A REMARK ON AN ENDPOINT KATO-PONCE INEQUALITY
LOUKAS GRAFAKOS, DIEGO MALDONADO, AND VIRGINIA NAIBO

ABSTRACT. This note introduces bilinear estimates intended as a step towards an
L*>-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical
Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.

1. INTRODUCTION AND MAIN RESULT

The following inequality appears to be missing from the vast literature on a class of
inequalities known as Kato-Ponce inequalities or fractional Leibniz rules: For every
s > 0 there exists C' > 0, depending only on s and dimension n, such that
(1.1)

1D*(F9)le < C (D Fll o 9l + D%l o [ Fll) . for all £,g € S(R™),

where D* is the s-derivative operator” defined for h € S(R") as
Dsh(¢) = €I'h(§), V& eR™

Inequality (1.1) represents an endpoint case of inequalities of Kato-Ponce type (see
[1,3,4,5,6,8,9, 10, 11] and references therein) and we do not know whether it holds
true or not. Moreover, the fact that for any s > 0 and any f,g € S(R™), both sides
of (1.1) are finite, makes it quite difficult to find a counter-example to (1.1). Such
counter-example should violate the structure of the right-hand side of (1.1), but not
the fact that the left-hand side is finite. As a step towards (1.1) the purpose of this
note is to prove the following results

Theorem 1. Let 0 <r < s <t and set
_t—s sS—r

= and = .
t—r g t—r

Then, for every f,g € S(R™) we have
s T « ﬁ T [0} /8
(1.3) 1D*(f )l SID" Fllgece [|1D°F | 5o N9llzoe + 1 f1l o 1D gl 0 | D[ 0. -

where the implicit constant depends only on r,s,t, and dimension n. In particular,
s rop o B roje B
(14) D (f Pl e SUD"flITeo (||| e N9l e + 1Nl e 107 [ D9
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*The notation D?® seems to be standard for this operator although other notations include |D|*,
|V|* and (—A)3.
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Remark 1. Inequality (1.4) can be regarded as a combination of Leibniz-rule and in-
terpolation (or bilinear Gagliardo-Nirenberg) inequalities. Notice that (1.4) is weaker
than (1.1). Indeed, given 0 < r < s < t, by the linear Gagliardo-Nirenberg inequality
(see, for instance, Theorem 2.44 in [2]) we have

(1.5) 1D fll e S 1D A1 fliz. vFes®y.
Then, it follows that (1.1), if true, would imply (1.4).

Theorem 2. Suppose s > 2n + 1. Let 1 < p1,p2 < o0 and ¢ > 0 with n/p =
(1/p1 + 1/p2)n < e < 1. Then for every f g € S(R™) we have

1D (£l e S Nl 1 £l 1Dl 8"
H 1D fll o gl oo + ||f||L0<> 1D°gll o

where the implicit constant depends only on s, n, €, p1, and ps.

Remark 2. In the case s > 2n + 1, the proof of Theorem 2 will be based on a con-
nection between Kato-Ponce inequalities and the bilinear Calderén-Zygmund theory,
see Section 4. Notice that the inequality in Theorem 2 involves no derivatives lower
than D*. Also, ¢ > 0 can be arbitrarily small and py,ps € (1, 00) arbitrarily large, as
long as (1/p1 + 1/p2)n < e.

2. PRELIMINARIES

Let ® : R" — R be a smooth, non-negative, radial function supported in {£ €
R" ¢ [¢] <2} with @ =1in {{ € R" : [¢{] < 1}. Define ¥ : R" — R supported in
1/2 <€ <2as U(E) :=P(§) — D(2€) for £ € R™, so that

(2.1) > Ajh=hinS'(R") VheSR",
jEL
where, as usual, A;h is defined for h € S(R") as
Ajh(E) == T(2TIEN(E) VEER™
We recall that the Besov ng’o—norm is given by

