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Abstract. This note introduces bilinear estimates intended as a step towards an
L∞-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical
Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.

1. Introduction and main result

The following inequality appears to be missing from the vast literature on a class of
inequalities known as Kato-Ponce inequalities or fractional Leibniz rules: For every
s > 0 there exists C > 0, depending only on s and dimension n, such that
(1.1)
‖Ds(fg)‖L∞ ≤ C (‖Dsf‖L∞ ‖g‖L∞ + ‖Dsg‖L∞ ‖f‖L∞) , for all f, g ∈ S(Rn),

where Ds is the s-derivative operator∗ defined for h ∈ S(Rn) as

D̂sh(ξ) := |ξ|sĥ(ξ), ∀ξ ∈ Rn.

Inequality (1.1) represents an endpoint case of inequalities of Kato-Ponce type (see
[1, 3, 4, 5, 6, 8, 9, 10, 11] and references therein) and we do not know whether it holds
true or not. Moreover, the fact that for any s > 0 and any f, g ∈ S(Rn), both sides
of (1.1) are finite, makes it quite difficult to find a counter-example to (1.1). Such
counter-example should violate the structure of the right-hand side of (1.1), but not
the fact that the left-hand side is finite. As a step towards (1.1) the purpose of this
note is to prove the following results

Theorem 1. Let 0 ≤ r < s < t and set

(1.2) α :=
t− s
t− r

and β :=
s− r
t− r

.

Then, for every f, g ∈ S(Rn) we have

(1.3) ‖Ds(fg)‖L∞ . ‖D
rf‖αḂ0,∞

∞

∥∥Dtf
∥∥β
Ḃ0,∞
∞
‖g‖L∞ + ‖f‖L∞ ‖D

rg‖αḂ0,∞
∞

∥∥Dtg
∥∥β
Ḃ0,∞
∞

,

where the implicit constant depends only on r, s, t, and dimension n. In particular,

(1.4) ‖Ds(fg)‖L∞ . ‖D
rf‖αL∞

∥∥Dtf
∥∥β
L∞
‖g‖L∞ + ‖f‖L∞ ‖D

rg‖αL∞
∥∥Dtg

∥∥β
L∞

.

Date: December 9, 2013.
2010 Mathematics Subject Classification. Primary 42B20. Secondary 46E35.
Key words and phrases. Gagliardo-Nirenberg inequalities, Kato-Ponce inequalities, fractional

Leibniz rules, bilinear paraproducts.
Third author partially supported by NSF under grant DMS 1101327.
∗The notation Ds seems to be standard for this operator although other notations include |D|s,

|∇|s and (−∆)
s
2 .

1



2 LOUKAS GRAFAKOS, DIEGO MALDONADO, AND VIRGINIA NAIBO

Remark 1. Inequality (1.4) can be regarded as a combination of Leibniz-rule and in-
terpolation (or bilinear Gagliardo-Nirenberg) inequalities. Notice that (1.4) is weaker
than (1.1). Indeed, given 0 ≤ r < s < t, by the linear Gagliardo-Nirenberg inequality
(see, for instance, Theorem 2.44 in [2]), we have

(1.5) ‖Dsf‖L∞ . ‖D
rf‖

t−s
t−r
L∞

∥∥Dtf
∥∥ s−rt−r
L∞

, ∀f ∈ S(Rn).

Then, it follows that (1.1), if true, would imply (1.4).

Theorem 2. Suppose s > 2n + 1. Let 1 < p1, p2 < ∞ and ε > 0 with n/p :=
(1/p1 + 1/p2)n < ε < 1. Then for every f, g ∈ S(Rn) we have

‖Ds(fg)‖L∞ . ‖D
sf‖

1− n
pε

Lp1

∥∥Ds+εf
∥∥ n
pε

Lp1
‖g‖Lp2 + ‖f‖Lp1 ‖D

sg‖
1− n

pε

Lp2

∥∥Ds+εg
∥∥ n
pε

Lp2

+ ‖Dsf‖L∞ ‖g‖L∞ + ‖f‖L∞ ‖D
sg‖L∞ ,

where the implicit constant depends only on s, n, ε, p1, and p2.

