|≥ 1

2
|E|

|E|
1
p
−1

∣∣∣∣ ∫
E′
g(t) dt

∣∣∣∣
The easy proof of (16) is omitted.

Let M be the supremum in (15). We consider the following two cases:

Case 1: Suppose that |A0|√
B0
≥ max

( |A1|√
B1
, . . . , |Am|√

Bm

)
. Since T maps L1× · · · ×L1 to

weak L1/m when restricted to characteristic functions, there exists a subset A′0 of A0

of measure |A′0| ≥ 1
2
|A0| such that∣∣∣∣ ∫

A′0

T (χA1 , . . . , χAm)dx

∣∣∣∣ ≤ C B0 |A1| . . . |Am| |A0|1−
1

1/m



12 LOUKAS GRAFAKOS

for some constant C. Then∣∣∣∣ ∫
A0

T (χA1 , . . . , χAm)dx

∣∣∣∣ ≤∣∣∣∣ ∫
A′0

T (χA1 , . . . , χAm)dx

∣∣∣∣+

∣∣∣∣ ∫
A0\A′0

T (χA1 , . . . , χAm)dx

∣∣∣∣
≤C B0 |A1| . . . |Am| |A0|−m+1 +M |A1|

1
p1 . . . |A2|

1
p2

(1

2
|A0|

) 1
p′

≤CB0|A1|
1
p1

(√B1√
B0

) 1
p′1 . . . |Am|

1
pm

(√Bm√
B0

) 1
p′m |A0|

Pm
s=1

1
p′s
−m+1

+M 2
− 1
p′ |A1|

1
p1 . . . |Am|

1
pm |A0|

1
p′ .

It follows that M has to be less than or equal to

C B0

(√B1√
B0

)1/p′1
. . .
(√Bm√

B0

)1/p′m
+M 2−1/p′

and consequently

M ≤ C

1− 2−1/p′
B

1/(2p)
0 B

1/(2p′1)
1 . . . B1/(2p′m)

m .

Case 2: Suppose that
|Aj |√
Bj
≥ max

( |A0|√
B0
, . . . , |Am|√

Bm

)
for some j ≥ 1. To simplify

notation, let us take j = 1. Here we use that T ∗1 maps L1 × · · · × L1 to weak L1/m

when restricted to characteristic functions. Then there exists a subset A′1 of A1 of
measure |A′1| ≥ 1

2
|A1| such that∣∣∣∣ ∫

A′1

T ∗1(χA0 , . . . , χAm)dx

∣∣∣∣ ≤ C B1 |A0| |A2| . . . |Am| |A1|−m+1

for some constant C. Equivalently, we write this statement as∣∣∣∣ ∫
A0

T (χA′1 , χA2 . . . , χAm)dx

∣∣∣∣ ≤ C B1 |A0| |A2| . . . |Am| |A1|−m+1.

by the definition of the first dual operator T ∗1. Therefore we obtain∣∣∣∣ ∫
A0

T (χA1 , . . . )dx

∣∣∣∣ ≤∣∣∣∣ ∫
A0

T (χA′1 , χA2 , . . . )dx

∣∣∣∣+

∣∣∣∣ ∫
A0

T (χA1\A′1 , χA2 , . . . )dx

∣∣∣∣
≤CB1|A0|

( m∏
s=2

|As|
)
|A1|−m+1 +M |A0|

1
p′

m∏
s=2

|As|
1
ps

(1

2
|A1|

) 1
p1

≤CB1|A1|
−m+1+ 1

p
+

Pm
s=2

1
p′s

(√B0√
B1

) 1
p |A0|

1
p′

m∏
s=2

|As|
1
ps

(√Bs√
B1

) 1
p′s

+M 2−1/p1|A1|
1
p1 |A2|

1
p2 . . . |Am|

1
pm |A0|

1
p′ .

By the definition of M , it follows that

M ≤ C

1− 2−1/p1
B

1/(2p)
0 B

1/(2p′1)
1 . . . B1/(2p′m)

m .
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Then the statement of the theorem follows with

Cp1,...,pm = C max
( 1

1− 2−1/p1
, . . . ,

1

1− 2−1/pm
,

1

1− 2−1/p′

)
.

�

Assumption (15) is not as restrictive as it looks. To apply this theorem for m-linear
Calderón-Zygmund operators, one needs to consider the family of operators whose
kernels are truncated near the origin, i.e.,

Kδ(x, y1, . . . , ym) = K(x, y1, . . . , ym)ζ
(
(|x− y1|+ · · ·+ |x− ym|)/δ

)
,

where ζ is a smooth function that is equal to 1 on [2,∞) and vanishes on [0, 1]. The
kernels Kδ are essentially in the same Calderón-Zygmund kernel class as K, that is
if K lies in m-CZK(A, ε), then Kε lie in m-CZK(A′, ε), where A′ is a multiple of A.
Using Hölder’s inequality with exponents p1, . . . , pm, p

′, it is easy to see that for the
operators Tδ with kernels Kδ, assumption (15) holds with constants depending on δ.

Theorem 4 provides an interpolation machinery needed to pass from bounds at
one point to bounds at every point for multilinear Calderón-Zygmund operators.
(An alternative interpolation technique was described in [25].) We have:

Theorem 5. Suppose that an operator T with kernel in m-CZK(A, δ) and all of its
truncations Tδ map Lr1 × · · · × Lrm → Lr for a single tuple of indices r1, . . . , rm, r
satisfying 1/r1 + · · ·+ 1/rm = 1/r and 1 < r1, . . . , rm, r <∞ uniformly in δ. Then T
is bounded from Lp1 × · · · × Lpm → Lp for all indices p1, . . . , pm, p satisfying 1/p1 +
· · ·+ 1/pm = 1/p and 1 < p1, . . . , pm <∞, 1/m < p <∞.

Proof. Since Tδ maps Lr1 × · · · × Lrm → Lr and r > 1, duality gives that T ∗1δ maps
Lr
′ ×Lr2 × · · · ×Lrm → Lr

′
1 and likewise for the remaining adjoints (uniformly in δ).

It follows from Theorems 4 and 3 that Tδ are bounded from Lp1×· · ·×Lpm → Lp for
all indices p1, . . . , pm, p satisfying 1/p1 + · · · + 1/pm = 1/p and 1 < p1, . . . , pm < ∞,
1/m < p <∞. Passing to the limit, using Fatou’s lemma, the same conclusion may
be obtained for the non truncated operator T . �

This approach has the drawback that it uses the redundant assumption that if T is
bounded from Lr1×Lr2 → Lr, then so are all its truncations Tδ (uniformly in δ > 0).
This is hardly a problem in concrete applications since the kernels of T and Tδ satisfy
equivalent estimates (uniformly in δ > 0) and the method used in the proof of the
boundedness of the former almost always applies for the latter.

