
Science in China Series A: Mathematics
Dec., 2008, Vol. 51, No. 12, 2253–2284
www.scichina.com math.scichina.com
www.springerlink.com

Maximal function characterizations of Hardy

spaces on RD-spaces and their applications

Loukas GRAFAKOS1, LIU LiGuang2 & YANG DaChun2†

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
2 School of Mathematical Sciences, Beijing Normal University; Laboratory of Mathematics and Complex Sys-

tems, Ministry of Education, Beijing 100875, China

(email: loukas@math.missouri.edu, liuliguang@mail.bnu.edu.cn, dcyang@bnu.edu.cn)

Abstract Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and

Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈
(0,∞) denote by Hp

α(X ), Hp
d(X ), and H∗, p(X ) the corresponding Hardy spaces on X defined by

the nontangential maximal function, the dyadic maximal function and the grand maximal function,

respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these

Hardy spaces coincide with Lp(X ) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1].

An atomic characterization for H∗, p(X ) with p ∈ (n/(n + 1), 1] is also established; moreover, in the

range p ∈ (n/(n + 1), 1], it is proved that the space H∗, p(X ), the Hardy space Hp(X ) defined via the

Littlewood-Paley function, and the atomic Hardy space of Coifman and Weiss coincide. Furthermore, it

is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from Hp(X ) to

some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p,∞)∩ [1,∞) or continuous

(p,∞)-atoms into uniformly bounded elements of B.
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1 Introduction

The theory of Hardy spaces on the Euclidean space R
n certainly plays an important role in

harmonic analysis and has been systematically studied and developed; see, for example, [1–3].
It is well known that spaces of homogeneous type in the sense of Coifman and Weiss[4] present
a natural setting for the Calderón-Zygmund theory of singular integrals; see, for instance, [5].
Recall that a space of homogeneous type X is a set equipped with a metric d and a Borel
regular measure μ that satisfies the doubling property. Coifman and Weiss[5] introduced the
atomic Hardy spaces Hp

at (X ) for p ∈ (0, 1]. Under the assumption that the measure of any
ball in X is equivalent to its radius (i. e., X is an Ahlfors 1-regular metric measure space),
Coifman and Weiss[5] established a molecular characterization for H1

at(X ). Also in this setting,
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if p ∈ (1/2, 1], Maćıas and Segovia[6] obtained the grand maximal function characterization for
Hp

at (X ) via distributions acting on certain spaces of Lipschitz functions; Han[7] established a
Lusin-area characterization for Hp

at (X ); Duong and Yan[8] characterized these atomic Hardy
spaces in terms of Lusin area functions associated with certain Poisson semigroups; Li[9] also
characterized Hp

at (X ) by grand maximal functions defined via test functions introduced in [10].

Structures of spaces of homogeneous type encompass several important examples in harmonic
analysis, such as Euclidean spaces with A∞-weights (of the Muckenhoupt class), Ahlfors n-
regular metric measure spaces (see, for example, [11, 12]), Lie groups of polynomial growth
(see, for instance, [13–15]), and Carnot-Carathéodory spaces with doubling measures (see [16–
22]). All these examples fall under the scope of the study of RD-spaces introduced in [23]
(see also [24]). An RD-space X is a space of homogeneous type which has a “dimension”
n and satisfies the following reverse doubling property: there exists a constant a0 > 1 such
that for all x ∈ X and 0 < r < diam (X )/a0, B(x, a0r) \ B(x, r) �= ∅, where in this article
diam (X ) := supx, y∈X d(x, y). A Littlewood-Paley theory of Hardy spaces on RD-spaces was
established in [24], and these Hardy spaces are known to coincide with some of Triebel-Lizorkin
spaces in [23].

Let X be an RD-space with “dimension” n. In this paper we achieve two goals. First,
we introduce various Hardy spaces on X via the nontangential maximal function, the dyadic
maximal function, and the grand maximal function, and show that these Hardy spaces coincide
with Lp(X ) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. When p ∈ (n/(n +
1), 1], we further identify these Hardy spaces with the Hardy space Hp(X ) defined via the
Littlewood-Paley function in [23, 24] and with the atomic Hardy space of Coifman and Weiss
in [5]. Secondly, we prove that a sublinear operator T uniquely extends to a bounded sublinear
operator from Hp(X ) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when
q ∈ (p,∞)∩ [1,∞) or continuous (p,∞)-atoms into uniformly bounded elements of B. This last
result answers a question posed by Meda, Sjögren and Vallarino in [25].

To be precise, in Section 2, we introduce various Hardy spaces Hp
α(X ) for α ∈ (0,∞), Hp

d(X ),
and H∗, p(X ), defined in terms of the nontangential maximal function, the dyadic maximal
function, and the grand maximal function, respectively. We also introduce a slight variant of
test functions in [23, 24], which is crucial in applications; see Remark 2.9 (iii) below.

One of the contributions of this paper is to establish a new inhomogeneous discrete Calderón
reproducing formula; see Theorem 3.3 of Section 3. This formula plays a key role in the whole
paper and may be useful in the study of other problems. Moreover, in Section 3, we prove that
all Hardy spaces mentioned above coincide with Lp(X ) when p ∈ (1,∞], and all these Hardy
spaces are equivalent to each other when p ∈ (n/(n + 1), 1].

Section 4 is devoted to obtaining an atomic characterization for the Hardy space H∗, p(X )
when p ∈ (n/(n + 1), 1] by using certain ideas from [6].

Some applications are given in Section 5. First, when p ∈ (n/(n + 1), 1], we prove that
H∗, p(X ) and Hp(X ) coincide by means of their atomic characterizations, where Hp(X ) is the
Hardy space defined via the Littlewood-Paley function in [23, 24]; see Theorem 5.4. From a key
observation (Lemma 5.3) which establishes the connection between the space of test functions
and the Lipschitz space introduced by Coifman and Weiss (cf. [5, (2.2)]), it follows directly
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that Hp(X ) and the atomic Hardy space of Coifman and Weiss[5] coincide; see Remark 5.5 (ii).
This also answers a question in [24, Remark 2.30].

