
TWO COUNTEREXAMPLES IN THE THEORY OF SINGULAR
INTEGRALS

LOUKAS GRAFAKOS

Abstract. In these lectures we discuss examples that are relevant to two questions in
the theory of singular integrals. The first question is the Lp boundedness of the maximal
operator formed by dilates of Mikhlin-Hörmander multipliers, while the second concerns
the Lp boundedness of a well-known object, the classical L2-bounded Calderón-Zygmund
homogeneous singular integral associated with an integrable function on the sphere that
is very rough.

1. Introduction

We denote the Fourier transform of a complex-valued function f(t) on Rd by

f̂(τ) =
∫
Rd

f(t)e−2πiτ ·tdt

and its inverse Fourier transform by f∨(τ) = f̂(−τ). Many linear operators can be expressed
in terms of their action on the Fourier transform of the input function. In particular,
convolution operators are identified by operators given by multiplication on the Fourier
transform, i.e. operators of the form Tm(f) = (f̂m)∨. Here we will always be interested
in L2-bounded convolution operators for which the corresponding multiplying functions
m (called the Fourier multipliers) must be essentially bounded functions. The Fourier
multiplier associated in this way with an operator bounded on Lp(Rd) is called an Lp Fourier
multiplier. The space of all Lp Fourier multipliers on Rd will be denoted by Mp(Rd). This
is a Banach space (in fact algebra) with norm ‖m‖Mp = ‖Tm‖Lp→Lp .

The classical Mikhlin multiplier theorem [13] states that if a function m(ξ) on Rd satisfies

(1.1) |∂α
ξ m(ξ)| ≤ Cα|ξ|−|α|

for all multiindices α with |α| ≤ [d
2 ] + 1, then it must be an Lp Fourier multiplier for all

1 < p < ∞. This theorem was extended by Hörmander [12] to functions m satisfying the
weaker condition

(1.2) sup
k∈Z

‖ϕ(ξ)m(2kξ)‖L2
β(dξ) <∞

for some β > d/2. Here ϕ is a smooth nonzero bump supported in the annulus 1 < |ξ| < 2
not vanishing on a smaller annulus and L2

β is the Sobolev space of functions with “β
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derivatives” in L2. The space L2
β is one of the Sobolev spaces Lp

γ with norm

‖f‖Lp
γ

=
∥∥(
f̂(ξ)(1 + |ξ|2)γ/2

)∨∥∥
Lp(dξ)

,

where 1 ≤ p < ∞ and γ ∈ R. We remark that in Hörmader’s version of this multiplier
theorem the Sobolev space L2

β in (1.2) can be replaced by Lr
γ , where γ > d/r and 1 ≤ r ≤ 2;

however the least restrictive condition is when r = 2.
By duality an Lp Fourier multiplier must always be an Lp′ Fourier multiplier (where

p′ = p/(p − 1)) and hence by interpolation it must be an Lq Fourier multiplier for all q
between p and p′. Finding examples of functions that are Lq Fourier multipliers for some
q > 2 but not Ls Fourier multipliers for some s > q may not be an easy task. A question
of this sort will be addressed in section 5.

In the next section we will discuss a problem concerning the Lp boundedness of the
supremum of a family of Mikhlin-Hörmander Fourier multipliers.

2. Maximal Mikhlin-Hörmander Fourier multipliers

Suppose that we are given a bounded function on Rd that satisfies condition (1.1) (or
even (1.2)). The question that we would like to address is whether the maximal operator

Mm(f)(x) = sup
t>0

∣∣(f̂(ξ)m(tξ))∨(x)
∣∣

is bounded from Lp(Rd) into itself.
This question is motivated by the almost everywhere convergence questions

(f̂(ξ)m(tξ))∨(x) → m(0) f(x) for almost all x as t→ 0

(f̂(ξ)m(tξ))∨(x) → m(∞) f(x) for almost all x as t→∞ ,

provided, of course, the quantities m(0) and m(∞) exist.
We recall that in the usual proof of the Mikhlin-Hörmander multiplier theorem one

obtains a weak type (1, 1) estimate using the trivial L2 estimate and a smoothing condition
on the kernel. Then the boundedness for the remaining p’s follows by interpolation and
duality.