5. The m-linear Mikhlin-Hörmander multiplier theorem

In this section, we focus on an analogue of a classical linear multiplier theorem in
the multilinear case. We first note that the Marcinkiewicz multiplier theorem fails for
multilinear operators, see [19]. However, the Mikhlin -Hörmander multiplier theorem
(see [35], [26]) has a multilinear extension, which we discuss below.
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The multilinear Fourier multiplier operator Tσ associated with a symbol σ is defined
by

Tσ(f1, . . . , fm)(x) =

∫
(Rn)m

e2πix·(ξ1+···+ξm)σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) dξ1 · · · dξm

for fi ∈ S (Rn), i = 1, · · · ,m.
Coifman and Meyer [8] proved that if σ is a bounded function on Rmn \ {0} that

satisfies

(17) |∂α1
ξ1
· · · ∂αmξm σ(ξ1, . . . , ξm)| ≤ Cα(|ξ1|+ · · ·+ |ξm|)−(|α1|+···+|αm|)

away from the origin for all sufficiently large multiindices αj, then Tσ is bounded
from the product Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn) for all 1 < p1, . . . , pm, p < ∞
satisfying 1

p1
+ · · · + 1

pm
= 1

p
. Their proof is based on the idea of writing the Fourier

multiplier σ as a rapidly convergent sum of products of functions of the variables ξj.
The multiplier theorem of Coifman and Meyer was extended to indices p < 1 (and
larger than 1/m by Grafakos and Torres [25] and Kenig and Stein [29] (when m = 2).

A different approach was taken by Tomita [38] who extended the proof of the
Hörmander multiplier theorem in [14] to obtain the following result in the m-linear
case:

Theorem A. [38] Let σ ∈ L∞(Rmn). Let Ψ be a Schwartz function whose Fourier

transform is supported in the set {~ξ ∈ (Rn)m : 1/2 ≤ |~ξ | ≤ 2} and satisfies

(18)
∑
j∈Z

Ψ̂(~ξ/2j) = 1

for all ~ξ ∈ (Rn)m\{0}. Suppose that for some s > mn/2, the function σ ∈ L∞(Rmn)
satisfies

sup
k∈Z
‖σk Ψ̂‖L2

s
<∞.

where for k ∈ Z, σk is defined as

(19) σk(ξ1, . . . , ξm) = σ(2kξ1, . . . , 2
kξm) .

Then Tσ is bounded from Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn), whenever
1 < p1, p2, . . . , pm, p <∞ and 1/p1 + · · ·+ 1/pm = 1/p.

Let S1(Rd) be the set of all Schwartz functions Ψ on Rd, whose Fourier transform
is supported in an annulus of the form {ξ : c1 < |ξ| < c2}, is nonvanishing in a smaller
annulus {ξ : c′1 ≤ |ξ| ≤ c′2} (for some choice of constants 0 < c1 < c′1 < c′2 < c2 <∞),
and satisfies

(20)
∑
j∈Z

Ψ̂(2−jξ) = constant, ξ ∈ Rd \ {0}.

Theorem A has an extension to the case where the target space is Lp for p ≤ 1:
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Theorem 6. ([22]) Let 1 < r ≤ 2. Suppose that σ is a function on Rnm and Ψ is a
function in S1(Rnm) that satisfies for some γ > mn

r

(21) sup
k∈Z
‖σk Ψ̂‖Lrγ(Rmn) = K <∞,

where σk is defined in (19). Then there is a number δ = δ(mn, γ, r) satisfying
0 < δ ≤ r − 1, such that the m-linear operator Tσ, associated with the multiplier
σ, is bounded from Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn), whenever r − δ < pj < ∞
for all j = 1, . . . ,m, and p is given by

(22)
1

p
=

1

p1

+ · · ·+ 1

pm
.

In the rest of this section, we prove Theorem 6.

5.1. Preliminary material. We develop some preliminary material needed in the
proof of Theorem 6. For s ∈ R we denote by ws the weight

ws(x) = (1 + 4π2|x|2)s/2 .

Definition 1. For 1 ≤ p <∞, the weighted Lebesgue space Lp(ws) is defined as the
set of all measurable functions f on Rd such that

‖f‖Lp(ws) =

(∫
Rd

|f(x)|pws(x) dx

)1/p

<∞.

We note that for 1 < r ≤ 2 one has

‖ĝ ‖Lr′ (ws) =

(∫
Rd

|ĝ |r′ws dξ
) 1

r′

=

(∫
Rd

|ĝ ws/r′|r
′
dξ

) 1
r′

=

(∫
Rd

∣∣[(I −∆)
s

2r′ g
]̂∣∣r′ dξ) 1

r′

≤
(∫

Rd

∣∣(I −∆)
s

2r′ g
∣∣r dx) 1

r

= ‖g ‖Lr
s/r′

,

(23)

via the Hausdorff-Young inequality.

Lemma 1. Let 1 ≤ p < q < ∞. Then for every s ≥ 0 there exists a constant
C = C(p, q, s, d) > 0 such that for all functions g supported in a ball of a fixed finite
radius in Rd we have

‖g‖Lps(Rd) ≤ C ‖g‖Lqs(Rd) .

Proof. Since g is supported in a ball of finite fixed radius, then g = g ϕ for some
compactly supported smooth function ϕ that is equal to one on the support of g.
Pick r such that

1/p = 1/q + 1/r .
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The Kato-Ponce rule [28] gives the estimate

‖g‖Lps(Rd) =
∥∥(I −∆)s/2(g ϕ)

∥∥
Lp

≤ C
[∥∥(I −∆)s/2g

∥∥
Lq
‖ϕ‖Lr + ‖g‖Lq

∥∥(I −∆)s/2ϕ
∥∥
Lr

]
= Cϕ

[∥∥(I −∆)s/2g
∥∥
Lq

+ ‖g‖Lq
]
.

Now the Bessel potential operator Js = (I −∆)−s/2 is bounded from Lq to itself for
all s > 0. This implies that

‖g‖Lq ≤ C ′
∥∥(I −∆)s/2g

∥∥
Lq

Combining this estimate with the one previously obtained, we deduce that

‖g‖Lps(Rd) ≤ 2CϕC
′∥∥(I −∆)s/2g

∥∥
Lq(Rd)

= C ‖g‖Lqs(Rd) .

�

Lemma 2. Suppose that s ≥ 0 and 1 < r <∞. Assume that ϕ lies in S (Rd). Then
there is a constant cϕ such that for all g ∈ Lrs(Rd) we have

‖g ϕ‖Lrs ≤ cϕ ‖g‖Lrs .
Proof. We write

(I −∆)s/2(g ϕ) =

∫
Rd

ϕ̂(τ)(I −∆)s/2(g e2πiτ ·(·)) dτ .

