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Abstract. We extend a theorem by Grafakos and Tao [5] on multilinear interpolation
between adjoint operators to an off-diagonal situation. We provide an application.

1. Introduction and the Main Result

Multilinear interpolation has proved to be a powerful and indispensable tool in analysis.
The two main linear interpolation theorems, the Marcinkiewicz and Riesz-Thorin theorems,
have well-established multilinear analogs. The works [10], [6], [3], [4] provide multilinear
extensions of the Marcinkiewicz interpolation theorem. The Riesz-Thorin theorem is easily
adapted in the multilinear case in [12, 21, Chapter XII, (3.3)] and [1, Theorem 4.4.2]; related
versions of this result have appeared in [11], [8], [9].

A different type of interpolation is that between adjoint operators. In the linear case a
typical result would be as follows: if an operator and its adjoint are of weak type (1, 1),
then the operator is Lp bounded for all p ∈ (1,∞). A multilinear version of this result was
obtained in [5]. This theorem says that, under an initial condition similar to (1.1) below, if
an m-linear operator and all of its m adjoints are of restricted weak type (1, 1, . . . , 1, 1/m),
then the operator is bounded from Lp1 × · · · × Lpm to Lp for all 1 < p1, . . . , pm < ∞ and
1/m < p < ∞. In this context, an m-linear operator is called of restricted weak type
(p1, . . . , pm, p) if it maps Lp1 × · · · × Lpm to Lp,∞ when restricted to characteristic functions
of sets of finite measure. The jth adjoint of an m-linear operator T (defined on products of
simple functions on measure spaces (Xj, µj), j ∈ {1, . . . ,m}, and taking values in another
measure space (X0, µ0)) is another operator T ∗j such that∫
A0

T (χA1 , . . . , χAj−1
, χAj

, χAj+1
, . . . , χAm)dµ0 =

∫
Aj

T ∗j(χA1 , . . . , χAj−1
, χA0 , χAj+1

, χAm)dµj

for all measurable subsets Ai of Xi with nonzero finite measure. When T ∗0 is written, it is
understood to be T itself. For 0 < q <∞, q′ denotes the number q/(q − 1) and 1′ =∞.

In this note we obtain the following off-diagonal version of the main result in [5] in which
the diagonal case t = 1 and s = 1/m was considered.

Theorem 1.1. Let 1 ≤ t <∞, 0 < s ≤ 1, 1 < p < t′, and t < p1, . . . , pm <∞ be such that
1/p1 + · · ·+1/pm−1/p = m/t−1/s. Let (X0, µ0), (X1, µ1), . . . , (Xm, µm) be σ-finite measure
spaces. Suppose that an m-linear operator T is defined on the space of simple functions on
X1×· · ·×Xm and takes values in the space of measurable functions on X0. We assume that
T satisfies

sup
A0,A1,...,Am

1

µ0(A0)
1
p′ µ1(A1)

1
p1 · · ·µm(Am)

1
pm

∣∣∣∣∫
A0

T (χA1 , . . . , χAm) dµ0

∣∣∣∣ <∞, (1.1)
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where the supremum is taken over all measurable subsets Ai of Xi with nonzero finite measure.
Suppose that for each j ∈ {0, 1, . . . ,m}, T ∗j is of restricted weak type (t, t, . . . , t, s) with
constant Bj. Then there is a constant C = C(p1, . . . , pm, p, t, s) such that T is of restricted
weak type (p1, . . . , pm, p) with norm at most

CB
θ
(

1
t
− 1

p′

)
0 B

θ
(

1
t
− 1

p1

)
1 · · ·B

θ( 1
t
− 1

pm
)

m . (1.2)

where θ = (1/t+ 1/s− 1)−1.

The following well-known characterization of weak Lp will be used in the proof; see for
instance Proposition 7.2.12 in [2].

Proposition 1.2. Let 0 < p < ∞, A,B > 0, and let f be a measurable function on a
σ-finite measure space (X,µ).
(i) Suppose that ‖f‖Lp,∞ ≤ A. Then for every measurable set E of finite measure there exists
a measurable subset E ′ of E with µ(E ′) ≥ µ(E)/2 such that f is bounded on E ′ and∣∣∣∣ ∫

E′
f dµ

∣∣∣∣ ≤ 2
1
p Aµ(E)1−

1
p .