By changing our point of view, we may consider Mm as a linear map from

(2.3) Lp(Rd) → Lp(Rd, L∞(R+)

and we may ask whether the classical scalar argument argument based on the weak type
(1, 1) estimate holds in this setting. In the context of the vector-valued setting described
in (2.3) the corresponding multiplier satisfies Mikhlin’s condition but for the weak type
(1, 1) argument to go through one needs to know an initial estimate at a single exponent.
In the scalar case, one uses Plancherel’s theorem to obtain the L2 estimate for free but in
the vector-valued case the L2(Rd, L∞(R+)) estimate cannot be obtained using Plancherel’s
theorem, in fact as we will shortly see, it may fail.

The underlying problem here is that the Banach space L∞ is not a UMD space and for
this reason many analogues of some of the scalar results in the theory of singular integrals
do not hold in the Banach-valued setting.

Theorem 1. (M. Christ, L. Grafakos, P. Honźık, and A. Seeger [4]) There exists a bounded
function m such that for all multiindices α there are constants Cα such that

sup
ξ

sup
k
|∂α

ξ (ϕ(ξ)m(2kξ))| ≤ Cα ,
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hence m is an Lp Fourier multiplier for all 1 < p <∞, but Mm is unbounded on Lp(Rd).

We discuss some of the ideas of the proof of this result.

Proof. Let S = {1,−1, i,−i}. Enumerate the set of all sequences of length N formed by
elements of S as follows: SN = {s1, s2, . . . , s4N }. Let Φ be a smooth function supported in
6
8 ≤ |ξ| ≤

10
8 satisfying Φ = 1 on 7

8 ≤ |ξ| ≤
9
8 . Define for N ≥ 10

mN (ξ) =
4N∑
`=1

N∑
ν=1

s`(ν)Φ(2−N`2−ν ξ)

and also

m(ξ) =
∞∑

N=1

mN (2−N8N
ξ) .

It is straightforward that for all multiindices α there are constants Cα so that

|∂αm(ξ)| ≤ Cα|ξ|−|α|

and it is also easy to check that for any k0 ∈ Z we have

|∂α(m(2k0ξ)ϕ(ξ))| ≤ Cα .

Pick ψ with Fourier transform supported in B(0, 1/8) with ‖ψ‖Lp = 1. Let

gN (x) =
N∑

j=1

e2πi2jx1ψ(x)

and note that

ĝN (ξ) =
N∑

j=1

ψ̂(ξ − 2j(1, 0, 0, . . . , 0)) .

Also let
fN,p(x) = N− 1

2 (2N8N
)

d
p gN (2N8N

x)
and notice that in view of the Littlewood-Paley Theorem (see [8]) we have that

‖gN‖Lp ≈ N1/2

while
‖fN,p‖Lp ≈ Cp .

The main ingredient we need is the following lower estimate whose proof we postpone
momentarily:

(2.4)
∥∥ sup

1≤k≤N4N

∣∣(mN (2kξ)ĝN (ξ))∨
∥∥

Lp ≥ cN .

This implies that
‖Mm(fN,p)‖Lp ≥ c

√
N = c

√
N ‖fN,p‖Lp .

The reason for this is that m(ξ) =
∑∞

n=1mn(2−n8n
ξ) and

mn(2−n8n
2kξ)f̂N,p(ξ) = mn(2−n8n

2kξ)ĝN (2−N8N
ξ) = 0

for all 1 ≤ k ≤ N4N unless n 6= N .
It remains to prove (2.4). We observe that

sup
c∈{1,−,1,i,−i}

Re(c z) ≥ |z|/
√

2 .
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Thus for all x ∈ Rd and all j ∈ {1, 2, . . . , N} there is a cj(x) ∈ {1,−, 1, i,−i} such that

Re
[
cj(x) e2πi2jx1ψ(x)

]
≥ |ψ(x)|/

√
2 .

Therefore there is a κx ∈ {1, 2, . . . , 4N} such that

sκx = (c1(x), c2(x), . . . , cN (x)) .