Remark 2. In the case s > 2n + 1, the proof of Theorem 2 will be based on a con-
nection between Kato-Ponce inequalities and the bilinear Calderón-Zygmund theory,
see Section 4. Notice that the inequality in Theorem 2 involves no derivatives lower
than Ds. Also, ε > 0 can be arbitrarily small and p1, p2 ∈ (1,∞) arbitrarily large, as
long as (1/p1 + 1/p2)n < ε.

2. Preliminaries

Let Φ : Rn → R be a smooth, non-negative, radial function supported in {ξ ∈
Rn : |ξ| ≤ 2} with Φ ≡ 1 in {ξ ∈ Rn : |ξ| ≤ 1}. Define Ψ : Rn → R supported in
1/2 ≤ |ξ| ≤ 2 as Ψ(ξ) := Φ(ξ)− Φ(2ξ) for ξ ∈ Rn, so that

(2.1)
∑
j∈Z

∆jh = h in S ′(Rn) ∀h ∈ S(Rn),

where, as usual, ∆jh is defined for h ∈ S(Rn) as

∆̂jh(ξ) := Ψ(2−jξ)ĥ(ξ) ∀ξ ∈ Rn.

We recall that the Besov Ḃ0,∞
∞ -norm is given by

(2.2) ‖h‖Ḃ0,∞
∞

:= sup
j∈Z
‖∆jh‖L∞ ≤

∥∥∥Ψ̂
∥∥∥
L1
‖h‖L∞ .

For f ∈ S(Rn) and λ > 0 set fλ(x) := f(λx) for every x ∈ Rn. For s ≥ 0 we have

(2.3) ‖Ds(fλ)‖Ḃ0,∞
∞

= λs ‖Dsf‖Ḃ0,∞
∞

for all λ = 2j0 , j0 ∈ Z.

We note tha Φ̃(ξ + η)Φ(ξ)Ψ(η) = Φ(ξ)Ψ(η) for every ξ, η ∈ Rn, where Φ̃(·) :=
Φ(4−1·), and write Φ(s)(·) := | · |sΦ̃(·). Reasoning as in [6], the absolutely convergent
Fourier series for Φ(s)(t)χ[−8,8]n(t),

(2.4) Φ(s)(t) =
∑
m∈Zn

cs,me
2πi
16
m·tχ[−8,8]n(t),
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has coefficients cs,m satisfying

(2.5) cs,m = O(1 + |m|−n−s).

3. Proof of Theorem 1

Proof. Fix 0 ≤ r < s < t. By (2.1), we have

Ds(fg)(x) =

∫
R2n

|ξ + η|sf̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη =: Π(f, g)(x) + Π̃(f, g)(x),

with

Π(f, g)(x) :=

∫
R2n

∑
j∈Z

∑
k≤j

|ξ + η|sΨ(2−jξ)Ψ(2−kη)f̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη

and

Π̃(f, g)(x) :=

∫
R2n

∑
j∈Z

∑
j<k

|ξ + η|sΨ(2−jξ)Ψ(2−kη)f̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη.

Now, we split Π(f, g) (and then, similarly, Π̃) as follows

Π(f, g)(x) =

∫
R2n

∑
j∈Z

|ξ + η|sΨ(2−jξ)Φ(2−jη)f̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη

=

∫
R2n

∑
j≤0

|ξ + η|sΨ(2−jξ)Φ(2−jη)f̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη

+

∫
R2n

∑
j>0

|ξ + η|sΨ(2−jξ)Φ(2−jη)f̂(ξ)ĝ(η)e2πi(ξ+η)·xdξdη

=

∫
R2n

∑
j≤0

|ξ + η|s

|ξ|r
Ψ(2−jξ)Φ(2−jη)D̂rf(ξ)ĝ(η)e2πi(ξ+η)·xdξdη

+

∫
R2n

∑
j>0

|ξ + η|s

|ξ|t
Ψ(2−jξ)Φ(2−jη)D̂tf(ξ)ĝ(η)e2πi(ξ+η)·xdξdη

=: Π1(D
rf, g) + Π2(D

tf, g).