(2.2) Il gee i= sup [ A5hl e < [T 12
JEZ L

For f € S(R") and A > 0 set fy(x) := f(Az) for every z € R". For s > 0 we have
(2.3) ID*(fa)llgoce = A (I D* fll goee  for all A =27, jy € Z.
We note tha ®(& + n)®(¢ )V (n) = ®(§)V(n) for every {,n € R", where P(-) =

®(471), and write @(5)(+) := | - [*®(-). Reasoning as in [6], the absolutely convergent
Fourier series for @4 (t)x[—sgn (t),

(2.4) D(t) = D Came ™ X s (t),

mezm
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has coefficients c ,, satistying
(2.5) Csm = O(1 + |m|™"7%).
3. PROOF OF THEOREM 1
Proof. Fix 0 <r < s < t. By (2.1), we have
D¥(fo)a) = [ Ie+ P FETm) ™ ddn = T1(F,g)(x) + (£, (),
with

~

D= [ XYl nl v ) f g dey

JEZ k<j

and

= [T ke alwIuE ) fOame e dsr

JEL j<k

Now, we split TI(f, g) (and then, similarly, IT) as follows

- /Rzn D+l R(2n)
JEZ

= /R% > le+ w2 TIE)D(27y) F(€)g(n)e* T dedn
J<0

T /R% ; &+ PP (2776)D(27 )

:/RgnZ’Hm U (277€)®(279n) D7 f(£)g(n)e*™ € dgdn

~

(©)g(m)e ™ dgdn

-~

(£)g(n)e™E = dedn

€l

-/, )3 "5,}" " y(2-i6)0 27 DT (gD dedy

=: Hl(DTf, g) + HQ(th7 g)

We now look at the bilinear kernel of II; (the kernel for II, will be dealt with in a
similar way).

(3.1) IL(f, g)(z) = - Ki(z —y,z — 2)f(y)g(2)dydz,

where, after putting ¥(_,(-) := |- |"¥(-) and using that ®(& + 7)®(E)U(n) =
O(£)W(n) for every &, n € R", K; is given by

_ |§ 77| 2mi(&y+n-z
K = E vtn2) ged
1<y7 Z) /]R?n — |§| ( g) ( ) 5 n

/R%ZQJS 27§+ M)W (27 B2 v dedy,

20
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Hence, using the Fourier expansion in (2.4) and noting that the support of ¥(_ (&) #(n)
is contained in {(&,n) : |€ +n| < 4}, we get

/ Z Z CstJ s=1) o Fg me277 (E4) ( 5) (2 ) 27rz£y+77z)d§dn

1<0 mezZn
= Z Z C&mgj(sr)/ o6 M2 ey (2796 B (27T n) e EV T dgdn
§<0 mezr R2™

= Z Z cs7m2j(57")22j"/ o (§+77)\II(, )(5)@(77)62”2j(5'y+’7'z)d5d77

2
§<0 mezn R2n

=37 N W ET2HE (4 21y B(m 4 22).

71<0 mezn"

Now,

Z Ki(z —y,z — 2) (A1 f)(y)g(z)dydz

ez VR

<D D ¥

J<0 mezZr 1€
[T PR 2 )AS i
RQn

For a fixed j € Z we look at the integral in y

e (9—i T
6271'15-(2 J 16+a:)

n 2im

/Rn U2+ 27z — ) A f(y)dy = / V(26w (27 f(€)de,

which, due to the support conditions on W, vanishes for every [ € Z\ {j —1,7j,j+1}.
Consequently,

L)@ <Y Y feaml2C

71<0 mezZ™ l=j—1,j5,j+1

<[ BRI G + P = B + 2 = IS o) dyd

<3 (Z 21(37")> (Z |Cs,m|> H‘If/(_\r)
<0 mezn

Since s —r > 0 we have } 2571 < 0o and, from (2.5), 3", s |csm| < 00. Hence,

L (f,9)(x)] < C

where C' > 0 depends only on r, s, and n.
Along the same lines, now for s < t one gets the bound for Il,(f, g),

a(f, 9)(a)] < ¢ (Z 2“8”) (Z |cs,mr> 175, o 2]

mezZn

@‘ o llall
N I N TP 7

“1’(—@

o > n
L1(Rn) Hcp‘ L1(R Hf||Bg5°° HQHLOO Vo € R",

11l sgee Mlgll o

LI(RH) Ll Rn



ON AN ENDPOINT KATO-PONCE INEQUALITY 5

with s — ¢ < 0. Then

(3.2) IS, 9l e < CUD" fll o + (| D" f pose) N9l e
Interchanging the roles of f and ¢ to deal with II yields
(3.3) [0(r.9)]| < D gllge + D'l o) 171 -