We then have

sup
1≤k≤N4N

|(mN (2kξ)ĝN (ξ))∨(x)|

≥ Re
[ ∫

Rd

4N∑
`=1

N∑
ν=1

s`(ν)Φ(2−N`−ν2Nκxξ)
N∑

j=1

ψ̂(ξ − 2je1)e2πix·ξdξ

]
,

as easily follows by taking k = Nκx.
Our choice of exponents makes the previous expression inside the the square brackets

zero unless ` = κx and j = ν. Also Φ = 1 on support(ψ̂) and hence this expression is at
least

N∑
j=1

Re
[
skx(j)(ψ̂(ξ − 2j))∨(x)

]
≥ N |ψ(x)|/

√
2

which proves (2.4).
�

3. A positive result related to the previous counterexample

We recall the main observation in the previous section which can be rephrased as follows:

(3.5)
∥∥ sup

1≤k≤N4N

∣∣(mN (2kξ)ĝN (ξ))∨
∣∣ ∥∥

Lp ≥ c
√
N ‖gN‖Lp .

Replacing N4N by N we see that the supremum of a family of N Mikhlin-Hörmander
multipliers has operator norm on Lp at least as big as a constant multiple of (logN )

1
2 .

The question we would like to address is whether this lower estimate is sharp. We
precisely formulate our question.
Question: Suppose that mj, 1 ≤ j ≤ N , are Mikhlin multipliers satisfying

|∂αmj(ξ)| ≤ Cα|ξ|−|α| ,

uniformly in j for all |α| ≤ [d
2 ] + 1. What is the growth as N →∞ of the smallest constant

A(N) such that ∥∥∥ sup
1≤j≤N

∣∣(mj f̂ )∨
∣∣∥∥∥

Lp(Rd)
≤ A(N)‖f‖Lp(Rd)

holds for all f?
The counterexample in the previous section shows that for N ≥ 10 we have

A(N) ≥ c
√

logN

and we would like to know if the converse inequality also holds for some other constant c′.
The following theorem answers this question.
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Theorem 2. (L. Grafakos, P. Honzik, and A. Seeger [9]) Let 1 < r < 2 and suppose

sup
1≤j≤N

|∂αmj(ξ)| |ξ||α| ≤ B

for all |α| ≤ [d2 ] + 1. Then for any 1 < p < ∞ there is a constant Cd,p such that for all
N ≥ 10 we have ∥∥∥ sup

1≤j≤N

∣∣(mj f̂ )∨
∣∣∥∥∥

Lp(Rd)
≤ Cd,pB

√
logN ‖f‖Lp(Rd) .

Therefore for N ≥ 10 we have that

A(N) ≤ c′
√

logN

and this shows that A(N) grows indeed like the square root of the logarithm of N as
N →∞.

We will outline a proof of this theorem in the next section, but before we do so, it will be
illuminating to discuss a model case that contains the core idea and forms the basic outline
of the proof in the general case. The model case comes from the theory of Rademacher
multipliers. Let us recall the Rademacher functions defined on the interval [0, 1] as follows:

r0(t) = 1
r1(t) = χ[0,1/2] − χ[1/2,1]

r2(t) = χ[0,1/4] − χ[1/4,1/2] + χ[1/2,3/4] − χ[3/4,1]

etc. The inspiration comes by studying the growth in N of the Lp norms of simple-looking
maximal functions of the form

sup
1≤k≤N

∣∣ ∑
j

ak
j rj

∣∣ ,
where ak

j is a fixed matrix and rj is the j-th Rademacher function. Let us denote the
sequence (ak

j )j by ak.
It turns out that

(3.6)
∥∥∥ sup

1≤i≤N

∣∣ ∑
j

ak
j rj

∣∣∥∥∥
L2([0,1])

≤ C(N) sup
1≤k≤N

‖ak‖`2([0,1])

where C(N) grows like
√

logN as N →∞.
To see this we set Fk =

∑
j a

k
j rj . One has the following exponential decay of sums of

Rademacher functions (see [15], [8])

(3.7)
∣∣{s ∈ [0, 1] : |Fk(s)| > λ}

∣∣ ≤ 2 e−λ2/4‖ak‖2
`2 .