It will suffice to show that the Lr norm of (I − ∆)s/2(g e2πiτ ·(·)) is controlled by
CM (1 + |τ |)M times the Lr norm of (I −∆)s/2g, for some M > 0. This statement is
equivalent to showing that the function(

1 + |ξ − τ |2

1 + |ξ|2

) s
2

is an Lr Fourier multiplier with norm at most a multiple of (1 + |τ |)M . But this is
an easy consequence of the Mihlin multiplier theorem. �

Lemma 3. Let ∆k be the Littlewood-Paley operator given by ∆k(g) (̂ξ) = ĝ(ξ)Ψ̂(2−kξ),
k ∈ Z, where Ψ is a Schwartz function whose Fourier transform is supported in the

annulus {ξ : 2−b < |ξ| < 2b}, for some b ∈ Z+ and satisfies
∑

k∈Z Ψ̂(2−kξ) = c0, for
some constant c0. Let 0 < p < ∞. Then there is a constant c = c(n, p, c0,Ψ), such
that for Lp functions f we have

‖f‖Lp ≤ c
∥∥∥(∑

k∈Z

|∆k(f)|2
)1/2∥∥∥

Lp
.

Proof. Let Φ be a Schwartz function with integral one. Then the following quantity
provides a characterization of the Hp norm:

‖f‖Hp ≈
∥∥ sup
t>0
|f ∗ Φt|

∥∥
Lp
.

It follows that for f in Hp∩L2, which is a dense subclass of Hp, one has the estimate

|f | ≤ sup
t>0
|f ∗ Φt| ,



MULTILINEAR HARMONIC ANALYSIS 17

since the family {Φt}t>0 is an approximate identity. Thus

‖f‖Lp ≤ c ‖f‖Hp

whenever f is a function in Hp.
Keeping this observation in mind we can write:

‖f‖Lp ≤ c ‖f‖Hp

≤
∥∥∥(∑

j∈Z

|∆j(f)|2
)1/2∥∥∥

Lp

= c
∥∥∥(∑

j∈Z

∣∣∣∆j

(∑
k∈Z

∆k(f)
)∣∣∣2)1/2∥∥∥

Lp

≤ c′
∥∥∥(∑

k∈Z

|∆k(f)|2
)1/2∥∥∥

Lp

in view of the fact that ∆j∆k = 0 unless |j − k| ≤ b. �

5.2. The proof of Theorem 6. Having disposed of the preliminary material, we
now prove Theorem 6.

Proof. For each j = 1, . . . ,m, we let Rj be the set of points (ξ1, . . . , ξm) in (Rn)m

such that |ξj| = max{|ξ1|, . . . , |ξm|}. For j = 1, . . . ,m, we introduce nonnegative
smooth functions φj on [0,∞)m−1 that are supported in [0, 11

10
]m−1 such that

1 =
m∑
j=1

φj

( |ξ1|
|ξj|

, . . . ,
|̃ξj|
|ξj|

, . . . ,
|ξm|
|ξj|

)
for all (ξ1, . . . , ξm) 6= 0, with the understanding that the variable with the tilde is
missing. These functions introduce a partition of unity of (Rn)m \ {0} subordinate
to a conical neighborhood of the region Rj.

Each region Rj can be written as the union of sets

Rj,k =
{

(ξ1, . . . , ξm) ∈ Rj : |ξk| ≥ |ξs| for all s 6= j
}

over k = 1, . . . ,m. We need to work with a finer partition of unity, subordinate to
each Rj,k. To achieve this, for each j, we introduce smooth functions φj,k on [0,∞)m−2

supported in [0, 11
10

]m−2 such that

1 =
m∑
k=1
k 6=j

φj,k

( |ξ1|
|ξk|

, . . . ,
|̃ξk|
|ξk|

, . . . ,
|̃ξj|
|ξk|

, . . . ,
|ξm|
|ξk|

)
for all (ξ1, . . . , ξm) in the support of φj with ξk 6= 0 (with missing kth and jth entries).

We now have obtained the following partition of unity of (Rn)m \ {0}:

1 =
m∑
j=1

m∑
k=1
k 6=j

φj(. . . )φj,k(. . . ) ,

where the dots indicate the variables of each function.
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We introduce a nonnegative smooth bump ψ supported in [(10m)−1, 2] and equal
to 1 on the interval [(5m)−1, 12

10
], and we decompose the identity on (Rn)m \ {0} as

follows

1 =
m∑
j=1

m∑
k=1
k 6=j

[
Φj,k + Ψj,k

]
,

where

Φj,k(ξ1, . . . , ξm) = φj(. . . )φj,k(. . . )

(
1− ψ

( |ξk|
|ξj|

))
and

Ψj,k(ξ1, . . . , ξm) = φj(. . . )φj,k(. . . )ψ
( |ξk|
|ξj|

)
.

This partition of unity induces the following decomposition of σ:

σ =
m∑
j=1

m∑
k=1
k 6=j

[
σΦj,k + σΨj,k

]
.

We will prove the required assertion for each piece of this decomposition, i.e., for the
multipliers σΦj,k and σΨj,k for each pair (j, k) in the previous sum. In view of the
symmetry of the decomposition, it suffices to consider the case of a fixed pair (j, k) in
the previous sum. To simplify notation, we fix the pair (m,m− 1), thus, for the rest
of the proof we fix j = m and k = m− 1 and we prove boundedness for the m-linear
operators whose symbols are σ1 = σΦm,m−1 and σ2 = σΨm,m−1. These correspond
to the m-linear operators Tσ1 and Tσ2 , respectively. The important thing to keep in
mind is that σ1 is supported in the set where

max(|ξ1|, . . . , |ξm−2|) ≤ 11
10
|ξm−1| ≤ 11

10
· 1

5m
|ξm|

and σ2 is supported in the set where

max(|ξ1|, . . . , |ξm−2|) ≤ 11
10
|ξm−1|

and
1

10m
≤ |ξm−1|

|ξm| ≤ 2 .

We first consider Tσ1(f1, . . . , fm), where fj are fixed Schwartz functions. We fix
a Schwartz radial function η whose Fourier transform is supported in the annulus
1− 1

25
≤ |ξ| ≤ 2 and satisfies∑

j∈Z

η̂(2−jξ) = 1, ξ ∈ Rn\{0}.

