A REMARK ON AN ENDPOINT KATO-PONCE INEQUALITY

LOUKAS GRAFAKOS, DIEGO MALDONADO, AND VIRGINIA NAIBO

Abstract

This note introduces bilinear estimates intended as a step towards an L^{∞}-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.

1. Introduction and main result

The following inequality appears to be missing from the vast literature on a class of inequalities known as Kato-Ponce inequalities or fractional Leibniz rules: For every $s>0$ there exists $C>0$, depending only on s and dimension n, such that

$$
\begin{equation*}
\left\|D^{s}(f g)\right\|_{L^{\infty}} \leq C\left(\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}}+\left\|D^{s} g\right\|_{L^{\infty}}\|f\|_{L^{\infty}}\right), \quad \text { for all } f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

where D^{s} is the s-derivative operator* defined for $h \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ as

$$
\widehat{D^{s} h}(\xi):=|\xi|^{s} \hat{h}(\xi), \quad \forall \xi \in \mathbb{R}^{n}
$$

Inequality (1.1) represents an endpoint case of inequalities of Kato-Ponce type (see $[1,3,4,5,6,8,9,10,11]$ and references therein) and we do not know whether it holds true or not. Moreover, the fact that for any $s>0$ and any $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, both sides of (1.1) are finite, makes it quite difficult to find a counter-example to (1.1). Such counter-example should violate the structure of the right-hand side of (1.1), but not the fact that the left-hand side is finite. As a step towards (1.1) the purpose of this note is to prove the following results

Theorem 1. Let $0 \leq r<s<t$ and set

$$
\begin{equation*}
\alpha:=\frac{t-s}{t-r} \quad \text { and } \quad \beta:=\frac{s-r}{t-r} \text {. } \tag{1.2}
\end{equation*}
$$

Then, for every $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{equation*}
\left\|D^{s}(f g)\right\|_{L^{\infty}} \lesssim\left\|D^{r} f\right\|_{\dot{B}_{\infty}^{0, \infty}}^{\alpha}\left\|D^{t} f\right\|_{\dot{B}_{\infty}^{0, \infty}}^{\beta}\|g\|_{L^{\infty}}+\|f\|_{L^{\infty}}\left\|D^{r} g\right\|_{\dot{B}_{\infty}^{0, \infty}}^{\alpha}\left\|D^{t} g\right\|_{\dot{B}_{\infty}^{0, \infty}}^{\beta} \tag{1.3}
\end{equation*}
$$

where the implicit constant depends only on r, s, t, and dimension n. In particular,

$$
\begin{equation*}
\left\|D^{s}(f g)\right\|_{L^{\infty}} \lesssim\left\|D^{r} f\right\|_{L^{\infty}}^{\alpha}\left\|D^{t} f\right\|_{L^{\infty}}^{\beta}\|g\|_{L^{\infty}}+\|f\|_{L^{\infty}}\left\|D^{r} g\right\|_{L^{\infty}}^{\alpha}\left\|D^{t} g\right\|_{L^{\infty}}^{\beta} . \tag{1.4}
\end{equation*}
$$

Date: December 9, 2013.
2010 Mathematics Subject Classification. Primary 42B20. Secondary 46E35.
Key words and phrases. Gagliardo-Nirenberg inequalities, Kato-Ponce inequalities, fractional Leibniz rules, bilinear paraproducts.

Third author partially supported by NSF under grant DMS 1101327.
*The notation D^{s} seems to be standard for this operator although other notations include $|D|^{s}$, $|\nabla|^{s}$ and $(-\Delta)^{\frac{s}{2}}$.

Remark 1. Inequality (1.4) can be regarded as a combination of Leibniz-rule and interpolation (or bilinear Gagliardo-Nirenberg) inequalities. Notice that (1.4) is weaker than (1.1). Indeed, given $0 \leq r<s<t$, by the linear Gagliardo-Nirenberg inequality (see, for instance, Theorem 2.44 in [2]), we have

$$
\begin{equation*}
\left\|D^{s} f\right\|_{L^{\infty}} \lesssim\left\|D^{r} f\right\|_{L^{\infty}}^{\frac{t-s}{t-r}}\left\|D^{t} f\right\|_{L^{\infty}}^{\frac{s-r}{t-r}}, \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{1.5}
\end{equation*}
$$