We now look at the bilinear kernel of Π1 (the kernel for Π2 will be dealt with in a
similar way).

(3.1) Π1(f, g)(x) =

∫
R2n

K1(x− y, x− z)f(y)g(z)dydz,

where, after putting Ψ(−r)(·) := | · |−rΨ(·) and using that Φ̃(ξ + η)Φ(ξ)Ψ(η) =
Φ(ξ)Ψ(η) for every ξ, η ∈ Rn, K1 is given by

K1(y, z) =

∫
R2n

∑
j≤0

|ξ + η|s

|ξ|r
Ψ(2−jξ)Φ(2−jη)e2πi(ξ·y+η·z)dξdη

=

∫
R2n

∑
j≤0

2js

2jr
Φ(s)(2

−j(ξ + η))Ψ(−r)(2
−jξ)Φ(2−jη)e2πi(ξ·y+η·z)dξdη.
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Hence, using the Fourier expansion in (2.4) and noting that the support of ψ(−r)(ξ)φ(η)
is contained in {(ξ, η) : |ξ + η| ≤ 4}, we get

K1(y, z) =

∫
R2n

∑
j≤0

∑
m∈Zn

cs,m2j(s−r)e
2πi
16
m·2−j(ξ+η)Ψ(−r)(2

−jξ)Φ(2−jη)e2πi(ξ·y+η·z)dξdη

=
∑
j≤0

∑
m∈Zn

cs,m2j(s−r)
∫
R2n

e
2πi
16
m·2−j(ξ+η)Ψ(−r)(2

−jξ)Φ(2−jη)e2πi(ξ·y+η·z)dξdη

=
∑
j≤0

∑
m∈Zn

cs,m2j(s−r)22jn

∫
R2n

e
2πi
16
m·(ξ+η)Ψ(−r)(ξ)Φ(η)e2πi2

j(ξ·y+η·z)dξdη

=
∑
j≤0

∑
m∈Zn

cs,m2j(s−r)22jnΨ̂(−r)(
m
16

+ 2jy)Φ̂(m
16

+ 2jz).

Now,

Π1(f, g)(x) =
∑
l∈Z

∫
R2n

K1(x− y, x− z)(∆lf)(y)g(z)dydz

≤
∑
j≤0

∑
m∈Zn

∑
l∈Z

cs,m2j(s−r)

×
∫
R2n

22jnΨ̂(−r)(
m
16

+ 2j(x− y))Φ̂(m
16

+ 2j(x− z))∆lf(y)g(z)dydz.

For a fixed j ∈ Z we look at the integral in y∫
Rn

Ψ̂(−r)(
m
16

+ 2j(x− y))∆lf(y)dy =

∫
Rn

e2πiξ·(2
−j m

16
+x)

2jn
Ψ(2−jξ)Ψ(2−lξ)f̂(ξ)dξ,

which, due to the support conditions on Ψ, vanishes for every l ∈ Z \ {j− 1, j, j+ 1}.
Consequently,

|Π1(f, g)(x)| ≤
∑
j≤0

∑
m∈Zn

∑
l=j−1,j,j+1

|cs,m|2j(s−r)

×
∫
R2n

22jn|Ψ̂(−r)(
m
16

+ 2j(x− y))||Φ̂(m
16

+ 2j(x− z))||∆lf(y)||g(z)|dydz

≤ 3

(∑
j≤0

2j(s−r)

)(∑
m∈Zn

|cs,m|

)∥∥∥Ψ̂(−r)

∥∥∥
L1(Rn)

∥∥∥Φ̂
∥∥∥
L1(Rn)

‖f‖Ḃ0,∞
∞
‖g‖L∞ .