Associated with η we define the Littlewood-Paley operator ∆j(f) = f ∗ η2−j , where
ηt(x) = t−nη(t−1x) for t > 0. We decompose the function fm as

∑
j∈Z ∆j(fm) and

we note that the spectrum (i.e. the Fourier transform) of Tσ1(f1, . . . , fm−1,∆j(fm))
is contained in the set{

ξ1 : |ξ1| ≤ 3·2j
5m

}
+ · · ·+

{
ξm−1 : |ξm−1| ≤ 3·2j

5m

}
+
{
ξm : 24

25
· 2j ≤ |ξm| ≤ 2 · 2j

}
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This algebraic sum of these sets is contained in the annulus

{z ∈ Rn : 9
25
· 2j ≤ |z| ≤ 65

25
· 2j} .

We now introduce another bump that is equal to 1 on the annulus
{z ∈ Rn : 9

25
≤ |z| ≤ 65

25
} and vanishes in the complement of the larger annulus

{z ∈ Rn : 8
25
< |z| < 66

25
}. We call ∆̃j the Littlewood-Paley operators associated

with this bump and we note that

∆̃j(Tσ1(f1, . . . ,∆j(fm))) = Tσ1(f1, . . . ,∆j(fm)).

Finally, we define an operator Sj by setting

Sj(g) = g ∗ ζ2−j ,

where ζ is a smooth function whose Fourier transform is equal to 1 on the ball
|z| < 3/5m and vanishes outside the double of this ball. Using this notation, we may
write

Tσ1(f1, . . . , fm−1, fm) =
∑
j

Tσ1

(
f1, . . . , fm−1,∆j(fm)

)
=
∑
j

Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)
=
∑
j

∆̃j

(
Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))

)
.

Since the Fourier transforms of ∆̃j

(
Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))

)
have bounded

overlap, Lemma 3 yields that

‖Tσ1(f1, . . . , , fm)‖Lp ≤ C
∥∥∥[∑

j

∣∣Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)∣∣2] 1
2
∥∥∥
Lp

Obviously, we have

Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)
(x)

=

∫
(Rn)m

e2πix·(ξ1+···+ξm)σ1(ξ1, . . . , ξm)
m−1∏
k=1

Ŝj(fk)(ξk) ∆̂j(fm)(ξm) dξ1 · · · dξm .

A simple calculation yields that the support of the integrand in the previous integral
is contained in the annulus{

(ξ1, . . . , ξm) ∈ (Rn)m : 7
10
· 2j < |(ξ1, . . . , ξm)| < 21

10
· 2j
}
,

so one may introduce in the previous integral the factor Ψ̂(2−jξ1, . . . , 2
−jξm), where

Ψ is a radial function in S1((Rn)m) whose Fourier transform is supported in some
annulus and is equal to 1 on the annulus{

(z1, . . . , zm) ∈ (Rn)m : 7
10
≤ |(z1, . . . , zm)| ≤ 21

10

}
.
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Inserting this factor and taking the inverse Fourier transform, we obtain that

Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)
(x)

is equal to∫
(Rn)m

2mnj(σj1 Ψ̂)∨(2j(x− y1), . . . , 2j(x− ym))
m−1∏
i=1

Sj(fi)(yi) ∆j(fm)(ym) d~y,

where d~y = dy1 . . . dym, the check indicates the inverse Fourier transform in all vari-
ables, and

σj1(ξ1, ξ2, . . . , ξm) = σ1(2jξ1, . . . , 2
jξm) .

We pick a ρ such that 1 < ρ < r ≤ 2 and γ > mn/ρ. This is possible since
γ > mn/r; for instance ρ = mn

γ
+ 1

1000
(r − mn

γ
) is a good choice if this number is

bigger than 1, otherwise we set ρ = 1+r
2

. We define δ = r − ρ . We now have:

|Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))(x)|

≤
∫

(Rn)m
wγ
(
2j(x− y1), . . . , 2j(x− ym)

)
|(σj1 Ψ̂)∨(2j(x− y1), . . . , 2j(x− ym))|

× 2mnj|Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)∆j(fm)(ym)|
wγ
(
2j(x− y1), . . . , 2j(x− ym)

) d~y

≤
[ ∫

(Rn)m

∣∣(wγ (σj1 Ψ̂)∨
)
(2j(x− y1), . . . , 2j(x− ym))

∣∣ρ′d~y] 1
ρ′

× 2mnj

(∫
(Rn)m

|Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)∆j(fm)(ym)|ρ

wγρ
(
2j(x− y1), . . . 2j(x− ym)

) d~y

) 1
ρ

≤C
(∫

(Rn)m
wγρ′(y1, . . . , ym)|(σj1 Ψ̂)∨(y1, . . . , ym)|ρ′d~y

) 1
ρ′

×
(∫

(Rn)m

2mnj|Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)∆j(fm)(ym)|ρ

(1 + 2j|x− y1|)γρ/m · · · (1 + 2j|x− ym|)γρ/m
d~y

) 1
ρ

≤‖(σj1 Ψ̂)∨‖Lρ′ (wγρ′ )
m−1∏
i=1

(∫
Rn

2jn|Sj(fi)(yi)|ρ

(1 + 2j|x− yi|)γρ/m
dyi

) 1
ρ

×
(∫

Rn

2jn|∆j(fm)(ym)|ρ

(1 + 2j|x− ym|)γρ/m
dym

) 1
ρ

≤‖(σj1 Ψ̂)∨‖Lρ′ (wγρ′ )c
m/ρ

m−1∏
i=1

(M(M(fi)
ρ)(x))

1
ρ (M(|∆j(fm)|ρ)(x))

1
ρ ,

where we used that ∫
Rn

2jn|h(y)|
(1 + 2j|x− y|)γρ/m

dy ≤ cM(h)(x) ,

a consequence of the fact that γρ/m > n.
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We now have the sequence of inequalities:

‖(σj1 Ψ̂)∨‖Lρ′ (wγρ′ ) ≤ ‖σ
j
1 Ψ̂‖Lργ ≤ C ′′ ‖σj1 Ψ̂‖Lrγ ≤ C ′ ‖σj Ψ̂‖Lrγ < C K ,

justified by the result in the calculation (23) for the first, Lemma 1 together with
the facts that 1 < ρ < r and σj1 is supported in a ball of a fixed radius for the
second inequality, Lemma 2 for the third, and the hypothesis of Theorem 6 for the
last inequality.

Thus we have obtained the estimate:

|Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))|

≤ C K
m−1∏
i=1

(
M(M(fi)

ρ)
) 1
ρ (M(|∆j(fm)|ρ))

1
ρ .