Our second application concerns the boundedness of sublinear operators from Hp(X ) to some
quasi-Banach space B. It is well-known that atomic characterizations play an important role in
obtaining boundedness of sublinear operators in Hardy spaces, namely, boundedness of these
operators can be deduced from their behavior on atoms in principle. However, Meyer in [26,
p. 513] (see also [27, 28]) gave an example of f ∈ H1(Rn) whose norm cannot be achieved
by its finite atomic decompositions via (1, ∞)-atoms. Based on this fact, Bownik[28, Theorem2]

constructed a surprising example of a linear functional defined on a dense subspace of H1(Rn),
which maps all (1, ∞)-atoms into bounded scalars, but cannot extend to a bounded linear
functional on the whole H1(Rn). It follows that proving that a linear operator T maps all
(p, ∞)-atoms into uniformly bounded elements of B does not guarantee the boundedness of T

from the entire Hp(Rn) (with p ∈ (0, 1]) to some quasi-Banach space B; this phenomenon was
essentially observed by Meyer in [29, p. 19]. Motivated by this, Yabuta[30] gave some sufficient
conditions for the boundedness of T from Hp(Rn) with p ∈ (0, 1] to Lq(Rn) with q � 1 or
Hq(Rn) with q ∈ [p, 1]. It was proved in [31] that a linear operator T extends to a bounded
linear operator from Hardy spaces Hp(Rn) with p ∈ (0, 1] to some quasi-Banach space B if and
only if T maps all (p, 2, s)-atoms for some s � �n(1/p − 1)� into uniformly bounded elements
of B, where �n(1/p− 1)� denotes the maximal integer no more than n(1/p− 1). For q ∈ (1,∞],
denote by H1,q

fin (Rn) the vector space of all finite linear combinations of (1, q)-atoms endowed
with the following norm:

‖f‖H1,q
fin (Rn)

:= inf
{ N∑

j=1

|λj | : f =
N∑

j=1

λjaj , N ∈ N, {λj}N
j=1 ⊂ C, and {aj}N

j=1 are (1, q)-atoms
}

.

Recently, by means of the maximal characterization of H1(Rn), Meda, Sjögren and Vallarino[25]

proved that ‖·‖H1(Rn) and ‖·‖H1, q
fin (Rn) are equivalent quasi-norms on H1, q

fin (Rn) with q ∈ (1,∞)

or on H1,∞
fin (Rn) ∩ C(Rn), where C(Rn) denotes the set of continuous functions. (It was also

claimed in [25] that this equivalence of norms remains true for Hp(Rn) and (p, q)-atoms with
p ∈ (0, 1) and q ∈ [1,∞].) From this these authors deduced that a linear operator defined on
H1, q

fin (Rn) which maps (1, q)-atoms or continuous (1,∞)-atoms into uniformly bounded elements
of some Banach space B uniquely extends to a bounded linear operator from H1(Rn) to B.
In [32], the results in [25] were generalized to weighted Hardy spaces on R

n with a general
expansive matrix dilation. In [25], Meda, Sjögren and Vallarino also pointed out that it is
not evident whether their results for Hp(Rn) can be extended to Hardy spaces on spaces of
homogeneous type. In Section 5, using some ideas from [25], we give an affirmative answer
to this question; see Theorems 5.6 and 5.9 below. We should mention that the result of [30]
was generalized to Ahlfors 1-regular metric measure spaces in [33], and the result of [31] was
extended to RD-spaces in [34]. Also, by using the dual theory, Meda, Sjögren and Vallarino[25]

showed that T extends uniquely to a bounded linear operator from H1(X ) to L1(X ) if and only
if T maps all (1, q)-atoms with q ∈ (1,∞) to uniformly bounded elements of L1(X ), where X
is a space of homogeneous type. However, this result is valid only for linear operators and the
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Hardy space H1(X ).
Finally, we mention that a radial maximal function characterization of these Hardy spaces

was also recently given in [35].
In this paper we use the following notation: N := {1, 2, . . .}, Z+ := N∪{0} and R+ := [0,∞).

For any p ∈ [1,∞], we denote by p′ the conjugate index, namely, 1/p + 1/p′ = 1. We also
denote by C a positive constant independent of the main parameters involved, which may vary
at different occurrences. Constants with subscripts do not change through the whole paper.
We use f � g and f � g to denote f � Cg and f � Cg, respectively. If f � g � f , we then
write f ∼ g. For any a, b ∈ R, set (a ∧ b) := min{a, b} and (a ∨ b) := max{a, b}.
2 Preliminaries

We first recall the notions of spaces of homogeneous type in the sense of [4, 5] and RD-spaces
in [23].

Definition 2.1. Let (X , d) be metric space with Borel regular measure μ such that all balls
defined by d have finite and positive measures. For any x ∈ X and r > 0, set B(x, r) := {y ∈
X : d(x, y) < r}.

(i) The triple (X , d, μ) is called a space of homogeneous type if there exists a constant C1 � 1
such that for all x ∈ X and r > 0,

μ(B(x, 2r)) � C1μ(B(x, r)) (doubling property). (2.1)

(ii) Let 0 < κ � n. The triple (X , d, μ) is called a (κ, n)-space if there exist constants 0 <

C2 � 1 and C3 � 1 such that for all x ∈ X , 0 < r < diam (X )/2 and 1 � λ < diam (X )/(2r),

C2λ
κμ(B(x, r)) � μ(B(x, λr)) � C3λ

nμ(B(x, r)), (2.2)

where diam (X ) = supx, y∈X d(x, y).
A space of homogeneous type is called an RD-space, if it is a (κ, n)-space for some 0 < κ � n,

i. e., if some “reverse” doubling condition holds.

Remark 2.2. (i) In some sense, n measures the “dimension” of X . Obviously a (κ, n) space
is a space of homogeneous type with C1 := C32n. Conversely, a space of homogeneous type
satisfies the second inequality of (2.2) with C3 := C1 and n := log2 C1.

(ii) If μ is doubling, then μ satisfies (2.2) if and only if there exist constants a0 > 1 and
C̃0 > 1 such that for all x ∈ X and 0 < r < diam (X )/a0,

μ(B(x, a0r)) � C̃0μ(B(x, r)) (reverse doubling property)

(If a0 = 2, this is the classical reverse doubling condition), and equivalently, for all x ∈ X and
0 < r < diam (X )/a0, B(x, a0r) \ B(x, r) �= ∅; see [23, 36].

(iii) From (ii) of this remark, it follows that if X is an RD-space, then μ({x}) = 0 for all
x ∈ X .

(iv) Let d be a quasi-metric, which means that there exists A0 � 1 such that for all x, y,
z ∈ X , d(x, y) � A0(d(x, z)+d(z, y)). Recall that Maćıas and Segovia[37, Theorem 2] proved that
there exists an equivalent quasi-metric d̃ such that all balls corresponding to d̃ are open in the
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topology induced by d̃, and there exist constants A′
0 > 0 and θ ∈ (0, 1) such that for all x, y,

z ∈ X ,

|d̃(x, z) − d̃(y, z)| � A′
0d̃(x, y)θ [d̃(x, z) + d̃(y, z)]1−θ.