(ii) Suppose that a measurable function f on X has the property that for any measurable
subset E of X with µ(E) < ∞ there is a measurable subset E ′ of E with µ(E ′) ≥ µ(E)/2
such that f is integrable on E ′ and∣∣∣∣ ∫

E′
f dµ

∣∣∣∣ ≤ B µ(E)1−
1
p .

Then we have that
‖f‖Lp,∞ ≤ B 2

2
p
+ 3

2 .

2. The Proof of Theorem 1.1

Proof. First consider the case where

µ0(A0)

Bθ
0

≥ max

(
µ1(A1)

Bθ
1

, . . . ,
µm(Am)

Bθ
m

)
. (2.1)

Let M be the supremum given in (1.1). It will be enough to show that M is bounded above
by the constant in (1.2), from which Proposition 1.2(ii) gives the desired boundedness.

Since T is restricted weak type (t, . . . , t, s), Proposition 1.2(i) gives a subset A′0 of A0 with
measure µ0(A

′
0) ≥ µ0(A0)/2 so that∣∣∣∣∣
∫
A′0

T (χA1 , . . . , χAm)dµ0

∣∣∣∣∣ ≤ KB0 µ1(A1)
1
t · · ·µm(Am)

1
tµ0(A0)

1− 1
s

for some constant K = K(s). It then follows that∣∣∣∣∫
A0

T (χA1 , . . . , χAm)dµ0

∣∣∣∣ ≤
∣∣∣∣∣
∫
A′0

T (χA1 , . . . , χAm)dµ0

∣∣∣∣∣+

∣∣∣∣∣
∫
A0\A′0

T (χA1 , . . . , χAm)dµ0

∣∣∣∣∣
:= I + II .

We have that

I ≤ KB0µ1(A1)
1
t · · ·µm(Am)

1
tµ0(A0)

1− 1
s
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≤ µ0(A0)
1
p′ µ1(A1)

1
p1 · · ·µm(Am)

1
pm

(
KB0

(
Bθ

1

Bθ
0

) 1
t
− 1

p1

· · ·
(
Bθ
m

Bθ
0

) 1
t
− 1

pm

)
in view of (2.1) and

II ≤Mµ1(A1)
1
p1 · · ·µm(Am)

1
pm

(
1

2
µ0(A0)

) 1
p′

= µ0(A0)
1
p′ µ1(A1)

1
p1 · · ·µm(Am)

1
pm

(
M 2

− 1
p′
)

in view of (1.1). Consequently,

M ≤ KB0

(
Bθ

1

Bθ
0

) 1
t
− 1

p1

· · ·
(
Bθ
m

Bθ
0

) 1
t
− 1

pm

+M 2
− 1

p′

and since M <∞ by assumption (1.1), we have

M ≤ K

1− 2
− 1

p′
B
θ
(

1
t
− 1

p′

)
0 B

θ
(

1
t
− 1

p1

)
1 · · ·B

θ( 1
t
− 1

pm
)

m .

The preceding inequality is an implication of the fact that

1− θ
(
m

t
− 1

p1
− · · · − 1

pm

)
= 1− θ

(
1

s
− 1

p

)
= θ

(
1

θ
− 1

s
+

1

p

)
= θ

(
1

t
− 1

p′

)
.

There are m more cases left in each of which µj(Aj)/B
θ
j is interchanged with µ0(A0)/B

θ
0 in

(2.1) for some j ∈ {1, . . . ,m}. Fixing such a j we recall the assumption that the jth adjoint
T ∗j of T is also of restricted weak type (t, . . . , t, s). Setting p0 = p′, we notice that (1.1) can
be written as

sup
A0,A1,...,Am

1

µj(Aj)
1

(p′
j
)′ µ0(A0)