Then, it follows that (1.1), if true, would imply (1.4).
Theorem 2. Suppose $s>2 n+1$. Let $1<p_{1}, p_{2}<\infty$ and $\varepsilon>0$ with $n / p:=$ $\left(1 / p_{1}+1 / p_{2}\right) n<\varepsilon<1$. Then for every $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{aligned}
\left\|D^{s}(f g)\right\|_{L^{\infty}} & \lesssim\left\|D^{s} f\right\|_{L^{p_{1}}}^{1-\frac{n}{p \varepsilon}}\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}^{\frac{n}{p \varepsilon}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|D^{s} g\right\|_{L^{p_{2}}}^{1-\frac{n}{p \varepsilon}}\left\|D^{s+\varepsilon} g\right\|_{L^{p_{2}}}^{\frac{n}{p \varepsilon}} \\
& +\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}}+\|f\|_{L^{\infty}}\left\|D^{s} g\right\|_{L^{\infty}},
\end{aligned}
$$

where the implicit constant depends only on s, n, ε, p_{1}, and p_{2}.
Remark 2. In the case $s>2 n+1$, the proof of Theorem 2 will be based on a connection between Kato-Ponce inequalities and the bilinear Calderón-Zygmund theory, see Section 4. Notice that the inequality in Theorem 2 involves no derivatives lower than D^{s}. Also, $\varepsilon>0$ can be arbitrarily small and $p_{1}, p_{2} \in(1, \infty)$ arbitrarily large, as long as $\left(1 / p_{1}+1 / p_{2}\right) n<\varepsilon$.

2. Preliminaries

Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth, non-negative, radial function supported in $\{\xi \in$ $\left.\mathbb{R}^{n}:|\xi| \leq 2\right\}$ with $\Phi \equiv 1$ in $\left\{\xi \in \mathbb{R}^{n}:|\xi| \leq 1\right\}$. Define $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ supported in $1 / 2 \leq|\xi| \leq 2$ as $\Psi(\xi):=\Phi(\xi)-\Phi(2 \xi)$ for $\xi \in \mathbb{R}^{n}$, so that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} \Delta_{j} h=h \text { in } \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \quad \forall h \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{2.1}
\end{equation*}
$$

where, as usual, $\Delta_{j} h$ is defined for $h \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ as

$$
\widehat{\Delta_{j} h}(\xi):=\Psi\left(2^{-j} \xi\right) \widehat{h}(\xi) \quad \forall \xi \in \mathbb{R}^{n}
$$

We recall that the Besov $\dot{B}_{\infty}^{0, \infty}$-norm is given by

$$
\begin{equation*}
\|h\|_{\dot{B}_{\infty}^{0, \infty}}:=\sup _{j \in \mathbb{Z}}\left\|\Delta_{j} h\right\|_{L^{\infty}} \leq\|\widehat{\Psi}\|_{L^{1}}\|h\|_{L^{\infty}} . \tag{2.2}
\end{equation*}
$$

For $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\lambda>0$ set $f_{\lambda}(x):=f(\lambda x)$ for every $x \in \mathbb{R}^{n}$. For $s \geq 0$ we have

$$
\begin{equation*}
\left\|D^{s}\left(f_{\lambda}\right)\right\|_{\dot{B}_{\infty}^{0, \infty}}=\lambda^{s}\left\|D^{s} f\right\|_{\dot{B}_{\infty}^{0, \infty}} \quad \text { for all } \lambda=2^{j_{0}}, j_{0} \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

We note tha $\tilde{\Phi}(\xi+\eta) \Phi(\xi) \Psi(\eta)=\Phi(\xi) \Psi(\eta)$ for every $\xi, \eta \in \mathbb{R}^{n}$, where $\tilde{\Phi}(\cdot):=$ $\Phi\left(4^{-1} \cdot\right)$, and write $\Phi_{(s)}(\cdot):=|\cdot|^{s} \Phi(\cdot)$. Reasoning as in [6], the absolutely convergent Fourier series for $\Phi_{(s)}(t) \chi_{[-8,8]^{n}}(t)$,

$$
\begin{equation*}
\Phi_{(s)}(t)=\sum_{m \in \mathbb{Z}^{n}} c_{s, m} e^{\frac{2 \pi i}{16} m \cdot t} \chi_{[-8,8]^{n}}(t) \tag{2.4}
\end{equation*}
$$

has coefficients $c_{s, m}$ satisfying

$$
\begin{equation*}
c_{s, m}=O\left(1+|m|^{-n-s}\right) \tag{2.5}
\end{equation*}
$$