We now square the previous expression, we sum over j ∈ Z and we take square roots.
Since r − δ = ρ, the hypothesis pj > r − δ implies pj > ρ , and thus each term

(M(M(fi)
ρ))

1
ρ is bounded on Lpj(Rn). We obtain

∥∥Tσ1(f1, . . . , fm−1, fm)
∥∥
Lp(Rn)

≤C K
∥∥∥{∑

j

|Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))|2
} 1

2
∥∥∥
Lp(Rn)

≤C ′K
∥∥∥{∑

j

M(|∆j(fm)|ρ)
2
ρ

} 1
2
∥∥∥
Lpm (Rn)

m−1∏
i=1

∥∥ (M(M(fi)
ρ
)) 1

ρ
∥∥
Lpi (Rn)

≤C ′′K
∥∥∥{∑

j

M(|∆j(fm)|ρ)
2
ρ

} ρ
2
∥∥∥ 1
ρ

Lpm/ρ(Rn)

m−1∏
i=1

‖fi‖Lpi (Rn)

≤C ′′K
m∏
i=1

‖fi‖Lpi (Rn)

in view of the Fefferman-Stein vector-valued inequality for the Hary-Littlewood max-
imal function [17] and the Littlewood-Paley theorem.

Next we deal with σ2. Using the notation introduced earlier, we write

Tσ2(f1, . . . , fm−1, fm) =
∑
j∈Z

Tσ2(f1, . . . , fm−1,∆j(fm)) .

The key observation in this case is that

Tσ2(f1, . . . , fm−1,∆j(fm)) = Tσ2

(
S ′j(f1), . . . , S ′j(fm−2),∆′j(fm−1),∆j(fm)

)
for some other Littlewood-Paley operator ∆′j which is given on the Fourier transform

by multiplication with a bump Θ̂(2−jξ), where Θ̂ is equal to one on the annulus
{ξ ∈ Rn : 24

25
· 1

10m
≤ |ξ| ≤ 4} and vanishes on a larger annulus. Also, S ′j is given

by convolution with ζ ′2−j , where ζ ′ is a smooth function whose Fourier transform is
equal to 1 on the ball |z| < 22

10
and vanishes outside the double of this ball.
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As in the previous case, one has that in the support of the integral

Tσ2

(
S ′j(f1), . . . , S ′j(fm−2),∆′j(fm−1),∆j(fm)

)
(x)

=

∫
(Rn)m

e2πix·(ξ1+···+ξm)σ2(~ξ )
m−2∏
t=1

Ŝ ′j(ft)(ξt)
̂∆′j(fm−1)(ξm−1)∆̂j(fm)(ξm) d~ξ

we have that

|ξ1|+ · · ·+ |ξm| ≈ 2j ,

thus one may insert in the integrand the factor Ψ̂(2−jξ1, . . . , 2
−jξm), for some Ψ in

S1((Rn)m) that is equal to one on a sufficiently wide annulus.
A calculation similar to the one in the case for σ1 yields the estimate

|Tσ2(S
′
j(f1), . . . , S ′j(fm−2),∆′j(fm−1),∆j(fm))|

≤C K
m−2∏
i=1

(M(M(fi)
ρ))

1
ρ
(
M(|∆′j(fm−1)|ρ)

) 1
ρ (M(|∆j(fm)|ρ))

1
ρ .

Summing over j and taking Lp norms yields

‖Tσ2(f1, . . . , , fm−1, fm)‖Lp(Rn)

≤C K
∥∥∥m−2∏
i=1

(M(M(fi)
ρ))

1
ρ

∑
j∈Z

(
M
(
|∆′j(fm−1)|ρ

)) 1
ρ (M (|∆j(fm)|ρ))

1
ρ

∥∥∥
Lp

≤C K
∥∥∥m−2∏
i=1

(M(M(fi)
ρ))

1
ρ

{ m∏
i=m−1

∑
j∈Z

|M (|∆j(fi)|ρ)|
2
ρ

} 1
2
∥∥∥
Lp(Rn)

where the last step follows by the Cauchy-Schwarz inequality and we omitted the
prime from the term with i = m − 1 for matters of simplicity. Applying Hölder’s
inequality and using that ρ < 2 and Lemma B we obtain the conclusion that the
expression above is bounded by

C ′K ‖f1‖Lp1 (Rn) · · · ‖fm‖Lpm (Rn) .

This concludes the proof of the theorem. �

6. The multilinear strong maximal function

In this section we study the maximal function MR introduced in Example 6 of
Section 2. It turns out that this operator can be used to characterize the class of
multiple Ap weights introduced in [32] suitably modified for rectangles, see [21]. Here,
we will be concerned with endpoint boundedness properties ofMR. This will require
a quick review of some facts from the theory of Orlicz spaces.

A Young function is a continuous, convex, increasing function Φ : [0,∞)→ [0,∞)
with Φ(0) = 0 and such that Φ(t)→∞ as t→∞. The properties of Φ easily imply
that for 0 < ε < 1 and t ≥ 0

(24) Φ(ε t) ≤ εΦ(t) .
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The Φ-norm of a function f over a set E with finite measure is defined by

(25) ‖f‖Φ,E = inf

{
λ > 0 :

1

|E|

∫
E

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

It follows from this definition that

(26) ‖f‖Φ,E > 1 if and only if
1

|E|

∫
E

Φ (|f(x)|) dx > 1.

Associated with each Young function Φ, there is its complementary Young function

(27) Φ̄(s) = sup
t>0
{st− Φ(t)}

for s ≥ 0. Such Φ̄ is also a Young function and has the property that

(28) st ≤ C
[
Φ(t) + Φ̄(s)

]
for all s, t ≥ 0. Also the Φ̄-norms are related to the LΦ-norms via the the generalized
Hölder inequality, namely

(29)
1

|E|

∫
E

|f(x) g(x)| dx ≤ 2 ‖f‖Φ,E ‖g‖Φ̄,E.

In this section we will work with the pair of Young functions

Φn(t) := t[log(e+ t)]n−1 and Φ̄n(t) ≈ Ψn(t) := exp(t
1

n−1 )− 1, t ≥ 0.

It is the case that the pair Φn, Ψn satisfies (28), see the article by Bagby [1], page
887. Observe that the above function Φn is submultiplicative, that is, for s, t > 0

Φn(st) ≤ cΦn(s) Φn(t).

We introduce the function Φ(m) :=

m times︷ ︸︸ ︷
Φ ◦ Φ ◦ · · · ◦ Φ which is increasing with respect to

the input variable and also with respect to m ∈ N.

6.1. Some Lemmas. We begin by proving some useful general lemmas about aver-
aging functions and Orlicz spaces.

Lemma 4. Let Φ be any Young function, then for any f ≥ 0 and any measurable
set E

1 < ‖f‖Φ,E ⇒ ‖f‖Φ,E ≤
1

|E|

∫
E

Φ(f(x)) dx .