It is known that the approximation of the identity as in Definition 2.3 below also exists for d̃;
see [23]. Obviously, all results in this paper are invariant on equivalent quasi-metrics. From
these facts, we deduce that all conclusions of this paper are still valid for quasi-metrics.

In this paper, we always assume that X is an RD-space and μ(X ) = ∞. For any x, y ∈ X
and δ > 0, set Vδ(x) := μ(B(x, δ)) and V (x, y) := μ(B(x, d(x, y))). It follows from (2.1) that
V (x, y) ∼ V (y, x). The following notion of approximations of the identity on RD-spaces were
first introduced in [23]; see also [24].

Definition 2.3. Let ε1 ∈ (0, 1], ε2 > 0 and ε3 > 0. A sequence {Sk}k∈Z of bounded linear
integral operators on L2(X ) is said to be an approximation of the identity of order (ε1, ε2, ε3)
(in short, (ε1, ε2, ε3)-AOTI ), if there exists a positive constant C4 such that for all k ∈ Z and
all x, x′, y and y′ ∈ X , Sk(x, y), the integral kernel of Sk is a function from X × X into C

satisfying

(i) |Sk(x, y)| � C4
1

V2−k (x)+V2−k (y)+V (x,y)
2−kε2

(2−k+d(x,y))ε2 ;

(ii) |Sk(x, y) − Sk(x′, y)| � C4
d(x,x′)ε1

(2−k+d(x,y))ε1
1

V2−k (x)+V2−k (y)+V (x,y)
2−kε2

(2−k+d(x,y))ε2 for d(x, x′)
� (2−k + d(x, y))/2;

(iii) Property (ii) holds with x and y interchanged ;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| � C4
d(x,x′)ε1

(2−k+d(x,y))ε1
d(y,y′)ε1

(2−k+d(x,y))ε1

× 1
V2−k (x)+V2−k (y)+V (x,y)

2−kε3

(2−k+d(x,y))ε3 for d(x, x′) � (2−k + d(x, y))/3 and d(y, y′) � (2−k +
d(x, y))/3;

(v)
∫
X Sk(x, y) dμ(y) =

∫
X Sk(x, y) dμ(x) = 1.

Remark 2.4. It was proved in [23, Theorem 2.1] that for any ε1, ε2, ε3 as in Definition 2.3,
there exists an (ε1, ε2, ε3)- AOTI {Sk}k∈Z with bounded support on X , which means that there
exists a positive constant C such that for all k ∈ Z and d(x, y) � C2−k, Sk(x, y) = 0.

The following space of test functions plays a key role in this paper, which is an equivalent
variant of the space of test functions in [23, Definition 2.3]; see also [24].

Definition 2.5. Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A function ϕ on X is
said to be a test function of type (x1, r, β, γ) if

(i) |ϕ(x)| � C 1
μ(B(x,r+d(x, x1)))

(
r

r+d(x1,x)

)γ for all x ∈ X ;

(ii) |ϕ(x) − ϕ(y)| � C
( d(x,y)

r+d(x1,x)

)β 1
μ(B(x,r+d(x,x1)))

(
r

r+d(x1,x)

)γ for all x, y ∈ X satisfying
d(x, y) � (r + d(x1, x))/2.

We denote by G(x1, r, β, γ) the set of all test functions of type (x1, r, β, γ). If ϕ ∈ G(x1, r, β, γ),
we define its norm by ‖ϕ‖G(x1, r, β, γ) := inf{C : (i) and (ii) hold}. The space G(x1, r, β, γ) is
called the space of test functions.

Remark 2.6. (i) If μ(B(x, r + d(x, x1))) is replaced by Vr(x1) + V (x1, x) in Definition 2.5,
then G(x1, r, β, γ) was introduced in [23, Definition 2.3]; see also [24].

(ii) Notice that μ(B(x, r + d(x, x1))) ∼ Vr(x1) + V (x1, x) by (2.2). This implies that both
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spaces of test functions in Definition 2.5 and [23, Definition 2.3] are equivalent and with equiv-
alent norms. Moreover, see Remark 2.9 (iii) for the advantage of Definition 2.5.

Throughout the paper, we fix x1 ∈ X . Let G(β, γ) := G(x1, 1, β, γ). It is easy to see that
for any x2 ∈ X and r > 0, we have G(x2, r, β, γ) = G(β, γ) with equivalent norms (but with
constants depending on x1, x2 and r). Furthermore, G(β, γ) is a Banach space.

For any given ε ∈ (0, 1], let Gε
0(β, γ) be the completion of the space G(ε, ε) in G(β, γ)

when β, γ ∈ (0, ε]. Obviously Gε
0(ε, ε) = G(ε, ε). Moreover, ϕ ∈ Gε

0(β, γ) if and only if
ϕ ∈ G(β, γ) and there exists {φi}i∈N ⊂ G(ε, ε) such that ‖ϕ − φi‖G(β,γ) → 0 as i → ∞.
If ϕ ∈ Gε

0(β, γ), define ‖ϕ‖Gε
0(β,γ) := ‖ϕ‖G(β,γ). Obviously Gε

0(β, γ) is a Banach space and
‖ϕ‖Gε

0(β,γ) = limi→∞ ‖φi‖G(β,γ) for the above chosen {φi}i∈N.
We define

G̊(x1, r, β, γ) :=
{

ϕ ∈ G(x1, r, β, γ) :
∫
X

ϕ(x) dμ(x) = 0
}

,

which is called the space of test functions with mean zero. The space G̊ε
0(β, γ) is defined to be

the completion of G̊(ε, ε) in G̊(β, γ) when β, γ ∈ (0, ε]. Moreover, if ϕ ∈ G̊ε
0(β, γ), we then define

‖ϕ‖G̊ε
0(β,γ) := ‖ϕ‖G(β,γ).

The notation (Gε
0(β, γ))′ denotes the dual space of Gε

0(β, γ), that is, the set of all linear
functionals f from Gε

0(β, γ) to C with the property that there exists a positive constant C such
that for all ϕ ∈ Gε

0(β, γ), |〈f, ϕ〉| � C‖ϕ‖G(β,γ). We denote by 〈f, ϕ〉 the natural pairing of
elements f ∈ (Gε

0(β, γ))′ and ϕ ∈ Gε
0(β, γ). Similarly, (G̊ε

0(β, γ))′ denotes the set of all bounded
linear functionals from G̊ε

0(β, γ) to C.
The following cube constructions, which provide an analogue of the grid of Euclidean dyadic

cubes on spaces of homogeneous type, were given by Christ[38].