3. Proof of Theorem 1

Proof. Fix $0 \leq r<s<t$. By (2.1), we have

$$
D^{s}(f g)(x)=\int_{\mathbb{R}^{2 n}}|\xi+\eta|^{s} \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta=: \Pi(f, g)(x)+\tilde{\Pi}(f, g)(x)
$$

with

$$
\Pi(f, g)(x):=\int_{\mathbb{R}^{2 n}} \sum_{j \in \mathbb{Z}} \sum_{k \leq j}|\xi+\eta|^{s} \Psi\left(2^{-j} \xi\right) \Psi\left(2^{-k} \eta\right) \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta
$$

and

$$
\tilde{\Pi}(f, g)(x):=\int_{\mathbb{R}^{2 n}} \sum_{j \in \mathbb{Z}} \sum_{j<k}|\xi+\eta|^{s} \Psi\left(2^{-j} \xi\right) \Psi\left(2^{-k} \eta\right) \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta
$$

Now, we split $\Pi(f, g)$ (and then, similarly, $\tilde{\Pi}$) as follows

$$
\begin{aligned}
\Pi(f, g)(x) & =\int_{\mathbb{R}^{2 n}} \sum_{j \in \mathbb{Z}}|\xi+\eta|^{s} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta \\
& =\int_{\mathbb{R}^{2 n}} \sum_{j \leq 0}|\xi+\eta|^{s} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta \\
& +\int_{\mathbb{R}^{2 n}} \sum_{j>0}|\xi+\eta|^{s} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) \widehat{f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta \\
& =\int_{\mathbb{R}^{2 n}} \sum_{j \leq 0} \frac{|\xi+\eta|^{s}}{|\xi|^{r}} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) \widehat{D^{r} f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta \\
& +\int_{\mathbb{R}^{2 n}} \sum_{j>0} \frac{|\xi+\eta|^{s}}{|\xi|^{t}} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) \widehat{D^{t} f}(\xi) \widehat{g}(\eta) e^{2 \pi i(\xi+\eta) \cdot x} d \xi d \eta \\
& =: \Pi_{1}\left(D^{r} f, g\right)+\Pi_{2}\left(D^{t} f, g\right) .
\end{aligned}
$$

We now look at the bilinear kernel of Π_{1} (the kernel for Π_{2} will be dealt with in a similar way).

$$
\begin{equation*}
\Pi_{1}(f, g)(x)=\int_{\mathbb{R}^{2 n}} K_{1}(x-y, x-z) f(y) g(z) d y d z \tag{3.1}
\end{equation*}
$$

where, after putting $\Psi_{(-r)}(\cdot):=|\cdot|^{-r} \Psi(\cdot)$ and using that $\tilde{\Phi}(\xi+\eta) \Phi(\xi) \Psi(\eta)=$ $\Phi(\xi) \Psi(\eta)$ for every $\xi, \eta \in \mathbb{R}^{n}, K_{1}$ is given by

$$
\begin{aligned}
K_{1}(y, z) & =\int_{\mathbb{R}^{2 n}} \sum_{j \leq 0} \frac{|\xi+\eta|^{s}}{|\xi|^{r}} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) e^{2 \pi i(\xi \cdot y+\eta \cdot z)} d \xi d \eta \\
& =\int_{\mathbb{R}^{2 n}} \sum_{j \leq 0} \frac{2^{j s}}{2^{j r}} \Phi_{(s)}\left(2^{-j}(\xi+\eta)\right) \Psi_{(-r)}\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) e^{2 \pi i(\xi \cdot y+\eta \cdot z)} d \xi d \eta
\end{aligned}
$$

Hence, using the Fourier expansion in (2.4) and noting that the support of $\psi_{(-r)}(\xi) \phi(\eta)$ is contained in $\{(\xi, \eta):|\xi+\eta| \leq 4\}$, we get