Proof. Indeed, by homogeneity this is equivalent to∥∥∥ f

λf,E

∥∥∥
Φ,E
≤ 1 ,

where

λf,E =
1

|E|

∫
E

Φ(f(x)) dx .

But this is the same as
1

|E|

∫
E

Φ
(f(x)

λf,E

)
dx ≤ 1
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by definition of the norm (25). In view of Property (24), it would be enough to show
that

λf,E =
1

|E|

∫
E

Φ(f(x)) dx ≥ 1.

But this is exactly the case in view of Property (26). �

Lemma 5. Let Φ be a submultiplicative Young function, let m ∈ N and let E be any
set. Then there is a constant c such that whenever

(30) 1 <
m∏
i=1

‖fi‖Φ,E

holds, then

(31)
m∏
i=1

‖fi‖Φ,E ≤ c

m∏
i=1

1

|E|

∫
E

Φ(m)(fi(x)) dx .

Proof. a) The case m = 1. This is the content of Lemma 4.
b) The case m = 2. Fix functions for which (30) holds:

1 <
2∏
i=1

‖fi‖Φ,E.

Without loss of generality we may assume that

‖f1‖Φ,E ≤ ‖f2‖Φ,E .

Observe that by (30) we must have ‖f2‖Φ,E > 1.
Suppose first that 1 ≤ ‖f1‖Φ,E, then (31) follows from Lemma 4:

1 <
2∏
i=1

‖fi‖Φ,E ≤
2∏
i=1

1

|E|

∫
E

Φ(fi(x)) dx

with m = 1 and c = 1.
Assume now

‖f1‖Φ,E ≤ 1 ≤ ‖f2‖Φ,E .

Then we have by Lemma 4, submultiplicativity and Jensen’s inequality

1<
2∏
i=1

‖fi‖Φ,E

= ‖f1‖Φ,E ‖f2‖Φ,E

=
∥∥f1 ‖f2‖Φ,E

∥∥
Φ,E

≤ c 1

|E|

∫
E

Φ(f1(x)‖f2‖Φ,E) dx

≤ c 1

|E|

∫
E

Φ(f1(x)) dxΦ(‖f2‖Φ,E)

≤ c 1

|E|

∫
E

Φ(f1(x)) dxΦ(c
1

|E|

∫
E

Φ(f2(x)) dx )
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≤ c 1

|E|

∫
E

Φ(f1(x)) dx
1

|E|

∫
E

Φ(2)(f2(x)) dx

≤ c
2∏
i=1

1

|E|

∫
E

Φ(2)(fi(x)) dx ,

which is exactly (31).
c) The case m ≥ 3. By induction, assuming that the result holds for the integer

m− 1 ≥ 2, we will prove it for m. Fix functions for which (30) holds:

1 <
m∏
i=1

‖fi‖Φ,E,

and without loss of generality assume that

‖f1‖Φ,E ≤ ‖f2‖Φ,E ≤ · · · ≤ ‖fm‖Φ,E .

Observe that we must have ‖fm‖Φ,E > 1.
If we suppose that 1 ≤ ‖f1‖Φ,E, then (31) follows directly from Lemma 4:

1 <
m∏
i=1

‖fi‖Φ,E ≤
m∏
i=1

1

|E|

∫
E

Φ(fi(x)) dx

with c = 1 and Φ instead of Φ(2).
Assume now that for some integer k ∈ {1, 2, . . . ,m− 1} we have

‖f1‖Φ,E ≤ ‖f2‖Φ,E ≤ · · · ≤ ‖fk‖Φ,E ≤ 1 ≤ ‖fk+1‖Φ,E ≤ · · · ≤ ‖fm‖Φ,E .

Since

1 <
m∏
i=1

‖fi‖Φ,E = ‖f1‖Φ,E

m∏
i=2

‖fi‖Φ,E,

we must have
∏m

i=2 ‖fi‖Φ,E > 1. Using the induction hypothesis we have

(32) ‖f1‖Φ,E

m∏
i=2

‖fi‖Φ,E ≤ c ‖f1‖Φ,E

m∏
i=2

1

|E|

∫
E

Φ(m−1)(fi(x)) dx = ‖f1R‖Φ,E ,

where R =
∏m

i=2
1
|E|

∫
E

Φ(m−1)(fi(x)) dx. Applying Lemma 4 to the function f1R we

obtain by submultiplicativity and Jensen’s inequality

‖f1R‖Φ,E ≤ c
1

|E|

∫
E

Φ(f1(x)R) dx

≤ c 1

|E|

∫
E

Φ(f1(x)) dx Φ(R)

≤ c 1

|E|

∫
E

Φ(f1(x)) dx
m∏
i=2

Φ

(
1

|E|

∫
E

Φ(m−1)(fi(x)) dx

)

≤ c 1

|E|

∫
E

Φ(f1(x)) dx
m∏
i=2

1

|E|

∫
E

Φ(m)(fi(x)) dx.
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Combining this result with (32) we deduce

m∏
i=1

‖fi‖Φ,E ≤ c

m∏
i=1

1

|E|

∫
E

Φ(m)(fi(x)) dx ,

thus proving (31). �

6.2. The main result. The previous lemmas are used in the proof of the following
result due to Grafakos, Liu, Pérez, and Torres.

Theorem 7. [21] There exists a positive constant C depending only on m and n such
that for all λ > 0,

(33)
∣∣∣{x ∈ Rn : MR(~f )(x) > λm

}∣∣∣ ≤ C

{
m∏
i=1

∫
Rn

Φ(m)
n

(
|fi(x)|
λ

)
dx

}1/m

for all fi on Rn and for all i = 1, . . . ,m. Furthermore, the theorem is sharp in the

sense that we cannot replace Φ
(m)
n by Φ

(k)
n for k ≤ m− 1.

Proof. By homogeneity, positivity of the operator, and the doubling property of Φn,
it is enough to prove

(34)
∣∣∣{x ∈ Rn : MR(~f )(x) > 1

}∣∣∣ ≤ C

{
m∏
j=1

∫
Rn

Φ(m)
n (fj(x)) dx

}1/m

,

for some constant C independent of the nonnegative functions ~f = (f1, · · · , fm).

Let E = {x ∈ Rn : MR(~f )(x) > 1}, then by the continuity property of the
Lebesgue measure we can find a compact set K such that K ⊂ E and

|K| ≤ |E| ≤ 2|K|.

Such a compact set K can be covered with a finite collection of rectangles {Rj}Nj=1

such that

(35)
m∏
i=1

1

|Rj|

∫
Rj

fi(y) dy > 1, j = 1, · · · , N.