Then for N ≥ 10 we have∥∥∥ sup
1≤k≤N

|Fk|
∥∥∥2

L2([0,1])
=

∫ ∞

0
λ
∣∣{s ∈ [0, 1] : sup

k
|Fk(s)| > λ}

∣∣ dλ
=

∫ uN

0
. . . dλ+

∫ ∞

uN

. . . dλ

≤
∫ uN

0
λ dλ+

∫ ∞

uN

N∑
k=1

λ|{s ∈ [0, 1] : |Fk(s)| > λ}| dλ .
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We now use (3.7) and calculate the integrals in question. We obtain∥∥∥ sup
1≤k≤N

|Fk|
∥∥∥2

L2([0,1])
≤ 1

2
u2

N +
N∑

k=1

∫ ∞

uN

2λ e−λ2/4‖ak‖2
`2dλ

≤ 1
2
u2

N + 2N e−u2
N/4 sup

1≤k≤N
‖ak‖2`2

≤ c logN sup
1≤k≤N

‖ak‖2`2 ,

using the optimal choice of

uN =
√

4 logN sup
1≤k≤N

‖ak‖`2 .

This proves (3.6).

4. the general case

We now adapt the idea of the previous section to prove Theorem 2.

Proof. Let Dk be the dyadic cubes in Rd of sidelength 2−k. We recall the dyadic averaging
operator Ek, the martingale difference operator Ek, and the martingale square function
S(f) associated with the family of dyadic cubes:

Ek(f) =
∑

Q∈Dk

χQ
1
|Q|

∫
Q
f(t) dt ,

Dk(f) = Ek+1(f)− Ek(f) ,

S(f) =
(∑

k

|Dk(f)|2
)1/2

,

The key element in the proof is the Chang-Wilson-Wolff inequality [3] :∣∣{x ∈ Rd : sup
k≥0

|Ek(g)− E0(g)| > 2λ , S(g) < ελ}
∣∣ ≤ Cd e

− cd
ε2

∣∣{x ∈ Rd : sup
k
|Ek(g)| > λ}|

which is valid for all functions g, all λ > 0, ε ∈ (0, 1), and for some fixed constants Cd, cd
(both depending on d).

Recall that we denote by Tm the operator f → (f̂m)∨. Start with∥∥∥ sup
1≤k≤N

|Tmk
(f)|

∥∥∥
Lp

=
(
p 4p

∫ ∞

0
λp−1|{sup

k
|Tmk

(f)| > 4λ}| dλ
)1

p

and control the measure of the set that appears in the previous line by the sum of three
terms:

|{sup
k
|Tmk

(f)| > 4λ}| ≤ Iλ + IIλ + IIIλ ,

where

Iλ = |{sup
k
|Tmk

(f)− E0(Tmk
(f))| > 2λ , Gp(f) < εNλ/(AB)}| ,

IIλ = |{Gp(f) > εNλ/(AB)}| ,
IIIλ = |{sup

k
|E0(Tmk

(f))| > 2λ}| .
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Here A is a constant and f → Gp(f) is an Lp bounded maximal operator which controls
the square function applied to each Tmk

, precisely it satisfies:

S(Tmk
(f)) ≤ A

(
sup

ξ
sup

|α|≤[ d
2
]+1

|ξ||α||∂α
ξ mk(ξ)|

)
Gp(f) ≤ ABGp(f)

for all Schwartz functions f . (For a precise definition of Gp, see [9].)
To estimate

(4.8)
(
p 4p

∫ ∞

0
λp−1 Iλ dλ

)1
p

we use the Chang Wilson Wolff theorem to write

Iλ ≤ |{sup
k
|Tmk

(f)− E0(Tmk
(f))| > 2λ , Gp(f) < εNλ/(AB)}|

≤
N∑

k=1

|{|Tmk
(f)− E0(Tmk

(f))| > 2λ , Gp(f) < εNλ/(AB)}|

≤
N∑

k=1

|{|Tmk
(f)− E0(Tmk

(f))| > 2λ , S(Tmk
(f)) < εNλ}|

≤
N∑

k=1

Cd e
−cd/ε2

N |{sup
l
|El(Tmk

(f))| > λ}| .