$$
\begin{aligned}
K_{1}(y, z) & =\int_{\mathbb{R}^{2 n}} \sum_{j \leq 0} \sum_{m \in \mathbb{Z}^{n}} c_{s, m} 2^{j(s-r)} e^{\frac{2 \pi i}{16} m \cdot 2^{-j}(\xi+\eta)} \Psi_{(-r)}\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) e^{2 \pi i(\xi \cdot y+\eta \cdot z)} d \xi d \eta \\
& =\sum_{j \leq 0} \sum_{m \in \mathbb{Z}^{n}} c_{s, m} 2^{j(s-r)} \int_{\mathbb{R}^{2 n}} e^{\frac{2 \pi i}{16} m \cdot 2^{-j}(\xi+\eta)} \Psi_{(-r)}\left(2^{-j} \xi\right) \Phi\left(2^{-j} \eta\right) e^{2 \pi i(\xi \cdot y+\eta \cdot z)} d \xi d \eta \\
& =\sum_{j \leq 0} \sum_{m \in \mathbb{Z}^{n}} c_{s, m} 2^{j(s-r)} 2^{2 j n} \int_{\mathbb{R}^{2 n}} e^{\frac{2 \pi i}{16} m \cdot(\xi+\eta)} \Psi_{(-r)}(\xi) \Phi(\eta) e^{2 \pi i 2^{j}(\xi \cdot y+\eta \cdot z)} d \xi d \eta \\
& =\sum_{j \leq 0} \sum_{m \in \mathbb{Z}^{n}} c_{s, m} 2^{j(s-r)} 2^{2 j n} \widehat{\Psi_{(-r)}}\left(\frac{m}{16}+2^{j} y\right) \widehat{\Phi}\left(\frac{m}{16}+2^{j} z\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\Pi_{1}(f, g)(x) & =\sum_{l \in \mathbb{Z}} \int_{\mathbb{R}^{2 n}} K_{1}(x-y, x-z)\left(\Delta_{l} f\right)(y) g(z) d y d z \\
& \leq \sum_{j \leq 0} \sum_{m \in \mathbb{Z}^{n}} \sum_{l \in \mathbb{Z}} c_{s, m} 2^{j(s-r)} \\
& \times \int_{\mathbb{R}^{2 n}} 2^{2 j n} \widehat{\Psi_{(-r)}}\left(\frac{m}{16}+2^{j}(x-y)\right) \widehat{\Phi}\left(\frac{m}{16}+2^{j}(x-z)\right) \Delta_{l} f(y) g(z) d y d z
\end{aligned}
$$

For a fixed $j \in \mathbb{Z}$ we look at the integral in y

$$
\int_{\mathbb{R}^{n}} \widehat{\Psi_{(-r)}}\left(\frac{m}{16}+2^{j}(x-y)\right) \Delta_{l} f(y) d y=\int_{\mathbb{R}^{n}} \frac{e^{2 \pi i \xi \cdot\left(2^{-j} \frac{m}{16}+x\right)}}{2^{j n}} \Psi\left(2^{-j} \xi\right) \Psi\left(2^{-l} \xi\right) \hat{f}(\xi) d \xi
$$

which, due to the support conditions on Ψ, vanishes for every $l \in \mathbb{Z} \backslash\{j-1, j, j+1\}$. Consequently,

$$
\begin{aligned}
& \left|\Pi_{1}(f, g)(x)\right| \leq \sum_{j \leq 0} \sum_{m \in \mathbb{Z}^{n}} \sum_{l=j-1, j, j+1}\left|c_{s, m}\right| 2^{j(s-r)} \\
& \times \int_{\mathbb{R}^{2 n}} 2^{2 j n}\left|\widehat{\Psi_{(-r)}}\left(\frac{m}{16}+2^{j}(x-y)\right)\left\|\widehat{\Phi}\left(\frac{m}{16}+2^{j}(x-z)\right)\right\| \Delta_{l} f(y) \| g(z)\right| d y d z \\
& \leq 3\left(\sum_{j \leq 0} 2^{j(s-r)}\right)\left(\sum_{m \in \mathbb{Z}^{n}}\left|c_{s, m}\right|\right)\|\widehat{\Psi(-r)}\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|\widehat{\Phi}\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|f\|_{\dot{B}_{\infty}^{0, \infty}}\|g\|_{L^{\infty}} .
\end{aligned}
$$

Since $s-r>0$ we have $\sum_{j \leq 0} 2^{j(s-r)}<\infty$ and, from (2.5), $\sum_{m \in \mathbb{Z}^{n}}\left|c_{s, m}\right|<\infty$. Hence,

$$
\left|\Pi_{1}(f, g)(x)\right| \leq C\left\|\widehat{\Psi_{(-r)}}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|\widehat{\Phi}\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|f\|_{\dot{B}_{\infty}^{0, \infty}}\|g\|_{L^{\infty}} \quad \forall x \in \mathbb{R}^{n}
$$

where $C>0$ depends only on r, s, and n.
Along the same lines, now for $s<t$ one gets the bound for $\Pi_{2}(f, g)$,

$$
\left|\Pi_{2}(f, g)(x)\right| \leq c\left(\sum_{j>0} 2^{j(s-t)}\right)\left(\sum_{m \in \mathbb{Z}^{n}}\left|c_{s, m}\right|\right)\left\|\widehat{\Psi_{(-t)}}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|\widehat{\Phi}\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|f\|_{\dot{B}_{\infty}^{0, \infty}}\|g\|_{L^{\infty}}
$$

with $s-t<0$. Then

$$
\begin{equation*}
\|\Pi(f, g)\|_{L^{\infty}} \leq C\left(\left\|D^{r} f\right\|_{B_{\infty}^{0, \infty}}+\left\|D^{t} f\right\|_{\dot{B}_{\infty}^{0, \infty}}\right)\|g\|_{L^{\infty}} \tag{3.2}
\end{equation*}
$$