We will use the following version of the Córdoba-Fefferman rectangle covering
lemma [10] due to Bagby ([1] Theorem 4.1 (C)): there are dimensional positive con-

stants δ, c and a subfamily {R̃j}`j=1 of {Rj}Nj=1 satisfying∣∣∣∣ N⋃
j=1

Rj

∣∣∣∣ ≤ c

∣∣∣∣ ⋃̀
j=1

R̃j

∣∣∣∣,
and ∫

S`
j=1

eRj exp

(
δ
∑̀
j=1

χ eRj(x)

) 1
n−1

dx ≤ 2

∣∣∣∣ ⋃̀
j=1

R̃j

∣∣∣∣ .
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Setting Ẽ =
⋃`
j=1 R̃j and recalling that Ψn(t) = exp(t

1
n−1 )− 1 the latter inequality is

1

|Ẽ|

∫
eE Ψn

(
δ
∑̀
j=1

χ eRj(x)

)
dx ≤ 1

which is equivalent to ∥∥∥∥∑̀
j=1

χ eRj
∥∥∥∥

Ψn, eE ≤
1

δ
(36)

by the definition of the norm. Now, since

|E| ≤ 2|K| ≤ C|Ẽ|
we can use (35) and Hölder’s inequality as follows

|Ẽ| =

∣∣∣∣ ⋃̀
j=1

R̃j

∣∣∣∣
≤
∑̀
j=1

|R̃j|

≤
∑̀
j=1

( m∏
i=1

∫
eRj fi(y) dy

) 1
m

≤
( m∏

i=1

∑̀
j=1

∫
eRj fi(y) dy

) 1
m

≤
( m∏

i=1

∫
S`
j=1

eRj
∑̀
j=1

χ eRj(y)fi(y) dy

) 1
m

=

( m∏
i=1

∫
eE
∑̀
j=1

χ eRj(y)fi(y) dy

) 1
m

.

By this inequality and (29), we deduce

1 ≤
m∏
i=1

1

|Ẽ|

∫
eE
∑̀
j=1

χ eRj(y)fi(y) dy

≤
m∏
i=1

∥∥∥∥∑̀
j=1

χ eRj
∥∥∥∥

Ψn, eE‖fi‖Φn, eE
≤

m∏
i=1

1

δ
‖fi‖Φn, eE

=
m∏
i=1

∥∥∥fi
δ

∥∥∥
Φn, eE .
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Finally, it is enough to apply Lemma 5 and that Φ
(m)
n is submultiplicative to conclude

the proof of (34).

Finally, we turn to the claimed sharpness that one cannot replace Φ
(m)
n by Φ

(k)
n for

k ≤ m− 1 in (33). In the case m = n = 2, we show that the estimate (E)∣∣{x ∈ R2 :MR(f, g)(x) > α2
}∣∣ ≤ C

{∫
R2

Φ2

(
|f(x)|
α

)
dx

∫
R2

Φ2

(
|g(x)|
α

)
dx

} 1
2

cannot hold for α > 0 and functions f, g with a constant C independent of these
parameters.

For N = 1, 2, . . . , consider the functions

f = χ[0,1]2 and gN = Nχ[0,1]2

and the parameter α = 1
10

. Then the left hand side of (E) reduces to∣∣∣{x ∈ R2 :MR(f, gN)(x) >
1

100

}∣∣∣ =
∣∣∣{x ∈ R2 : MR(χ[0,1]2)(x) >

1

10
√
N

}∣∣∣
≈
√
N (logN),

where the last estimate is a simple calculation concerning the strong maximal func-
tion. However, the right hand side of (E) is equal to

C(Φ2(1/α))1/2 (Φ2(N/α))1/2 = C(Φ2(10))1/2 (Φ2(10N))1/2 ≈
√
N logN

and obviously it cannot control the left hand side of (E) for N large.

For general m, the vector ~f = (f1, . . . , fm) with

f1 = f2 = · · · = fm−1 = χ[0,1]2 and fm = Nχ[0,1]2

also provides a counterexample. �

7. The bilinear Hilbert transform and the method of rotations

It is a classical result obtained by Caldeŕon and Zygmund [4] using the method of
rotations, that homogeneous linear singular integrals with odd kernels are always Lp

bounded for 1 < p < ∞. We indicate what happens if the method of rotations is
used in the multilinear setting. For an integrable function Ω on S2n−1 with vanishing
integral, we consider the bilinear operator

(37) TΩ(f1, f2)(x) =

∫∫
R2n

Ω((y1, y2)/|(y1, y2)|)
|(y1, y2)|2n

f1(x− y1)f2(x− y2) dy1dy2 .

Suppose that Ω is an odd function on S2n−1. Using polar coordinates in R2n we
express

TΩ(f1, f2)(x) =

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

0

f1(x− tθ1)f2(x− tθ2)
dt

t

}
d(θ1, θ2).

Replacing (θ1, θ2) by −(θ1, θ2), changing variables, and using that Ω is odd we obtain

TΩ(f1, f2)(x) =

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

0

f1(x+ tθ1)f2(x+ tθ2)
dt

t

}
d(θ1, θ2)
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and averaging these identities we deduce that

TΩ(f1, f2)(x) =
1

2

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

−∞
f1(x− tθ1)f2(x− tθ2)

dt

t

}
d(θ1, θ2).

The method of rotations gives rise to the operator inside the curly brackets above
and one would like to know that this operator is bounded from a product of two
Lebesgue spaces into another Lebesgue space (and preferably) uniformly bounded in
θ1, θ2. Motivated by this calculation, for vectors u, v ∈ Rn we introduce the family
of operators

Hu,v(f1, f2)(x) = p.v.

∫ +∞

−∞
f1(x− tu)f2(x− tv)

dt

t

We call this operator the directional bilinear Hilbert transform (in the direction indi-
cated by the vector (u, v) in R2n). In the special case n = 1, we use the notation

Hα,β(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt)g(x− βt)dt

t

for the bilinear Hilbert transform defined for functions f, g on the line and x, α, β ∈ R.
We mention results concerning the boundedness of these operators. The operator

Hα,β was first shown to be bounded by Lacey and Thiele [30], [31] in the range

(38) 1 < p, q ≤ ∞ , 2/3 < r <∞ , 1/p+ 1/q = 1/r .

Uniform Lr bounds (in α, β) for Hα,β were obtained by Grafakos and Li [20] in the
local L2 case, (i.e the case when 2 < p, q, r′ < ∞) and extended by Li [33] in the
hexagonal region

(39) 1 < p, q, r <∞ ,
∣∣∣1
p
− 1

q

∣∣∣ < 1

2
,

∣∣∣1
p
− 1

r′

∣∣∣ < 1

2
,

∣∣∣1
q
− 1

r′

∣∣∣ < 1

2
.