Lemma 2.7. Let X be a space of homogeneous type. Then there exists a collection {Qk
α ⊂

X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some index set, and constants δ ∈ (0, 1) and
C5, C6 > 0 such that

(i) μ(X \ ∪αQk
α) = 0 for each fixed k and Qk

α ∩ Qk
β = ∅ if α �= β;

(ii) for any α, β, k, � with � � k, either Q	
β ⊂ Qk

α or Q	
β ∩ Qk

α = ∅;
(iii) for each (k, α) and each � < k, there is a unique β such that Qk

α ⊂ Q	
β;

(iv) diam (Qk
α) � C5δ

k;
(v) each Qk

α contains some ball B(zk
α, C6δ

k), where zk
α ∈ X .

In fact, we can think of Qk
α as being a dyadic cube with diameter rough δk centered at zk

α.
In what follows, for simplicity, we may assume that δ = 1/2; see [23, p. 25] or [10, pp. 96–98]
for how to remove this restriction. For any dyadic cube Q and any function g, set

mQ(g) :=
1

μ(Q)

∫
Q

g(x) dμ(x).

Let ε1, ε2 and {Sk}k∈Z be as in Definition 2.3 and ε ∈ (0, ε1 ∧ ε2). Observe that for any fixed
x ∈ X , Sk(x, ·) ∈ Gε

0(β, γ) with β, γ ∈ (0, ε). In what follows, for any k ∈ Z, f ∈ (Gε
0(β, γ))′

and x ∈ X , we define Sk(f)(x) := 〈f, Sk(x, ·)〉.
Definition 2.8. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2) and {Sk}k∈Z be an (ε1, ε2, ε3)-
AOTI . Let p ∈ (0,∞], α ∈ (0,∞) and f ∈ (Gε

0(β, γ))′ with some β, γ ∈ (0, ε). For any x ∈ X ,
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the grand maximal function of f is defined by

f∗(x) := sup{|〈f, ϕ〉| : ϕ ∈ Gε
0(β, γ), ‖ϕ‖G(x,r,β,γ) � 1 for some r > 0}; (2.3)

the nontangential maximal function of f is defined by

Mα(f)(x) := sup
k∈Z

sup
d(x, y)�α2−k

|Sk(f)(y)|; (2.4)

and the dyadic maximal function of f is defined by

Md(f)(x) := sup
k∈Z, α∈Ik

mQk
α
(|Sk(f)|)χQk

α
(x), (2.5)

where {Qk
α}k∈Z, α∈Ik

is as in Lemma 2.7.

The corresponding Hardy spaces are defined, respectively, by

H∗, p(X ) := {f ∈ (Gε
0(β, γ))′ : ‖f∗‖Lp(X ) < ∞},

Hp
α(X ) := {f ∈ (Gε

0(β, γ))′ : ‖Mα(f)‖Lp(X ) < ∞}

and Hp
d(X ) := {f ∈ (Gε

0(β, γ))′ : ‖Md(f)‖Lp(X ) < ∞}. Moreover, we define ‖f‖H∗, p(X ) :=
‖f∗‖Lp(X ), ‖f‖Hp

α(X ) := ‖Mα(f)‖Lp(X ) and ‖f‖Hp
d(X ) := ‖Md(f)‖Lp(X ).

Remark 2.9. (i) Lemma 2.7 implies that Md(f)(x) can be equivalently defined by

Md(f)(x) := sup{mQk
α
(|Sk(f)|) : k ∈ Z, α ∈ Ik, Qk

α � x}, (2.6)

where {Qk
α}k∈Z,α∈Ik

is as in Lemma 2.7.
(ii) Let {Sk}k∈Z and α be as in Definition 2.8. Observing that there exists a positive constant

Cα such that supk∈Z
supd(x, y)�α2−k ‖Sk(y, ·)‖G(x,2−k,ε1,ε2) =: Cα < ∞, we then obtain that for

all x ∈ X , Mα(f)(x) � Cαf∗(x).
(iii) For any λ ∈ (0,∞), the set Ω := {x ∈ X : f∗(x) > λ} is open, which is a key fact used in

Section 4. In fact, if x0 ∈ Ω, then there exists ϕ ∈ Gε
0(β, γ) such that ‖ϕ‖G(x0,r,β,γ) � 1 for some

r > 0 and |〈f, ϕ〉| > λ. Let η be a sufficiently small positive quantity such that |〈f, ϕ〉| > λ(1+η).
For any x ∈ B(x0, r−r/(1+η)1/γ), choose s ∈ (0,∞) satisfying r/(1+η)1/γ < s < r−d(x, x0).
It is easy to verify that ‖ϕ‖G(x,s,β,γ) < 1+η. Thus f∗(x) > λ for all x ∈ B(x0, r−r/(1+η)1/γ),
which implies that Ω is open.

(iv) It is proved in Corollary 3.11 below that if p ∈ (1,∞], then H∗, p(X ), Hp
α(X ) and Hp

d(X )
are all equivalent to Lp(X ).

(v) Let ε ∈ (0, 1) and p ∈ (n/(n+ε), 1]. It is proved in Remark 3.15 below that if n(1/p−1) <

β, γ < ε, then the definitions of Hardy spaces H∗, p(X ), Hp
α(X ) and Hp

d(X ) are independent of
the choices of AOTI ’s and (Gε

0(β, γ))′. Moreover, they coincide with each other.

3 Maximal function characterizations

The following basic properties concerned with RD-spaces are useful throughout the paper, which
are proved in [23, Lemma 2.1, Propositions 2.2 and 3.1]. In what follows, for any f ∈ L1

loc (X ),
the centered Hardy-Littlewood maximal function M(f) is defined by that for all x ∈ X ,

M(f)(x) := sup
r>0

1
μ(B(x, r))

∫
B(x, r)

|f(y)| dμ(y).
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Lemma 3.1. Let δ > 0, a > 0, r > 0 and θ ∈ (0, 1). Then,

(i) For all x, y ∈ X and r > 0, μ(B(x, r + d(x, y))) ∼ μ(B(y, r + d(x, y))).

(ii) If x, x′, x1 ∈ X satisfy d(x, x′) � θ(r + d(x, x1)), then r + d(x, x1) ∼ r + d(x′, x1) and
μ(B(x, r + d(x, x1))) ∼ μ(B(x′, r + d(x′, x1))).