Interchanging the roles of f and g to deal with $\tilde{\Pi}$ yields

$$
\begin{equation*}
\|\tilde{\Pi}(f, g)\|_{L^{\infty}} \leq C\left(\left\|D^{r} g\right\|_{\dot{B}_{\infty}^{0, \infty}}+\left\|D^{t} g\right\|_{\dot{B}_{\infty}^{0, \infty}}\right)\|f\|_{L^{\infty}} \tag{3.3}
\end{equation*}
$$

Given a positive dyadic number μ, plugging in f_{μ} and g_{μ} into (3.2) and (3.3), using the scaling property (2.3) and the fact that $\Pi\left(f_{\mu}, g_{\mu}\right)=\mu^{s} \Pi(f, g)_{\mu}$ and $\tilde{\Pi}\left(f_{\mu}, g_{\mu}\right)=$ $\mu^{s} \tilde{\Pi}(f, g)_{\mu}$, we get

$$
\begin{aligned}
\|\Pi(f, g)\|_{L^{\infty}} & \lesssim\left(\lambda^{r-s}\left\|D^{r} f\right\|_{\dot{B}_{\infty}^{0, \infty}}+\lambda^{t-s}\left\|D^{t} f\right\|_{\dot{B}_{\infty}^{0, \infty}}\right)\|g\|_{L^{\infty}} \\
\|\tilde{\Pi}(f, g)\|_{L^{\infty}} & \lesssim\left(\lambda^{r-s}\left\|D^{r} g\right\|_{\dot{B}_{\infty}^{0, \infty}}+\lambda^{t-s}\left\|D^{t} g\right\|_{\dot{B}_{\infty}^{0, \infty}}\right)\|f\|_{L^{\infty}}
\end{aligned}
$$

for every positive number λ. Minimizing in λ each of the above inequalities leads to

$$
\begin{aligned}
\|\Pi(f, g)\|_{L^{\infty}} & \lesssim D^{r} f\left\|_{\dot{B}_{\infty}^{0, \infty}}^{\alpha}\right\| D^{t} f\left\|_{\dot{B}_{\infty}^{0, \infty}}^{\beta}\right\| g \|_{L^{\infty}}, \\
\|\tilde{\Pi}(f, g)\|_{L^{\infty}} & \lesssim f\left\|_{L^{\infty}}\right\| D^{r} g\left\|_{\dot{B}_{\infty}^{0, \infty}}^{\alpha}\right\| D^{t} g \|_{\dot{B}_{\infty}^{0, \infty}}^{\beta}
\end{aligned}
$$

from which (1.3) follows.

4. The case $s>2 n+1$

A smooth function $\sigma: \mathbb{R}^{2 n} \backslash\{(0,0)\} \rightarrow \mathbb{C}$ is said to belong to the class of bilinear Coifman-Meyer multipliers if for all multi-indices $\alpha, \beta \in \mathbb{N}_{0}^{n}$ with $|\alpha|+|\beta| \leq 2 n+1$ there exist constants $c_{\alpha, \beta}>0$ such that

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} \sigma(\xi, \eta)\right| \leq c_{\alpha, \beta}(|\xi|+|\eta|)^{-|\alpha|-|\beta|}, \quad \forall(\xi, \eta) \in \mathbb{R}^{2 n} \backslash\{(0,0)\} . \tag{4.1}
\end{equation*}
$$