Insert this estimate in (4.8) to obtain(
p 4p

∫ ∞

0
λp−1 Iλ dλ

)1
p ≤ Cd

( N∑
k=1

e−cd/ε2
N ‖ sup

l
|El(Tmk

(f))|‖p
Lp

) 1
p

≤ c′B
[
Ne−cd/ε2

N
] 1

p ≈ B

provided we choose εN = c′′/
√

logN . Here we used that the maximal operator

g → sup
l
|El(g)|

is controlled by the Hardy-Littlewood maximal function and is therefore Lp bounded for
all 1 < p <∞, while all Tmk

are Lp bounded with norm at most a multiple of B.
Next we turn our attention to the corresponding integral for term IIλ(

p 4p

∫ ∞

0
λp−1 IIλdλ

)1
p
.

Using that
IIλ = |{Gp(f) > (εN/AB)λ}|,

where Gp is Lp bounded, we deduce that(
p 4p

∫ ∞

0
λp−1 IIλ dλ

)1
p ≤ C

BAr

εN
‖Gp(f)‖Lp ≤ Cp

B

εN
‖f‖Lp .

This last expression is equal to
C ′

rB
√

logN ‖f‖Lp

since εN was chosen to be c′′/
√

logN .
Finally we need to control

(4.9)
(
p 4p

∫ ∞

0
λp−1 IIIλdλ

)1
p
.
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It turns out that for any 1 < r < p one has an estimate (see [9])

(4.10) |E0(Tmk
(f))| ≤ Cr B 2−

N
r (MMM(|f |r))

1
r

whenever mk(ξ) = 0 on |ξ| ≤ 2N (M is the Hardy-Littlewood maximal operator). This
assumption can be made on each multiplier mk, k = 1, . . . , N as follows: working with f

such that f̂ is compactly supported, we may assume that the multipliers mk are supported
in a finite union of dyadic annuli, which, by changing scales, may assume that do not
intersect the ball |ξ| ≤ 2N .

Insert estimate (4.10) in (4.9) to obtain(
p 4p

∫ ∞

0
λp−1 IIIλ dλ

)1
p ≤

( N∑
k=1

∥∥E0(Tmk
(f))

∥∥p

Lp

)1
p ≤ BN

1
p 2−

N
r ‖f‖Lp

which is trivially controlled by B
√

logN ‖f‖Lp . �

5. A problem involving homogeneous singular integrals

Mihklin-Hörmander multipliers correspond to kernels K(y) on Rd that are singular at
the origin, satisfy an estimate |K(y)| ≤ C|y|−d for some C <∞ and all y 6= 0, and possess
a certain amount of smoothness. This smoothness suffices to guarantee the boundedness
on all Lp(Rd) (1 < p < ∞) for the corresponding Fourier multiplier operator (given by
convolution with K) as well as its weak type (1, 1) property.

In this section, we study a problem concerning Fourier multipliers given by convolution
with kernels that are homogeneous of degree −d on Rd. Such kernels are determined by
their restriction on the unit sphere Sd−1. Let K be such a kernel and let Ω be its restriction
on Sd−1. One may check that the function Ω(y/|y|)|y|−d, y 6= 0 coincides with a principal
value distribution on Rd if and only if Ω has mean value zero on the sphere. Only in this
case one can make sense of convolution with K.

Let therefore Ω be an integrable function on Sd−1 with mean value zero. We will be
considering Calderón-Zygmund singular integrals of the form

(5.11) TΩ(f)(x) = f ∗ p.v.
Ω(x/|x|)
|x|d

= lim
ε→0

∫
|y|>ε

f(x− y)
Ω(y/|y|)
|y|d

dy ,

where f is a Schwartz function on Rd. This type of singular integrals were introduced by
Calderón and Zygmund in [1].