Since s−r > 0 we have
∑

j≤0 2j(s−r) <∞ and, from (2.5),
∑

m∈Zn |cs,m| <∞. Hence,

|Π1(f, g)(x)| ≤ C
∥∥∥Ψ̂(−r)

∥∥∥
L1(Rn)

∥∥∥Φ̂
∥∥∥
L1(Rn)

‖f‖Ḃ0,∞
∞
‖g‖L∞ ∀x ∈ Rn,

where C > 0 depends only on r, s, and n.
Along the same lines, now for s < t one gets the bound for Π2(f, g),

|Π2(f, g)(x)| ≤ c

(∑
j>0

2j(s−t)

)(∑
m∈Zn

|cs,m|

)∥∥∥Ψ̂(−t)

∥∥∥
L1(Rn)

∥∥∥Φ̂
∥∥∥
L1(Rn)

‖f‖Ḃ0,∞
∞
‖g‖L∞ ,
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with s− t < 0. Then

(3.2) ‖Π(f, g)‖L∞ ≤ C(‖Drf‖Ḃ0,∞
∞

+
∥∥Dtf

∥∥
Ḃ0,∞
∞

) ‖g‖L∞ .

Interchanging the roles of f and g to deal with Π̃ yields

(3.3)
∥∥∥Π̃(f, g)

∥∥∥
L∞
≤ C(‖Drg‖Ḃ0,∞

∞
+
∥∥Dtg

∥∥
Ḃ0,∞
∞

) ‖f‖L∞ .

Given a positive dyadic number µ, plugging in fµ and gµ into (3.2) and (3.3), using

the scaling property (2.3) and the fact that Π(fµ, gµ) = µs Π(f, g)µ and Π̃(fµ, gµ) =

µs Π̃(f, g)µ, we get

‖Π(f, g)‖L∞ . (λr−s ‖Drf‖Ḃ0,∞
∞

+ λt−s
∥∥Dtf

∥∥
Ḃ0,∞
∞

) ‖g‖L∞ ,∥∥∥Π̃(f, g)
∥∥∥
L∞
. (λr−s ‖Drg‖Ḃ0,∞

∞
+ λt−s

∥∥Dtg
∥∥
Ḃ0,∞
∞

) ‖f‖L∞ ,

for every positive number λ. Minimizing in λ each of the above inequalities leads to

‖Π(f, g)‖L∞ . ‖D
rf‖αḂ0,∞

∞

∥∥Dtf
∥∥β
Ḃ0,∞
∞
‖g‖L∞ ,∥∥∥Π̃(f, g)

∥∥∥
L∞
. ‖f‖L∞ ‖D

rg‖αḂ0,∞
∞

∥∥Dtg
∥∥β
Ḃ0,∞
∞

,

from which (1.3) follows. �

4. The case s > 2n+ 1

A smooth function σ : R2n \ {(0, 0)} → C is said to belong to the class of bilinear
Coifman-Meyer multipliers if for all multi-indices α, β ∈ Nn

0 with |α| + |β| ≤ 2n + 1
there exist constants cα,β > 0 such that

(4.1) |∂αξ ∂βη σ(ξ, η)| ≤ cα,β(|ξ|+ |η|)−|α|−|β|, ∀(ξ, η) ∈ R2n \ {(0, 0)}.

In [6], the bilinear mapping (f, g) 7→ Ds(fg) was decomposed into the sum of three
bilinear multipliers as follows

(4.2) Ds(fg) = T1,s(D
sf, g) + T2,s(f,D

sg) + T3,s(f,D
sg),

where, keeping with the notation in Section 3, for (ξ, η) ∈ R2n \ {(0, 0)} the bilinear
multipliers for T1,s and T2,s are given by

(4.3) σ1,s(ξ, η) :=
∑
j∈Z

Ψ(2−jξ)Φ(2−j+3η)
|ξ + η|s

|ξ|s
and σ2,s(ξ, η) := σ1,s(η, ξ),

respectively, which belong to the Coifman-Meyer class for every s > 0. On the other
hand, the multiplier for T3,s, denoted by σ3,s, can be expressed as

(4.4) σ3,s(ξ, η) :=
∑
k∈Z

∑
m∈Zn

cs,me
2πi
16

2−k(ξ+η)·mΨ(2−kξ)Ψ(−s)(2
−kη).