In [6], the bilinear mapping $(f, g) \mapsto D^{s}(f g)$ was decomposed into the sum of three bilinear multipliers as follows

$$
\begin{equation*}
D^{s}(f g)=T_{1, s}\left(D^{s} f, g\right)+T_{2, s}\left(f, D^{s} g\right)+T_{3, s}\left(f, D^{s} g\right) \tag{4.2}
\end{equation*}
$$

where, keeping with the notation in Section 3, for $(\xi, \eta) \in \mathbb{R}^{2 n} \backslash\{(0,0)\}$ the bilinear multipliers for $T_{1, s}$ and $T_{2, s}$ are given by

$$
\begin{equation*}
\sigma_{1, s}(\xi, \eta):=\sum_{j \in \mathbb{Z}} \Psi\left(2^{-j} \xi\right) \Phi\left(2^{-j+3} \eta\right) \frac{|\xi+\eta|^{s}}{|\xi|^{s}} \quad \text { and } \quad \sigma_{2, s}(\xi, \eta):=\sigma_{1, s}(\eta, \xi) \tag{4.3}
\end{equation*}
$$

respectively, which belong to the Coifman-Meyer class for every $s>0$. On the other hand, the multiplier for $T_{3, s}$, denoted by $\sigma_{3, s}$, can be expressed as

$$
\begin{equation*}
\sigma_{3, s}(\xi, \eta):=\sum_{k \in \mathbb{Z}} \sum_{m \in \mathbb{Z}^{n}} c_{s, m} e^{\frac{2 \pi i}{16} 2^{-k}(\xi+\eta) \cdot m} \Psi\left(2^{-k} \xi\right) \Psi_{(-s)}\left(2^{-k} \eta\right) \tag{4.4}
\end{equation*}
$$

For fixed $\xi, \eta \in \mathbb{R}^{2 n} \backslash\{(0,0)\}$ the condition on the support of Ψ implies that the sum in k has only finitely many terms; namely, those with $2^{k} \sim|\xi| \sim|\eta|$. When derivatives in ξ and η of the product $e^{\frac{2 \pi i}{16} 2^{-k}(\xi+\eta) \cdot m} \Psi\left(2^{-k} \xi\right) \Psi_{(-s)}\left(2^{-k} \eta\right)$ are taken, after each
derivative a factor $2^{-k}\left(\sim|\xi|^{-1} \sim|\eta|^{-1} \sim(|\xi|+|\eta|)^{-1}\right)$ appears, producing the righthand side of (4.1). However, when the derivatives fall on the factor $e^{\frac{2 \pi i}{16} 2^{-k}(\xi+\eta) \cdot m}$ also components of $m \in \mathbb{Z}^{n}$ appear. Since the definition of a Coifman-Meyer multiplier requires at most $2 n+1$ derivatives, the worst case scenario for the sum over $m \in \mathbb{Z}^{n}$ (i.e., the case in which all $2 n+1$ derivatives fall on $e^{\frac{2 \pi i}{16} 2^{-k}(\xi+\eta) \cdot m}$) leads to the sum

$$
\sum_{m \in \mathbb{Z}^{n}}\left|c_{s, m}\right||m|^{2 n+1}
$$

By (2.5), the sum above will be finite provided that $s>2 n+1$. That is, whenever $s>2 n+1$ all three bilinear operators in (4.2), and therefore the mapping $(f, g) \mapsto$ $D^{s}(f g)$, can be realized as bilinear Coifman-Meyer multipliers. Since the class of Coifman-Meyer multipliers is included in the family of bilinear Calderón-Zygmund operators (see, [7, Section 6]) all the mapping properties of the type

$$
\begin{equation*}
\|T(f, g)\|_{Z} \lesssim\|f\|_{X}\|g\|_{Y} \tag{4.5}
\end{equation*}
$$

that apply to bilinear C-Z operators T on function spaces X, Y, and Z will also apply to $(f, g) \mapsto D^{s}(f g)$. For example, for a bilinear C-Z operator T, given $1<p_{1}, p_{2}<\infty$ and $1 / p:=1 / p_{1}+1 / p_{2}$, it holds that

$$
\begin{equation*}
\|T(f, g)\|_{L^{p}} \lesssim\|f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}} \tag{4.6}
\end{equation*}
$$

and (see [7, Proposition 1]) that,

$$
\begin{equation*}
\|T(f, g)\|_{B M O} \lesssim\|f\|_{L^{\infty}}\|g\|_{L^{\infty}}, \tag{4.7}
\end{equation*}
$$

as well as other end-point estimates such as

$$
\begin{equation*}
\|T(f, g)\|_{L^{1, \infty}} \lesssim\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{1}}+\|f\|_{L^{1}}\left\|D^{s} g\right\|_{L^{\infty}} \tag{4.8}
\end{equation*}
$$