Given a positive dyadic number p, plugging in f,, and g, into (3.2) and (3.3), using
the scaling property (2.3) and the fact that II(f,,g,) = p°II(f, 9), and II(f,, 9,) =
IS, g) s we get

ITICf 9l S N2 ID" fll goe + A D f || o) gl oo
|19 S O 1D gl g + N D' o) 11l
for every positive number A. Minimizing in A each of the above inequalities leads to

IS )l S 1D Fieee D" F | faoe Nollooe
LaCOT I g 2

from which (1.3) follows. O

4. THE CASE s >2n +1

A smooth function o : R**\ {(0,0)} — C is said to belong to the class of bilinear
Coifman-Meyer multipliers if for all multi-indices o, f € N with |a| + || < 2n+1
there exist constants ¢, 3 > 0 such that

(4.1) 1020, 0 (&, m)] < cap(l€] + )1V (g, m) € R\ {(0,0)}.

In [6], the bilinear mapping (f, g) — D*(fg) was decomposed into the sum of three
bilinear multipliers as follows

(4.2) D*(fg) = Ths(D*f,9) + Tos(f, D°9) + T5(f, D%g),

where, keeping with the notation in Section 3, for (£,7) € R**\ {(0,0)} the bilinear
multipliers for 77 s and 75 s are given by

(143)  onaEn) = WD 2J+3>'§|§|§'5 and oy (E,1m) = 1.0 (1,€).
JEZ

respectively, which belong to the Coifman-Meyer class for every s > 0. On the other
hand, the multiplier for T3, denoted by o3, can be expressed as

(4.4) Tos(€m) = 30 S come Y E (2R w ) (27 n).
kEZ meZ™

For fixed &, 7 € R?"\{(0,0)} the condition on the support of ¥ implies that the sum in
k has only finitely many terms; namely, those with 2% ~ || ~ |n|. When derivatives
in £ and 1 of the product e ok (e hnm U(27FE) W (_s)(27%n) are taken, after each
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derivative a factor 27% (~ [£]7" ~ 9]~ ~ (|| +|n])~") appears, producing the right-
hand side of (4.1). However, when the derivatives fall on the factor e 62 (€)™ also
components of m € Z™ appear. Since the definition of a Coifman-Meyer multiplier

requires at most 2n + 1 derivatives, the worst case scenario for the sum over m € Z"
(i.e., the case in which all 2n + 1 derivatives fall on e 2 "€+7)™) Jeads to the sum

Z ‘Cs,m’|m|2n+l-
mezn

By (2.5), the sum above will be finite provided that s > 2n + 1. That is, whenever
s > 2n + 1 all three bilinear operators in (4.2), and therefore the mapping (f, g) —
D5(fg), can be realized as bilinear Coifman-Meyer multipliers. Since the class of
Coifman-Meyer multipliers is included in the family of bilinear Calderén-Zygmund
operators (see, [7, Section 6]) all the mapping properties of the type

(4.5) ITCf 9z S 1l lglly

that apply to bilinear C-Z operators T" on function spaces X, Y, and Z will also apply
to (f,g) — D*(fg). For example, for a bilinear C-Z operator T', given 1 < py,ps < 00
and 1/p :=1/p; + 1/ps, it holds that

(4.6) 1TCf D e S 1o 119 e

and (see [7, Proposition 1]) that,

(4.7) ITCf Dl paro S 1l pee N9l pee

as well as other end-point estimates such as

(4.8) 1T D e S ND°fllpee llgll e + 112 1979l poe -

As a consequence of the results above, we have

Theorem 3. If s > 2n + 1, then for every f,g € S(R™) we have the endpoint
inequalities