(iii)
∫
X

1
μ(B(x,r+d(x,y)))(

r
r+d(x,y))

ad(x, y)η dμ(x) � Crη uniformly in x ∈ X and r > 0 if
a > η � 0.

(iv) For all f ∈ L1
loc (X ) and x ∈ X ,

∫
d(x, y)>δ

1
V (x,y)

δa

d(x,y)a |f(y)| dμ(y) � CM(f)(x) uni-
formly in δ > 0, f ∈ L1

loc (X ) and x ∈ X .

(v) Let {Sk}k∈Z be an (ε1, ε2, ε3)-AOTI with ε1 ∈ (0, 1], ε2 > 0 and ε3 > 0. Then Sk is
bounded on Lp(X ) for p ∈ [1,∞] uniformly in k ∈ Z. For any f ∈ Lp(X ) with p ∈ (1,∞),
‖Sk(f)‖Lp(X ) → 0 as k → −∞. For any f ∈ Lp(X ) with p ∈ [1,∞), ‖Sk(f) − f‖Lp(X ) → 0 as
k → ∞.

We introduce the following inhomogeneous approximation of the identity on (X , d, μ), which
is a slight variant of the one in [23].

Definition 3.2. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and �0 ∈ Z. A sequence {Sk}∞k=	0
of linear

operators is said to be an inhomogeneous approximation of the identity of order (ε1, ε2, ε3)
(for short, (ε1, ε2, ε3)-�0-AOTI ), if Sk satisfies (i) through (v) of Definition 2.3 for any k ∈
{�0, �0 + 1, . . .}.

In the following, for k ∈ Z and τ ∈ Ik, we denote by Qk,ν
τ , ν = 1, 2, . . . , N(k, τ), the set of

all cubes Qk+j0
τ ′ ⊂ Qk

τ , where Qk
τ is the dyadic cube as in the Lemma 2.7 and j0 is a positive

integer satisfying

2−j0C5 < 1/3. (3.1)

Denote by zk,ν
τ the “center” of Qk,ν

τ and yk,ν
τ any point of Qk,ν

τ .

For any (ε1, ε2, ε3)-�0-AOTI, following the procedure of the proof for [23, Theorem 4.6], we
obtain a new inhomogeneous discrete Calderón reproducing formula, which starts from any
�0 ∈ Z. The details of the proof are omitted by similarity. This inhomogeneous discrete
Calderón reproducing formula plays a key role in this paper, which has independent interest.

Theorem 3.3. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2) and �0 ∈ Z. Let {Sk}k∈Z be an
(ε1, ε2, ε3)-�0-AOTI . Set D	0 := S	0 and Dk := Sk − Sk−1 for k � �0 + 1. Then for any fixed
j0 satisfying (3.1) large enough, there exists a family of functions {D̃k(x, y)}∞k=	0

such that for
any fixed yk,ν

τ ∈ Qk,ν
τ with k � �0 +1, τ ∈ Ik and ν ∈ {1, 2, . . . , N(k, τ)}, and all f ∈ (Gε

0(β, γ))′

with β, γ ∈ (0, ε),

f(x) =
∑

τ∈I�0

N(	0,τ)∑
ν=1

∫
Q

�0,ν
τ

D̃	0(x, y) dμ(y)D	0,ν
τ,1 (f)

+
∞∑

k=	0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )D̃k(x, yk,ν

τ )Dk(f)(yk,ν
τ )

=
∑

τ∈I�0

N(	0,τ)∑
ν=1

∫
Q

�0,ν
τ

D̃	0(x, y) dμ(y)D	0,ν
τ,1 (f)
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+
∞∑

k=	0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )D̃k(x, yk,ν

τ )Dk,ν
τ,1 (f),

where the series converges in (Gε
0(β, γ))′, and for k � �0, τ ∈ Ik and ν = 1, 2, . . . , N(k, τ),

Dk,ν
τ,1 (z) is the corresponding integral operator with the kernel Dk,ν

τ,1 (z) := mQk,ν
τ

(Sk(·, z)). More-
over, D̃k for k � �0 satisfies (i) and (ii) of Definition 2.3 with ε1 and ε2 replaced by any
ε′ ∈ [ε, ε1 ∧ ε2), and ∫

X
D̃k(x, y) dμ(x) =

∫
X

D̃k(x, y) dμ(y) = 1

when k = �0; = 0 when k > �0.

Remark 3.4. Let �0 ∈ Z. From the proof of Theorem 3.3, we obtain that the constant
C, that appears in (i) and (ii) of Definition 2.3 for {D̃k}∞k=	0

, depends on j0 and ε′, but not
on �0. This observation plays a key role in applications. Moreover, a continuous version of
Theorem 3.3 also holds by following the proof of [23, Theorem 3.4].

Now we show that all Hardy spaces defined in Definition 2.8 are equivalent to Lp(X ) when
p ∈ (1,∞]. We begin with some technical lemmas. Applying Theorem 2.3 of [23] yields the
following result; we omit the details.

Lemma 3.5. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), β, γ ∈ (0, ε] and {Sk}k∈Z

be an (ε1, ε2, ε3)-AOTI. Then there exists a positive constant C such that for all k � 0 and
ϕ ∈ G(β, γ), ‖Sk(ϕ)‖G(β,γ) � C‖ϕ‖G(β,γ).

Lemma 3.6. Let all the notation be as in Lemma 3.5. Then for all ϕ ∈ G(β, γ) and β′ ∈ (0, β),
limk→∞ Sk(ϕ) = ϕ in G(β′, γ).

Proof. Notice that Lemma 3.5 implies that Sk(ϕ) ∈ G(β, γ) ⊂ G(β′, γ) for any k � 0.
It remains to show that limk→∞ ‖Sk(ϕ) − ϕ‖G(β′,γ) = 0. Set W1 := {z ∈ X : d(z, x) �
(1 + d(x, x1))/2} and W2 := {z ∈ X : d(z, x) > (1 + d(x, x1))/2}. Using (v) of Definition 2.3,
we write

|Sk(ϕ)(x) − ϕ(x)| �
∫

W1

|Sk(x, z)||ϕ(z) − ϕ(x)| dμ(z)

+ |ϕ(x)|
∫

W2

|Sk(x, z)| dμ(z) +
∫

W2

|Sk(x, z)||ϕ(z)| dμ(z)

=: Z1 + Z2 + Z3.

The size condition of Sk together with the regularity of ϕ and the assumption β < ε2 together
with Lemma 3.1 (iii) yield that

Z1 � 2−kβ 1
μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

.