As a consequence of the results above, we have
Theorem 3. If $s>2 n+1$, then for every $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we have the endpoint inequalities

$$
\begin{equation*}
\left\|D^{s}(f g)\right\|_{B M O} \lesssim\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}}+\|f\|_{L^{\infty}}\left\|D^{s} g\right\|_{L^{\infty}} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|D^{s}(f g)\right\|_{L^{1, \infty}} \lesssim\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{1}}+\|f\|_{L^{1}}\left\|D^{s} g\right\|_{L^{\infty}} \tag{4.10}
\end{equation*}
$$

Remark 3. We note that the conditions (4.1) being satisfied with up to $n+1$ derivatives (instead of $2 n+1$) are sufficient for the corresponding multiplier operator to be bounded from $L^{p_{1}} \times L^{p_{2}}$ into L^{p} for $1<p_{1}, p_{2}, p<\infty$ and $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, as shown in Tomita [13]. The endpoint boundedness $L^{\infty} \times L^{\infty}$ into $B M O$ for Coifman-Meyer multipliers, with only up to $n+1$ derivatives in (4.1), is unknown to us. To pass through the bilinear C-Z theory, as done above, it suffices that the conditions (4.1) be satisfied with up to $2 n+1$ derivatives.

Proof of Theorem 2. By hypothesis, $1 / p:=1 / p_{1}+1 / p_{2}$, so that $n / p<\varepsilon<1$. It was proved in [12, pp.193-198] that a function F with $\left\|D^{\varepsilon} F\right\|_{L^{p}}+\|F\|_{B M O}+\|F\|_{L^{p}}<\infty$ can be written as $F=F_{0}+G+F_{1}$ where

$$
\begin{equation*}
\left\|F_{0}\right\|_{L^{\infty}} \lesssim\left\|D^{\varepsilon} F\right\|_{L^{p}}, \quad\|G\|_{L^{\infty}} \lesssim\|F\|_{B M O}, \quad \text { and } \quad\left\|F_{1}\right\|_{L^{\infty}} \lesssim\|F\|_{L^{p}} \tag{4.11}
\end{equation*}
$$

Now, with $T_{1, s}$ as in the decomposition (4.2), let us first choose $F:=T_{1, s}\left(D^{s} f, g\right)$, so that from (4.11) we get

$$
\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{L^{\infty}} \lesssim\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{L^{p}}+\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{B M O}+\left\|D^{\varepsilon}\left(T_{1, s}\left(D^{s} f, g\right)\right)\right\|_{L^{p}}
$$

The fact that $T_{1, s}$ is a bilinear C-Z operator and (4.6) yield

$$
\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{L^{p}} \lesssim\left\|D^{s} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}
$$

Also, from (4.7), it follows that

$$
\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{B M O} \lesssim\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}}
$$

On the other hand, notice that

$$
D^{\varepsilon}\left(T_{1, s}\left(D^{s} f, g\right)\right)=: T_{1, s+\varepsilon}\left(D^{s+\varepsilon} f, g\right),
$$

where the bilinear symbol for the operator $T_{1, s+\varepsilon}$ equals $\sigma_{1, s+\varepsilon}(\xi, \eta)$ (using the notation in (4.3)), also a Coifman-Meyer multiplier. Hence, (4.6) gives

$$
\left\|D^{\varepsilon}\left(T_{1, s}\left(D^{s} f, g\right)\right)\right\|_{L^{p}} \lesssim\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}
$$

Putting all together, for $T_{1, s}(f, g)$ we have

$$
\begin{equation*}
\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{L^{\infty}} \lesssim\left(\left\|D^{s} f\right\|_{L^{p_{1}}}+\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}\right)\|g\|_{L^{p_{2}}}+\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}} . \tag{4.12}
\end{equation*}
$$

Given a positive dyadic number μ, by replacing f and g in (4.12) with f_{μ} and g_{μ} and using the facts that

$$
\left\|D^{s}\left(f_{\mu}\right)\right\|_{L^{q}}=\mu^{s-\frac{n}{q}}\left\|D^{s} f\right\|_{L^{q}}, \quad \forall q \in[1, \infty]
$$

that $1 / p=1 / p_{1}+1 / p_{2}$, and that $T_{1, s}\left(D^{s} f_{\mu}, g_{\mu}\right)=\mu^{s} T_{1, s}\left(D^{s} f, g\right)_{\mu}$, we obtain

$$
\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{L^{\infty}} \lesssim\left(\lambda^{-\frac{n}{p}}\left\|D^{s} f\right\|_{L^{p_{1}}}+\lambda^{\varepsilon-\frac{n}{p}}\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}\right)\|g\|_{L^{p_{2}}}+\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}}
$$

for every positive number λ. Minimization over λ then implies

$$
\begin{equation*}
\left\|T_{1, s}\left(D^{s} f, g\right)\right\|_{L^{\infty}} \lesssim\left\|D^{s} f\right\|_{L^{p_{1}}}^{1-\frac{n}{p \varepsilon}}\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}^{\frac{n}{p_{1}}}\|g\|_{L^{p_{2}}}+\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}} . \tag{4.13}
\end{equation*}
$$