If Ω is odd then the method of rotations (see [2]) gives

(5.12) TΩ(f)(x) =
π

2

∫
Sd−1

Hθ(f)(x) Ω(θ) dθ ,

where Hθ is the directional Hilbert transform

Hθ(f)(x) = lim
ε→0

1
π

∫
|t|>ε

f(x− tθ)
dt

t
.

A simple argument using change of variables yields that the operator Hθ is bounded on Lp

exactly when H(1,0,...,0) is; the latter is the Hilbert transform in the first variable and the
identity operator in the remaining variables and hence it is trivially bounded on Lp(Rd)
(and is of weak type (1, 1).)
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Thus the boundedness of TΩ on Lp(Rd) for Ω odd is an easy consequence of (5.12) and
of the boundedness of Hθ on Lp(Rd) (which is uniform in θ). We point out that, as of this
writing, the weak type (1, 1) boundedness of TΩ for Ω odd, remains an open question.

The problem of the Lp boundedness of TΩ is therefore interesting for Ω even. We begin
our discussion by recalling the results of Calderón and Zygmund [2] who showed that if Ω
lies in the space L logL(Sd−1), then TΩ is bounded on Lp(Rd) for all 1 < p <∞. The more
delicate issue of the weak type (1, 1) property of TΩ was shown much later by Christ and
Rubio de Francia [5] (for d ≤ 7, published only the case d = 2) and Seeger [14] for all d.

We note that M. Weiss and A. Zygmund [16] have constructed examples of even func-
tions Ω in L1(Sd−1) such that TΩ is unbounded on L2 (even when restricted to continuous
functions) and therefore on all other Lp. For an operator to be bounded on L2(Rd) a
certain condition on Ω is required. A calculation using the Fourier transform gives that the
multiplier corresponding to the kernel Ω(y/|y|)|y|−d is the function

ξ →
∫
Sd−1

Ω(θ) log
1

|ξ · θ|
dθ .

Therefore we have the equivalence

essup
|ξ|=1

∣∣∣∣ ∫
Sd−1

Ω(θ) log
1

|ξ · θ|
dθ

∣∣∣∣ < +∞ ⇐⇒ TΩ : L2 → L2

and hence condition

(5.13) essup
|ξ|=1

∫
Sd−1

|Ω(θ)| log
1

|ξ · θ|
dθ < +∞

implies the L2 boundedness of TΩ.
Since condition (5.13) arises naturally, it is reasonable to ask whether it implies the

boundedness of TΩ on Lp for some (or all) p 6= 2, The underlying question here is whether
the p-independence boundedness property in Calderón-Zygmund theory holds for rough
kernels.

This question was answered in the negative by P. Honźık and D. Ryabogin, in collabo-
ration with the author, who constructed an example of an even function Ω on Sd−1 such
that the corresponding operator TΩ is bounded on Lp exactly when p = 2.

In fact these authors have obtained the following sharper result:

Theorem 3. (L. Grafakos, P. Honźık, D. Ryabogin [10]): Let 0 ≤ α < 1
2 . Then there

exists Ω ∈ L1(Sd−1) with mean value zero such that

essup
|ξ|=1

∫
Sd−1

|Ω(θ)| log1+α 1
|ξ · θ|

dθ < +∞

but TΩ is unbounded on Lp(Rd) for all∣∣1
p
− 1

2

∣∣ > α .

Taking α = 0 yields the previous case.

6. The second counterexample

In this section we discuss the counterexample of Theorem 3. In the proof we restrict
our attention to the case d = 2 and we note that higher dimensional examples can be
constructed using the two-dimensional example.
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LetMp(Z) be the space of multipliers on Lp([0, 1]), i.e. the space of all bounded sequences
(bm)m∈Z such that the linear operator

(6.14) h(x) →
∑
m∈Z

bm

( ∫ 1

0
h(t)e−2πimtdt

)
e2πimx

maps 1-periodic functions h in Lp([0, 1]) to functions in Lp([0, 1]). The Mp(Z) norm of the
sequence (bm)m is then the norm of the operator in (6.14) on Lp([0, 1]).

...

...

      n

..x x1 n

.
.