By the definition of W2, the size conditions of Sk and ϕ, and a procedure similar to the
estimation of Z1, we obtain

Z2 � 2−kγ 1
μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

.
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Notice that
∫
X |ϕ(x)| dμ(x) � 1. This together with the size condition of Sk and the definition

of W2 yields that

Z3 � 2−kγ 1
μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

.

Therefore, for all x ∈ X ,

|Sk(ϕ)(x) − ϕ(x)| � 2−k(β∧γ) 1
μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

. (3.2)

For x, x′ ∈ X satisfying d(x, x′) � (1 + d(x, x1))/2, by Lemma 3.5 and the regularity of ϕ,

|[Sk(ϕ)(x) − ϕ(x)] − [Sk(ϕ)(x′) − ϕ(x′)]|

�
(

d(x, x′)
1 + d(x, x1)

)β 1
μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

;

on the other hand, by (3.2) and the assumption d(x, x′) � (1 + d(x, x1))/2,

|[Sk(ϕ)(x) − ϕ(x)] − [Sk(ϕ)(x′) − ϕ(x′)]|
� 2−k(β∧γ) 1

μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

.

Then the geometric mean between the last two formulae above implies that

|[Sk(ϕ)(x) − ϕ(x)] − [Sk(ϕ)(x′) − ϕ(x′)]|

� 2−k(β∧γ)(1−σ)

(
d(x, x′)

1 + d(x, x1)

)σβ 1
μ(B(x, 1 + d(x, x1)))

(
1

1 + d(x, x1)

)γ

, (3.3)

where σ ∈ (0, 1). The estimates (3.2) and (3.3) imply the desired conclusion, which completes
the proof of Lemma 3.6.

Proposition 3.7. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), β ∈ (0, ε), γ ∈ (0, ε] and
{Sk}k∈Z be an (ε1, ε2, ε3)-AOTI . Then limk→∞ Sk(ϕ) = ϕ in Gε

0(β, γ) for all ϕ ∈ Gε
0(β, γ); and

limk→∞ Sk(f) = f in (Gε
0(β, γ))′ for all f ∈ (Gε

0(β, γ))′.

Proof. We may assume that k ∈ N. If ϕ ∈ Gε
0(β, γ), then ϕ ∈ G(β, γ) and there exists

{φj}j∈N ⊂ G(ε, ε) such that ‖ϕ − φj‖G(β,γ) → 0 as j → ∞. By Lemma 3.5, we know Sk(φj) ∈
G(ε, ε) and

lim
j→0

‖Sk(ϕ) − Sk(φj)‖G(β,γ) � lim
j→0

‖ϕ − φj‖G(β,γ) = 0,

which implies that Sk(ϕ) ∈ Gε
0(β, γ). For any j, k ∈ N, by Lemma 3.5 again, we have

‖Sk(ϕ) − ϕ‖G(β,γ) � ‖Sk(φj) − φj‖G(β,γ) + ‖φj − ϕ‖G(β,γ),

which together with Lemma 3.6 (here we require β < ε) implies that

lim
k→∞

‖Sk(ϕ) − ϕ‖G(β,γ) = 0.

A standard duality argument yields the second conclusion of Proposition 3.7.

Proposition 3.8. Let H∗, 1(X ) be as in Definition 2.8. Then H∗, 1(X ) ⊂ L1(X ).
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Proof. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and {Sk}k∈Z be an (ε1, ε2, ε3)- AOTI . For any given
f ∈ H∗, 1(X ), by the definition, we have ‖f∗‖L1(X ) < ∞. Notice that (2.3) and Definition 2.3
imply that

‖ sup
k∈Z

|Sk(f)|‖L1(X ) � ‖f∗‖L1(X ).

Thus, {Sk(f)}k∈Z is a bounded set in L1(X ). Thus by [39, Theorem III.C.12], {Sk(f)}k∈Z is
relatively weakly compact in L1(X ). The Eberlein-S̆mulian theorem (cf. [39, II.C]) implies
that there exists a subsequence {Skj(f)}j∈N of {Sk(f)}k∈Z which converges weakly in L1(X ),
and hence in (Gε

0(β, γ))′. This together with Proposition 3.7 implies that f ∈ L1(X ), which
completes the proof of Proposition 3.8.

Proposition 3.9. Let p ∈ (0,∞] and all the notation be as in Definition 2.8. Then for any
given α ∈ (0,∞), there exists a positive constant C such that for all f ∈ Lp(X ) and all x ∈ X ,
f∗(x) � CM(f)(x) and Md(f)(x) � CM(Mα(f))(x). Furthermore, when p ∈ (1,∞], there
exists a positive constant C such that for all f ∈ Lp(X ),

‖Md(f)‖Lp(X ) � C‖Mα(f)‖Lp(X ) � C‖f∗‖Lp(X ) � C‖f‖Lp(X ).

Proof. For any x ∈ X and ϕ ∈ Gε
0(β, γ) satisfying ‖ϕ‖G(x,r,β,γ) � 1 for some r > 0, by the

size condition of ϕ and Lemma 3.1 (iv), we have

|〈f, ϕ〉| �
∫

d(z, x)�r

1
μ(B(x, r))

|f(z)| dμ(z)

+
∫

d(z, x)>r

1
μ(B(z, d(z, x)))

rγ

d(x, z)γ
|f(z)| dμ(z) � M(f)(x), (3.4)

which further implies that f∗(x) � M(f)(x) for all x ∈ X .
For any x ∈ X , if x is contained in some “dyadic” cube Qk

α, then by Lemma 2.7,

B(zk
α, C62−k) ⊂ Qk

α ⊂ B(x, C52−k) ⊂ B(zk
α, 2C52−k).

Thus μ(Qk
α) � μ(B(zk

α, C62−k)) � μ(B(x, C52−k)) by (2.2). From this and (2.6), it follows that
for all x ∈ X ,

Md(f)(x) � sup
k∈Z

{
1

μ(B(x, C52−k))

∫
B(x, C52−k)

Mα(f)(y) dμ(y)
}

� M(Mα(f))(x).

This together with Remark 2.9 (ii) and the Lp(X )-boundedness of M with p ∈ (1,∞] (cf. [5])
then yields the desired norm inequalities, which completes the proof of Proposition 3.9.