And, by an analogous argument based on $T_{2, s}$,

$$
\begin{equation*}
\left\|T_{2, s}\left(f, D^{s} g\right)\right\|_{L^{\infty}} \lesssim\|f\|_{L^{p_{1}}}\left\|D^{s} g\right\|_{L^{p_{2}}}^{1-\frac{n}{p \varepsilon}}\left\|D^{s+\varepsilon} g\right\|_{L^{p_{2}}}^{\frac{n}{p^{\varepsilon}}}+\|f\|_{L^{\infty}}\left\|D^{s} g\right\|_{L^{\infty}} \tag{4.14}
\end{equation*}
$$

It only remains to consider $T_{3, s}$. Since $s>2 n+1$, again from (4.6) and (4.7), we have

$$
\left\|T_{3, s}\left(D^{s} f, g\right)\right\|_{L^{p}}+\left\|T_{3, s}\left(D^{s} f, g\right)\right\|_{B M O} \lesssim\left\|D^{s} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}}
$$

Now,

$$
D^{\varepsilon}\left(T_{3, s}\left(D^{s} f, g\right)\right)=: T_{3, s+\varepsilon}\left(D^{s+\varepsilon} f, g\right)
$$

where the bilinear symbol for $T_{3, s+\varepsilon}$ is similar to $\sigma_{3, s}$ in (4.4) but with $c_{s, m}$ replaced by $c_{s+\varepsilon, m}$, the Fourier coefficients for $\Phi_{(s+\varepsilon)}$ which will satisfy $c_{s+\varepsilon, m}=O\left(1+|m|^{-n-s-\varepsilon}\right)$. Consequently,

$$
\left\|D^{\varepsilon}\left(T_{3, s}\left(D^{s} f, g\right)\right)\right\|_{L^{p}} \lesssim\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}
$$

and, proceeding as before, after scaling we get

$$
\begin{equation*}
\left\|T_{3, s}\left(D^{s} f, g\right)\right\|_{L^{\infty}} \lesssim\left\|D^{s} f\right\|_{L^{p_{1}}}^{1-\frac{n}{p^{\varepsilon}}}\left\|D^{s+\varepsilon} f\right\|_{L^{p_{1}}}^{\frac{n}{p_{1}}}\|g\|_{L^{p_{2}}}+\left\|D^{s} f\right\|_{L^{\infty}}\|g\|_{L^{\infty}} . \tag{4.15}
\end{equation*}
$$

Finally, Theorem 2 follows from (4.2), (4.13), (4.14), and (4.15).

ACKNOWLEDGEMENTS

The authors are grateful to Frédéric Bernicot and Gustavo Ponce for useful conversations.

References

1. N. Badr, F. Bernicot, and E. Russ, Algebra properties for Sobolev spaces - Applications to semilinear PDE's on manifolds, J. Anal. Math. 118 (2012), 509-544.
2. H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, Volume 343. Springer-Verlag, 2011.
3. F. Bernicot, D. Maldonado, K. Moen, and V. Naibo, Bilinear Sobolev-Poincaré inequalities and Leibniz-type rules, to appear in J. Geom. Anal., DOI: 10.1007/s12220-012-9367-4.
4. M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100, (1991), 87-109.
5. T. Coulhon, E. Russ, and V. Tardivel-Nachef, Sobolev algebras on Lie groups and Riemannian manifolds, Amer. J. Math., 123, (2001), 283-342.
6. L. Grafakos and S. Oh, The Kato-Ponce inequality, to appear in Comm. PDE., DOI:10.1080/03605302.2013.822885.
7. L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. in Math. 165 (2002), 124-164.
8. A. Gulisashvili and M. Kon, Exact smoothing properties of Schrödinger semigroups, Amer. J. Math. 118, (1996), 1215-1248.
9. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, (1988), 891-907.
10. C. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620.
11. H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z. 235, (2000), 173-194.
12. H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys. 214, (2000),191-200.
13. N. Tomita, A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259 (2010), no. 8, 2028-2044.

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: grafakosl@missouri.edu
Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
E-mail address: dmaldona@math.ksu.edu
Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
E-mail address: vnaibo@math.ksu.edu