A

A1

n

j

length

of arcs

= (10n)

I I1 n

length of 

arcs A

= L

      -1

Figure 1. The points x1, . . . , xn lie on a straight line perpendicular to the
vertical coordinate axis. The arcs Aj lie in the first quadrant of the unit
circle and have length Ln, a quantity to be determined. The cones Ij lie in
the second quadrant and they meet the unit circle on arcs of length (10n)−1

centered at the points xj/|xj |. The centers of the arcs Aj and the points
xj/|xj | form an angle of size π/2.

The basis {e2πikx}∞k=−∞ of Lp([0, 1]), p 6= 2, is not unconditional. This means that for
all n = 1, 2, . . . there exist complex sequences an

k and |εnk | ≤ 1 such that

(6.15)
∥∥∥ n∑

k=1

εnka
n
ke

2πikx
∥∥∥

Lp[0,1]
≥ cp n

| 1
2
− 1

p
|
∥∥∥ n∑

k=1

an
ke

2πikx
∥∥∥

Lp[0,1]
,

for some constant cp. To see this we consider the sequence of an
k = 1 for all k for which the

Lp norm if calculated explicitly and gives ≈ n1−1/p and a random sequence of ±1’s, which
by the Khintchine’s inequality gives the constant

√
n.

Rephrased in the language of multipliers, estimate (6.15) is saying that for some constant
c′p we have

‖(..., 0, ..., 0, εn1 , εn2 , ..., εnn, 0, ...)‖Mp(Z) ≥ c′pn
| 1
2
− 1

p
|
.
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We may choose the sequence {εnk}n
k=1 to be “maximal” in the sense that its Mp norm is the

supremum of the Mp norms of all other sequences of `∞ norm 1 that satisfy (6.15) for the
choice of an

k .
We now define

m(ω)(ξ) =
∫
Sd−1

ω(θ) log
1

|ξ · θ|
dθ

and we also define a similar quantity

mα(ω)(ξ) =
∫
Sd−1

|ω(θ)| log1+α 1
|ξ · θ|

dθ ,

while for each integer n we define a even function

Ωn =
n∑

k=1

εnk C(n)
3∑

j=0

(−1)jχAk rotated by jπ
2︸ ︷︷ ︸

ωn
k

,

where Ak are the arcs of Figure 1. Here C(n) is a constant chosen so that

mα(ωn
k )(xk/|xk|) = 1/2

for all k. Finally we denote by D(n) the constant

D(n) = m(ωn
k )(xk/|xk|) .

It is not difficult to check that

C(n) ≈ L−1
n | logLn|−1−α

D(n) ≈ | logLn|−α.

while for all x /∈
⋃3

j=0(I
k rotated by jπ

2 ) ∩ S1 we have

|m(ωn
k )(x)| . (log n)| logLn|−1−α

mα(ωn
k )(x) . (log n)1+α| logLn|−1−α .

It follows from these estimates that

(6.16)
∥∥Ωn

∥∥
L1(S1)

. n (log n) | logLn|−1 .

On the other hand we have

m(Ωn)(xk) = D(n) εnk +
∑

1≤i6=k≤n

εni m(ωεn
i )(xk) = D(n)εnk + on

k ,

where on
k is an error term which satisfies

|on
k | ≤ D(n)/4

provided
n4n . L−1

n .

We now take a look at certain multiplier norms. Using a deLeeuw type argument [6] we
can restrict the Mp(R2) norm of a multiplier to its values at the points (xk)k which lie on
a line parallel to the horizontal coordinate axis and we can thus estimate from below the
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Mp(R2) norm of the multiplier by the Mp(Z) norm of the sequence of the first coordinates
of its values at the points (xk)k. This way we obtain

‖m(Ωn)‖Mp(R2) ≥ cp‖(.., 0,m(Ωn)(x1), ...,m(Ωn)(xn), 0, ...)‖Mp(Z)

≥ cpD(n)
[
‖(..., 0, εn1 , ..., εnn, 0, ...)‖Mp(Z) −

1
D(n)

‖(..., 0, on
1 , ..., o

n
n, 0, ...)‖Mp(Z)

]
≥ 1

2
cpD(n) ‖(..., 0, εn1 , ..., εnn, 0, ...)‖Mp(Z) ,

since the inequality
1

D(n)

∥∥∥(..., 0, on
1 , ..., o

n
n, 0, ...)