Theorem 3.10. Let p ∈ (1,∞]. With the same notation as in Definition 2.8, we have
Hp

d(X ) = Lp(X ) in the following sense : there exists a positive constant C independent of f

such that if f ∈ Lp(X ), then f ∈ Hp
d(X ) and ‖f‖Hp

d
(X ) � C‖f‖Lp(X ); conversely, for any

f ∈ Hp
d(X ), there exists a function f̃ ∈ Lp(X ) such that for all ϕ ∈ Gε

0(β, γ),

〈f, ϕ〉 =
∫
X

f̃(x)ϕ(x) dμ(x).

Moreover, there exists a positive constant C independent of f and x such that ‖f̃‖Lp(X ) �
C‖f‖Hp

d (X ) and |f̃(x)| � Cf∗(x) almost everywhere.
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Proof. The fact Lp(X ) ⊂ (Gε
0(β, γ))′ and Proposition 3.9 imply that Lp(X ) ⊂ Hp

d(X ). Con-
versely, if f ∈ Hp

d(X ), then we first show that for all ϕ ∈ Gε
0(β, γ),

|〈f, ϕ〉| � ‖f‖Hp
d (X )‖ϕ‖Lp′(X ), (3.5)

where 1/p + 1/p′ = 1. To this end, fix j0 as in (3.1) large enough. Then applying Theorem 3.3
with �0 = j ∈ Z yields that

f(x) =
∑
τ∈Ij

N(j,τ)∑
ν=1

∫
Qj,ν

τ

D̃j(x, y) dμ(y)Dj,ν
τ,1(f)

+
∞∑

k=j+1

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )D̃k(x, yk,ν

τ )Dk,ν
τ,1 (f) (3.6)

in (Gε
0(β, γ))′. Moreover, for any Qk,ν

τ � yk,ν
τ with k � j, by the definition, we have that

Qk,ν
τ ⊂ Qk

τ ′ for some τ ′ ∈ Ik. From this and (2.2), we deduce that μ(Qk
τ ′) � 2nj0μ(Qk,ν

τ ). Thus,
for any yk,ν

τ ∈ Qk,ν
τ ,

|Dk,ν
τ,1 (f)| � 2nj0

1
μ(Qk

τ ′)

∫
Qk

τ′

|Sk(f)(z)| dμ(z) � Md(f)(yk,ν
τ ). (3.7)

For any ϕ ∈ Gε
0(β, γ), Proposition 3.7 implies that Sj(ϕ) ∈ Gε

0(β, γ) for any j ∈ Z. By this,
(3.6) and (3.7), we obtain that for all ϕ ∈ Gε

0(β, γ), j ∈ Z and yj,ν
τ ∈ Qj,ν

τ ,

|〈f, Sjϕ〉| �
∑
τ∈Ij

N(j,τ)∑
ν=1

∣∣∣∣
∫

Qj,ν
τ

D̃∗
j (Sjϕ)(y) dμ(y)

∣∣∣∣Md(f)(yj,ν
τ )

+
∞∑

k=j+1

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )|D̃∗

k(Sjϕ)(yk,ν
τ )|Md(f)(yk,ν

τ ), (3.8)

where and in what follows, D̃∗
k denotes the integral operator with the kernel D̃∗

k(x, y) = D̃k(y, x)
for all x, y ∈ X . For any k, j ∈ Z, by similar arguments as in [23, Lemma 3.8] when k = j and
[23, Lemma 3.1] when k > j, respectively, we obtain that for any ε′1 ∈ (0, ε1 ∧ ε2),

|D̃∗
kSj(y, z)| � 2−(k−j)ε′1

1
V2−j (y) + V2−j (z) + V (y, z)

2−jε′1

(2−j + d(x, y))ε′1
. (3.9)

An argument similar to the proof of (3.4) together with (3.9) yields that for any k � j and
x ∈ X ,

|D∗
k(Sjϕ)(x)| � 2−(k−j)ε′1M(ϕ)(x). (3.10)

Moreover, it follows directly from (3.9) and Lemma 3.1 (iii) that for all k � j,∣∣∣∣
∫
X

D∗
k(Sjϕ)(y) dμ(y)

∣∣∣∣ � 2−(k−j)ε′1‖ϕ‖L1(X ). (3.11)

When p ∈ (1,∞), by (3.8) together with the arbitrariness of yk,ν
τ , (3.10), Hölder’s inequality

and the Lp(X )-boundedness of M with p ∈ (1,∞], we further have

|〈f, Sjϕ〉| �
∞∑

k=j

∫
X
|D∗

k(Sjϕ)(y)|Md(f)(y) dμ(y)

�
∞∑

k=j

2−(k−j)ε′1‖M(ϕ)‖Lp′(X )‖Md(f)‖Lp(X ) � ‖ϕ‖Lp′(X )‖f‖Hp
d(X ). (3.12)
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When p = ∞, this can be deduced directly from (3.8) and (3.11). For any ϕ ∈ Gε
0(β, γ), by

Proposition 3.7, we have limj→∞ Sj(ϕ) = ϕ in Gε
0(β, γ), which together with (3.12) implies

(3.5).
From (3.5) and the density of Gε

0(β, γ) in Lp′
(X ) (see [23, Corollary 2.1]), it follows that f

uniquely extends to a bounded linear functional on Lp′
(X ), where 1/p+ 1/p′ = 1. By the well-

known Riesz representation theorem, there exists a unique function f̃ ∈ Lp(X ) such that for all
ϕ ∈ Lp′

(X ), 〈f, ϕ〉 =
∫
X f̃(x)ϕ(x) dμ(x), and moreover, ‖f̃‖Lp(X ) � ‖f‖Hp

d (X ). Lemma 3.1 (v)
together with the Riesz lemma further implies that f̃(x) = limki→∞ Ski f̃(x) almost everywhere
for some {ki}i ⊂ N. This combined with (2.3) yields that for almost every x ∈ X ,

|f̃(x)| � lim
ki→∞

|Ski f̃(x)| � f̃∗(x) = f∗(x),

which completes the proof of Theorem 3.10.
Combining Proposition 3.9 and Theorem 3.10 yields the following conclusion.

Corollary 3.11. Let all the notation be as in Definition 2.8 and p ∈ (1,∞]. Then Hp
d(X ) =

Hp
α(X ) = H∗, p(X ) = Lp(X ) with equivalent norms.

To prove the equivalence of Hardy spaces defined as above when p � 1, we need the following
technical lemma (see [23, Lemma 5.2]).