For fixed ξ, η ∈ R2n\{(0, 0)} the condition on the support of Ψ implies that the sum in
k has only finitely many terms; namely, those with 2k ∼ |ξ| ∼ |η|. When derivatives

in ξ and η of the product e
2πi
16

2−k(ξ+η)·mΨ(2−kξ)Ψ(−s)(2
−kη) are taken, after each
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derivative a factor 2−k (∼ |ξ|−1 ∼ |η|−1 ∼ (|ξ|+ |η|)−1) appears, producing the right-

hand side of (4.1). However, when the derivatives fall on the factor e
2πi
16

2−k(ξ+η)·m also
components of m ∈ Zn appear. Since the definition of a Coifman-Meyer multiplier
requires at most 2n+ 1 derivatives, the worst case scenario for the sum over m ∈ Zn
(i.e., the case in which all 2n+ 1 derivatives fall on e

2πi
16

2−k(ξ+η)·m) leads to the sum∑
m∈Zn

|cs,m||m|2n+1.

By (2.5), the sum above will be finite provided that s > 2n + 1. That is, whenever
s > 2n + 1 all three bilinear operators in (4.2), and therefore the mapping (f, g) 7→
Ds(fg), can be realized as bilinear Coifman-Meyer multipliers. Since the class of
Coifman-Meyer multipliers is included in the family of bilinear Calderón-Zygmund
operators (see, [7, Section 6]) all the mapping properties of the type

(4.5) ‖T (f, g)‖Z . ‖f‖X ‖g‖Y ,
that apply to bilinear C-Z operators T on function spaces X, Y, and Z will also apply
to (f, g) 7→ Ds(fg). For example, for a bilinear C-Z operator T , given 1 < p1, p2 <∞
and 1/p := 1/p1 + 1/p2, it holds that

(4.6) ‖T (f, g)‖Lp . ‖f‖Lp1 ‖g‖Lp2
and (see [7, Proposition 1]) that,

(4.7) ‖T (f, g)‖BMO . ‖f‖L∞ ‖g‖L∞ ,
as well as other end-point estimates such as

(4.8) ‖T (f, g)‖L1,∞ . ‖Dsf‖L∞ ‖g‖L1 + ‖f‖L1 ‖Dsg‖L∞ .
As a consequence of the results above, we have

Theorem 3. If s > 2n + 1, then for every f, g ∈ S(Rn) we have the endpoint
inequalities

(4.9) ‖Ds(fg)‖BMO . ‖D
sf‖L∞ ‖g‖L∞ + ‖f‖L∞ ‖D

sg‖L∞ .
and

(4.10) ‖Ds(fg)‖L1,∞ . ‖Dsf‖L∞ ‖g‖L1 + ‖f‖L1 ‖Dsg‖L∞ .

Remark 3. We note that the conditions (4.1) being satisfied with up to n+ 1 deriva-
tives (instead of 2n + 1) are sufficient for the corresponding multiplier operator to
be bounded from Lp1 × Lp2 into Lp for 1 < p1, p2, p <∞ and 1

p
= 1

p1
+ 1

p2
, as shown

in Tomita [13]. The endpoint boundedness L∞ × L∞ into BMO for Coifman-Meyer
multipliers, with only up to n + 1 derivatives in (4.1), is unknown to us. To pass
through the bilinear C-Z theory, as done above, it suffices that the conditions (4.1)
be satisfied with up to 2n+ 1 derivatives.

Proof of Theorem 2. By hypothesis, 1/p := 1/p1+1/p2, so that n/p < ε < 1. It was
proved in [12, pp.193–198] that a function F with ‖DεF‖Lp + ‖F‖BMO + ‖F‖Lp <∞
can be written as F = F0 +G+ F1 where

(4.11) ‖F0‖L∞ . ‖D
εF‖Lp , ‖G‖L∞ . ‖F‖BMO , and ‖F1‖L∞ . ‖F‖Lp .
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Now, with T1,s as in the decomposition (4.2), let us first choose F := T1,s(D
sf, g), so

that from (4.11) we get

‖T1,s(Dsf, g)‖L∞ . ‖T1,s(D
sf, g)‖Lp + ‖T1,s(Dsf, g)‖BMO + ‖Dε(T1,s(D

sf, g))‖Lp .
The fact that T1,s is a bilinear C-Z operator and (4.6) yield

‖T1,s(Dsf, g)‖Lp . ‖D
sf‖Lp1 ‖g‖Lp2 .