∥∥∥
Mp(Z)

>
1
2

∥∥(..., 0, εn1 , ..., ε
n
n, 0, ...)

∥∥
Mp(Z)

would contradict the “maximal” choice of (εnk)n
k=1.

We now recall that ∥∥(..., 0, εn1 , ..., ε
n
n, 0, ...)

∥∥
Mp(Z)

≥ c′p n
| 1
2
− 1

p
|
,

which implies that

‖m(Ωn)‖Mp(R2) ≥ c′D(n)n|
1
2
− 1

p
| ≈ | logLn|−αn

| 1
2
− 1

p
|
.

We finally choose the Ln’s. We had the restriction

n4n ≤ L−1
n

while the need to make the expression on the right in equation (6.16) equal to a constant
forces us to choose

| logLn| ≈ n log n .
With this choice of Ln and all the facts we have accumulated so far we have

‖TΩn‖Lp→Lp = ‖m(Ωn)‖Mp(R2)

≥ c′| logLn|−αn
| 1
2
− 1

p
|

≈ (log n)−αn
| 1
2
− 1

p
|−α

.

We have now constructed a sequence of even integrable functions Ωn with L1 norm at
most a constant such that

‖TΩn‖Lp→Lp →∞
when |12 −

1
p | > α.

To complete the proof we need some functional analysis. Let Bα the Banach space of all
even integrable functions Ω on S1 with mean value zero with norm

‖Ω‖Bα ≡ ‖Ω‖L1(S1) + ‖mα(Ω)‖L∞(S1) <∞.

Consider the family of linear maps

Ω → TΩ(f) : Bα → Lp(R2)

indexed by the set
U = {f ∈ Lp(R2) : ‖f‖Lp = 1}.

If no claimed Ω existed, then for all Ω ∈ Bα we would have

sup
f∈U

‖TΩ(f)‖Lp ≤ C(Ω) <∞ .
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The uniform boundedness principle implies the existence of a constant K <∞ such that

‖TΩ‖Lp→Lp = sup
f∈U

‖TΩ(f)‖Lp ≤ K ‖Ω‖Bα

for all Ω ∈ Bα. But this contradicts the construction of Ωn’s for |12 −
1
p | > α.

7. conditions that distinguish between p’s

Theorem 3 suggests that one should look for conditions on Ω that distinguish bounded-
ness on Lp(Rd) for different values of p’s.

A natural condition that one should introduce in the study of this problem is the follow-
ing:

CL(α) essup
|ξ|=1

∫
Sd−1

|Ω(θ)| log1+α 1
|ξ · θ|

dθ < +∞

A result of Stefanov and the author [11] says that CL(α) implies the Lp boundedness of
TΩ whenever ∣∣∣∣1p − 1

2

∣∣∣∣ < α

2(2 + α)
.

This restriction was weakened by Fan, Guo, Pan [7] to∣∣∣∣1p − 1
2

∣∣∣∣ < α

2(1 + α)
.

Since α > α/(2(α + 1)), it remains an open question to find out if Lp boundedness holds
for values of p in between. We pose therefore the following question:

(a) Assume that CL(α) holds for some α < 1/2. Does it follow that

TΩ : Lp → Lp

whenever

α ≥
∣∣∣∣1p − 1

2

∣∣∣∣ ≥ α

2(α+ 1)
?

For α ≥ 1/2 the counterexample does not work and one may guess that in this case TΩ

is bounded on Lp for the whole range
(b) Assume that CL(α) holds for some α ≥ 1/2. Does it follow that

TΩ : Lp → Lp

for all 1 < p <∞?
The author would like to thank the organizers of the meeting in Sapporo for their hospi-

tality and for the inspiring mathematical atmosphere they created during the conference.

References

[1] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952),
85–139.

[2] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.
[3] S. Y. A. Chang, M. Wilson, and T. Wolff. Some weighted norm inequalities concerning the Schrödinger

operator, Comment. Math. Helv. 60 (1985), 217–246.
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