We use an idea similar to that Calderón used to express the first commutator C1

as an average of the bilinear Hilbert transforms as in (2), to obtain new bounds
for a higher dimensional commutator introduced by Christ and Journé [5]. The n-
dimensional commutator is defined as

(40) C(n)
1 (f, a)(x) = p.v.

∫
Rn

K(x− y)

∫ 1

0

f(y)a((1− t)x+ ty) dt dy

where K(x) is a Calderón-Zygmund kernel in dimension n and f , a are functions on

Rn. Christ and Journé [5] proved that C(n)
1 is bounded from Lp(Rn) × L∞(Rn) to

Lp(Rn) for 1 < p < ∞. Here we discuss some off-diagonal bounds Lp × Lq → Lr,
whenever 1/p+ 1/q = 1/r and 1 < p, q, r <∞.

As the operator C(n)
1 (f, a) is n-dimensional, we will need to “transfer” Hα,β in

higher dimensions. To achieve this we use rotations. We have the following lemma:

Lemma 6. Suppose that K is kernel in R2n (which may be a distribution) and let
TK be the bilinear singular integral operator associated with K

TK(f, g)(x) =

∫∫
K(x− y, x− z)f(y)g(z) dy dz .
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Assume that TK is bounded from Lp(Rn)× Lq(Rn) → Lr(Rn) with norm ‖T‖ when
1/p + 1/q = 1/r. Let M be a n × n invertible matrix. Define a 2n × 2n invertible
matrix

M̃ =

(
M O
O M

)
,

where O is the zero n × n matrix. Then the operator TK◦fM is also bounded from
Lp(Rn)× Lq(Rn)→ Lr(Rn) with norm at most ‖T‖.

Proof. To prove the lemma we note that

TK◦fM(f, g)(x) = TK(f ◦M−1, g ◦M−1)(Mx)

from which it follows that

‖TK◦fM(f, g)‖Lr = (detM)−1/r‖TK(f ◦M−1, g ◦M−1)‖Lr
≤ (detM)−1/r‖T‖ ‖f ◦M−1‖Lp‖g ◦M−1‖Lq
= ‖T‖ (detM)−1/r‖T‖ ‖f‖Lp(detM)1/p‖g‖Lq(detM)1/p

= ‖T‖ ‖f‖Lp‖g‖Lq .
�

We apply Lemma 6 to the bilinear Hilbert transform. Let e1 = (1, 0, . . . , 0) be the
standard coordinate vector on Rn. We begin with the observation that the operator
Hαe1,βe1(f, g) defined for functions f, g on Rn is bounded from Lp(Rn) × Lq(Rn)
to Lr(Rn) for the same range of indices as the bilinear Hilbert transform. Indeed,
the operator Hαe1,βe1 can be viewed as the classical one-dimensional bilinear Hilbert
transform in the coordinate x1 followed by the identity operator in the remaining
coordinates x2, . . . , xn, where x = (x1, . . . , xn). By Lemma 6, for an invertible n× n
matrix M and x ∈ Rn we have

Hαe1,βe1(f ◦M−1, g ◦M−1)(Mx) = p.v.

∫ +∞

−∞
f(x− αtM−1e1)g(x− βtM−1e1)

dt

t

maps Lp(Rn)×Lq(Rn)→ Lr(Rn) with norm the same as the one-dimensional bilinear
Hilbert transform Hα,β whenever the indices p, q, r satisfy (38). If M is a rotation
(i.e. an orthogonal matrix), then M−1e1 can be any unit vector in Sn−1. We conclude
that the family of operators

Hαθ,βθ(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt θ)g(x− βt θ) dt

t
x ∈ Rn

is bounded from Lp(Rn)×Lq(Rn) to Lr(Rn) with a bound independent of θ ∈ Sn−1

whenever the indices p, q, r satisfy (38). This bound is also independent of α, β
whenever the indices p, q, r satisfy (39).

It remains to express the higher dimensional commutator C(n)
1 in terms of the

operators Hαθ,βθ. Here we make the assumption that K is an odd homogeneous
singular integral operator on Rn, such as a Riesz transform. For a fixed x ∈ Rn we
apply polar coordinates centered at x by writing y = x − rθ. Then we can express
the higher dimensional commutator in (40) as
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(41)

∫
Sn−1

∫ ∞
0

K(θ)

rn

∫ 1

0

f(x− rθ)a(x− trθ) dt rn−1 dr dθ .

Changing variables from θ → −θ, r → −r and using that K(θ) is odd we write this
expression as

(42)

∫
Sn−1

∫ 0

−∞
K(θ)

∫ 1

0

f(x− rθ)a(x− trθ) dt dr
r
dθ .

Averaging the (41) and (41) we arrive at the identity

C(n)
1 (f, a)(x) =

1

2

∫
Sn−1

K(θ)

∫ 1

0

Hθ,tθ(f, a)(x) dt dθ .

This identity implies the boundedness of C(n)
1 from Lp(Rn)×Lq(Rn) to Lr(Rn) when-

ever the indices p, q, r satisfy (39). Interpolation with the known Lp × L∞ → Lp

bounds yield the following result due to Duong, Grafakos, and Yan [15]:

Theorem 8. ([15]) Let K be an odd homogeneous singular integral on Rn. Then the

n-dimensional commutator C(n)
1 associated with K maps Lp(Rn)×Lq(Rn)→ Lr(Rn)

whenever 1/p+ 1/q = 1/r and (1/p, 1/q, 1/r) lies in the open convex hull of the pen-
tagon with vertices (0, 1/2, 1/2), (0, 0, 0), (1, 0, 1), (1/2, 1/2, 1), and (1/6, 4/6, 5/6).

Finally, we briefly discuss the situation in which the function Ω in (37) is even.
The following result was recently obtained by Diestel, Grafakos, Honźık, Si, and
Terwilleger [12]:

Theorem 9. Let Ω ∈ L logL(S1) be an even function with mean zero. Then the
bilinear operator TΩ defined in (37) is bounded from Lp(R)×Lq(R)→ Lr(R) for all
2 < p, q, r′ <∞ satisfying 1/p+ 1/q = 1/r.

The proof of this result also relies on expressing the operator TΩ as an average of
the operators Hα,β. The details are omitted.

8. Closing Remarks

The topics discussed in these lectures by no means exhaust the full richness and
broadness of multilinear harmonic analysis. However, they provide representative
results of current research interests in this rapidly developing subject. I hope that
investigators will find inspiration in these results to pursue further research in the
area. The author would also like to thank the organizers of School on Nonlinear
Analysis, Function Spaces and Applications 9 for their invitation to deliver these
lectures and for providing an inspiring environment for mathematical interaction and
research during the meeting.
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