1
p0

∏
i 6=j

µi(Ai)
1
pi

∣∣∣∣∣
∫
Aj

T ∗j(χA1 , . . . , χA0 , . . . , χAm)dµj

∣∣∣∣∣ <∞,
in which the (m+1)-tuple (p1, . . . , pj−1, p0, pj+1, p

′
j) replaces (p1, . . . , pm, p), and the identity

( 1
p0

+
∑

i 6=j
1
pi

)− 1
p′j

= m
t
− 1

s
replaces 1

p1
+ · · ·+ 1

pm
− 1

p
= m

t
− 1

s
. The argument in this case

follows by an identical repetition of the argument in the preceding case, under this change
of notation and concludes the proof in all cases. �

Remark 1. One may wonder whether hypothesis (1.1) weakens the statement of the main
theorem. As in [5], it is an essential element of the proof, but in most applications it does
not present any significant restriction. In fact, in most cases, one may work with truncated
versions of an operator T for which (1.1) holds with constants depending on the trunca-
tion. Then boundedness is obtained for truncated operators with bounds independent of the
truncation and a limiting argument implies the same conclusion for the original operator T .

Remark 2. It is also worth noting that if (1.1) holds for every point (p1, . . . , pm) with 1 < p <
t′, t < p1, . . . , pm <∞ and 1/p1 + · · ·+ 1/pm− 1/p = m/t− 1/s, then one obtains restricted
weak type estimates at every point in the open convex hull H of these points combined with
the point (1

t
, . . . , 1

t
, 1
s
). Then by the multilinear Marcinkiewicz interpolation theorem (see

for instance [4]), it follows that T satisfies strong type bounds in H.
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3. An Application

Let 0 < α < n. Consider the bilinear fractional integral

Iα(f, g)(x) =

∫
Rn

f(x+ y)g(x− y)|y|α−ndy, (3.1)

defined for positive functions f, g on Rn. It was shown in [3] and [7] that Iα maps the product
Lp1(Rn)×Lp2(Rn) to Lp(Rn) whenever 1

p1
+ 1

p2
= 1

p
+ α

n
and ( 1

p1
, 1
p2
, 1
p
) lies in the open convex

hull of the points (n
α
,∞,∞), (∞, n

α
,∞), (1,∞, n

n−α), (∞, 1, n
n−α), and (1, 1, n

2n−α). The proof
is achieved in two steps: (a) restricted weak type estimates are proven at the aforementioned
five points first; (b) then multilinear interpolation is used to obtain boundedness in the open
convex hull H of these five points.

In this note we provide a simpler proof of the boundedness of Iα in H by reducing it to a
restricted weak type estimate at only the point (1, 1, n

2n−α) for Iα and its two adjoints. We

will use Theorem 1.1 with t = 1 and s = n
2n−α for which 1

p1
+ 1

p2
− 1

p
= 2

t
− 1

s
. To satisfy

condition (1.1) we introduce the following truncated version of Iα:

Iε,N,Mα (f, g)(x) = χ|x|≤M

∫
ε≤|y|≤N

f(x+ y)g(x− y)|y|α−ndy .

For 1 < p <∞ it is easy to see that∥∥Iε,N,Mα (χA1 , χA2)
∥∥
Lp ≤ Cε,N,M min(1, |A1|)

1
p min(1, |A2|)

1
p min(1, |A1|, |A2|)

1
p′

≤ Cε,N,M |A1|
1
p1 |A2|

1
p2 ,

and from this (1.1) follows for Iε,N,Mα via Hölder’s inequality. Here p′ = p
p−1 and 0 <

1
p1

+ 1
p2
− 1

p
< 1. Analogous estimates hold for the two adjoints of Iε,N,Mα . For instance(
Iε,N,Mα

)∗1
(h, g)(x) =

∫
ε≤|y|≤N

h(x− y)g(x− 2y)|y|α−nχ|x−y|≤M dy ,

which is bounded by

χ|x|≤M+N

∫
ε≤|y|≤N

h(x− y)g(x− 2y) |y|α−ndy,

when g, h ≥ 0, and thus a similar estimate holds for it. Then Theorem 1.1 and Remark
2 yield boundedness for Iε,N,Mα in H with bounds as in (1.2) i.e., independent of ε,N,M .
Letting ε ↓ 0 and N,M ↑ ∞ we obtain the same conclusion for Iα, via the Lebesgue monotone
theorem.
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