(4.9) 1D*(fD prro S NP fll e 19l e + (11l oo 1D°g | oo -
and
(4.10) 1D*(fo)ll e SND° fllpee gl + I f1 0 1Dl oo -

Remark 3. We note that the conditions (4.1) being satisfied with up to n+ 1 deriva-
tives (instead of 2n + 1) are sufficient for the corresponding multiplier operator to
be bounded from LP* x LP? into L? for 1 < py,ps,p < 0o and ]lo = pil + p%, as shown
in Tomita [13]. The endpoint boundedness L>* x L* into BMO for Coifman-Meyer
multipliers, with only up to n + 1 derivatives in (4.1), is unknown to us. To pass
through the bilinear C-Z theory, as done above, it suffices that the conditions (4.1)
be satisfied with up to 2n + 1 derivatives.

Proof of Theorem 2. By hypothesis, 1/p :=1/p1+1/pa, so that n/p < e < 1. It was
proved in [12, pp.193-198] that a function F' with [|[D°F||,, + | F|lgaro + |1 Fll » < 00
can be written as F' = Fy + G + I} where

(411)  Follpee SNDFlln s Gl SIEFpro,  and  [[Fill e SF L -
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Now, with T} s as in the decomposition (4.2), let us first choose F' := T} s(D*f, g), so
that from (4.11) we get

1705 (D f, 9l e S W T0s(D°F 9) o + [T15(D° f, 9 prgo + 1D (T0,s(D° F5 9)) -
The fact that T} 5 is a bilinear C-Z operator and (4.6) yield

T2, (D° . D o S MWD fll o 1191 e -
Also, from (4.7), it follows that

1T1(D°f D) paro S ND°fllpe 91l -
On the other hand, notice that
DT (D f, g)) = T178+6(Ds+6f7 9),

where the bilinear symbol for the operator 71 . equals 0y s4.(&,n) (using the notation
n (4.3)), also a Coifman-Meyer multiplier. Hence, (4.6) gives

||D€(T17S<Dsfv g))”Lp S/ HDSJFEfHLm Hg||LP2 :
Putting all together, for T} ;(f, g) we have

(412) | T1s(D*fo )l e S D Fllgon + D= F]] o) N9l pow + 1D fll e Mgl e

Given a positive dyadic number p, by replacing f and g in (4.12) with f, and g, and
using the facts that

||Ds(fli)||[,q :,us_g ||Dsf||an \V/QE [1700]7
that 1/p = 1/p1 + 1/p2, and that T3 ;(D*f,,, g,) = p* T1 s(D*f, g) ., we obtain
1T (D*f, Dl e S T2 1D fll s + A7 D= ) gl oo + 11D Fll e N9l e

for every positive number A. Minimization over A then implies

(413)  Ta(D* .9l S NPl

And, by an analogous argument based on 7,

(414) | Toslf, D) S N F Nl 1Dl + 1Al oo 1Dl o -

It only remains to consider T5. Since s > 2n + 1, again from (4.6) and (4.7), we
have

1T5.5(D f, Dl o + 1 T5.5(D°f, Dl paro S WD fllpon 9l re + 11D Fll oo 19l oo -

Now,

2o 9l + 1D° Fll o 19 e -

Da(T3,5<Dsf7 g)) = T3,s+a(Ds+Ef> g)
where the bilinear symbol for T; ;. is similar to o3 5 in (4.4) but with ¢, ,,, replaced by
Cs+e,m, the Fourier coefficients for @,y which will satisfy csicpm = O(14|m|7"7°7%).
Consequently,

||D€(T37S(Dsf7 g) HL:D ~ HDS—FEfHLm ||g||L1’2
and, proceeding as before, after scaling we get

(115)  |T5u(D°F, )l S I1D° Fll”™

2o N9l + 10° Fll o 19 e -
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Finally, Theorem 2 follows from (4.2), (4.13), (4.14), and (4.15). O
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