Also, from (4.7), it follows that

‖T1,s(Dsf, g)‖BMO . ‖D
sf‖L∞ ‖g‖L∞ .

On the other hand, notice that

Dε(T1,s(D
sf, g)) =: T1,s+ε(D

s+εf, g),

where the bilinear symbol for the operator T1,s+ε equals σ1,s+ε(ξ, η) (using the notation
in (4.3)), also a Coifman-Meyer multiplier. Hence, (4.6) gives

‖Dε(T1,s(D
sf, g))‖Lp .

∥∥Ds+εf
∥∥
Lp1
‖g‖Lp2 .

Putting all together, for T1,s(f, g) we have

(4.12) ‖T1,s(Dsf, g)‖L∞ . (‖Dsf‖Lp1 +
∥∥Ds+εf

∥∥
Lp1

) ‖g‖Lp2 + ‖Dsf‖L∞ ‖g‖L∞ .
Given a positive dyadic number µ, by replacing f and g in (4.12) with fµ and gµ and
using the facts that

‖Ds(fµ)‖Lq = µs−
n
q ‖Dsf‖Lq , ∀q ∈ [1,∞],

that 1/p = 1/p1 + 1/p2, and that T1,s(D
sfµ, gµ) = µs T1,s(D

sf, g)µ, we obtain

‖T1,s(Dsf, g)‖L∞ . (λ−
n
p ‖Dsf‖Lp1 + λε−

n
p

∥∥Ds+εf
∥∥
Lp1

) ‖g‖Lp2 + ‖Dsf‖L∞ ‖g‖L∞ ,
for every positive number λ. Minimization over λ then implies

(4.13) ‖T1,s(Dsf, g)‖L∞ . ‖D
sf‖

1− n
pε

Lp1

∥∥Ds+εf
∥∥ n
pε

Lp1
‖g‖Lp2 + ‖Dsf‖L∞ ‖g‖L∞ .

And, by an analogous argument based on T2,s,

(4.14) ‖T2,s(f,Dsg)‖L∞ . ‖f‖Lp1 ‖D
sg‖

1− n
pε

Lp2

∥∥Ds+εg
∥∥ n
pε

Lp2
+ ‖f‖L∞ ‖D

sg‖L∞ .
It only remains to consider T3,s. Since s > 2n + 1, again from (4.6) and (4.7), we
have

‖T3,s(Dsf, g)‖Lp + ‖T3,s(Dsf, g)‖BMO . ‖D
sf‖Lp1 ‖g‖Lp2 + ‖Dsf‖L∞ ‖g‖L∞ .

Now,
Dε(T3,s(D

sf, g)) =: T3,s+ε(D
s+εf, g)

where the bilinear symbol for T3,s+ε is similar to σ3,s in (4.4) but with cs,m replaced by
cs+ε,m, the Fourier coefficients for Φ(s+ε) which will satisfy cs+ε,m = O(1+ |m|−n−s−ε).
Consequently,

‖Dε(T3,s(D
sf, g))‖Lp .

∥∥Ds+εf
∥∥
Lp1
‖g‖Lp2

and, proceeding as before, after scaling we get

(4.15) ‖T3,s(Dsf, g)‖L∞ . ‖D
sf‖

1− n
pε

Lp1

∥∥Ds+εf
∥∥ n
pε

Lp1
‖g‖Lp2 + ‖Dsf‖L∞ ‖g‖L∞ .
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Finally, Theorem 2 follows from (4.2), (4.13), (4.14), and (4.15). �
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13. N. Tomita, A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259
(2010), no. 8, 2028–2044.

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: grafakosl@missouri.edu

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
E-mail address: dmaldona@math.ksu.edu

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
E-mail address: vnaibo@math.ksu.edu