Lemma 3.12. Let ε > 0, k′, k ∈ Z, and yk,ν
τ be any point in Qk,ν

τ for τ ∈ Ik and ν =
1, 2, . . . , N(k, τ). If r ∈ (n/(n + ε), 1], then there exists a positive constant C depending on r

such that for all ak,ν
τ ∈ C and all x ∈ X ,

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )

1

V2−(k′∧k)(x) + V (x, yk,ν
τ )

2−(k′∧k)ε

(2−(k′∧k) + d(x, yk,ν
τ ))ε

|ak,ν
τ |

� C2[(k′∧k)−k]n(1−1/r)

{
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ν
τ |rχQk,ν

τ

)
(x)

}1/r

,

where C is also independent of k, k′, τ and ν.

Theorem 3.13. Let all the notation be as in Definition 2.8. Let p ∈ (n/(n + ε), 1] and β,
γ ∈ (n(1/p − 1), ε). Then Hp

d(X ) = Hp
α(X ) = H∗, p(X ) with equivalent quasi-norms.

Proof. Given any α ∈ (0,∞), by Remark 2.9 (ii), H∗, p(X ) ⊂ Hp
α(X ) and for all f ∈ H∗, p(X ),

‖f‖Hp
α(X ) � ‖f‖H∗, p(X ).

To prove Hp
α(X ) ⊂ H∗, p(X ), we need only to show that for any κ ∈ (n/[n+(β∧γ)], 1], there

exists a positive constant Cκ such that for all f ∈ Hp
α(X ) and x ∈ X ,

f∗(x) � Cκ{M([Mα(f)]κ)(x)}1/κ. (3.13)

Suppose now that (3.13) holds for some κ ∈ (n/[n + (β ∧ γ)], p). Then by this and the Lp(X )-
boundedness of M with p ∈ (1,∞], we obtain that for all f ∈ Hp

α(X ),

‖f‖H∗, p(X ) = ‖f∗‖Lp(X ) � ‖{M([Mα(f)]κ)}1/κ‖Lp(X ) � ‖Mα(f)‖Lp(X ) = ‖f‖Hp
α(X ),

which implies that Hp
α(X ) ⊂ H∗, p(X ).
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To show (3.13), fix any x ∈ X . Then for any ϕ ∈ Gε
0(β, γ) satisfying ‖ϕ‖G(x,r,β,γ) � 1 with

some r > 0, we choose �0 ∈ Z such that 2−	0 � r < 2−	0+1. Then it is easy to verify that there
exists a positive constant C which is independent of x and �0 such that ‖ϕ‖G(x,2−�0 ,β,γ) � C.
Choose j0 ∈ N satisfying (3.1) large enough and C52−j0 < α. Applying Theorem 3.3 with such
a j0, we obtain that for any yk,ν

τ ∈ Qk,ν
τ ,

|〈f, ϕ〉| �
∣∣∣∣

∑
τ∈I�0

N(	0,τ)∑
ν=1

∫
Q

�0,ν
τ

D̃∗
	0(ϕ)(y) dμ(y)D	0,ν

τ,1 (f)
∣∣∣∣

+
∣∣∣∣

∞∑
k=	0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

μ(Qk,ν
τ )D̃∗

k(ϕ)(yk,ν
τ )Dk(f)(yk,ν

τ )
∣∣∣∣. (3.14)

Since diam (Qk,ν
τ ) � C52−k−j0 < α2−k for all k � �0, τ ∈ Ik and ν = 1, 2, . . . , N(τ, k), then for

any y	0,ν
τ ∈ Q	0,ν

τ ,

|D	0,ν
τ,1 (f)| =

∣∣∣∣ 1

μ(Q	0,ν
τ )

∫
Q

�0,ν
τ

S	0(f)(w) dμ(w)
∣∣∣∣ � Mα(f)(y	0,ν

τ ); (3.15)

and when k > �0, for any yk,ν
τ ∈ Qk,ν

τ ,

|Dk(f)(yk,ν
τ )| � |Sk(f)(yk,ν

τ )| + |Sk−1(f)(yk,ν
τ )| � 2Mα(f)(yk,ν

τ ). (3.16)

By an argument similar to [23, Lemma 3.1], we obtain that for any k � �0, y ∈ X and
ε′1 ∈ (0, β ∧ γ),

|D̃∗
k(ϕ)(y)| � 2−(k−	0)ε

′
1

1
μ(B(y, 2−	0 + d(y, x)))

2−	0γ

(2−	0 + d(y, x))γ
. (3.17)

Furthermore, the triangle inequality of d and (2.2) imply that for any y	0,ν
τ , z ∈ Q	0,ν

τ ,

2−	0 + d(y	0,ν
τ , x) ∼ 2−	0 + d(z, x) (3.18)

and
μ(B(y	0,ν

τ , 2−	0 + d(y	0,ν
τ , x))) ∼ μ(B(z, 2−	0 + d(z, x))). (3.19)

From (3.14) together with the estimates (3.15) through (3.19), Lemma 3.12 and the arbitrariness
of yk,ν

τ in Qk,ν
τ , we deduce that for any κ ∈ (n/(n + (β ∧ γ)), 1],

|〈f, ϕ〉| �
∞∑

k=	0

2−(k−	0)[ε
′
1+n(1−1/κ)]

{
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

[Mα(f)]κχQk,ν
τ

)
(x)

}1/κ

. (3.20)

Notice that

M
( ∑

τ∈Ik

N(k,τ)∑
ν=1

[Mα(f)]κχQk,ν
τ

)
(x) = M([Mα(f)]κ)(x). (3.21)

Therefore, for any κ ∈ (n/(n + β ∧ γ), ε), if we choose ε′1 ∈ (0, β ∧ γ) with ε′1 > n(1/κ− 1), then
combining (3.20) with (3.21) yields (3.13). Thus, for any given α ∈ (0,∞), H∗, p(X ) = Hp

α(X )
with equivalent quasi-norms.
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Instead of (3.14), (3.15) and (3.16), respectively, by (3.6) and (3.7), repeating the proof
for Hp

α(X ) ⊂ H∗, p(X ) then yields that Hp
d(X ) ⊂ H∗, p(X ). By Lemma 2.7 (iv) and (2.6),

we have Md(f)(x) � MC5(f)(x), which implies that Hp
C5

(X ) ⊂ Hp
d(X ). This together with

Hp
C5

(X ) = H∗, p(X ) further implies that H∗, p(X ) ⊂ Hp
d(X ). Thus, H∗, p(X ) = Hp

d(X ) with
equivalent quasi-norms, which completes the proof of Theorem 3.13.

Using the Calderón reproducing formula in Theorem 3.3, we can verify that definitions of
Hardy spaces are independent of the choices of underlying spaces of distributions; see [23,
Proposition 5.3] for some details.

Proposition 3.14. With the notation of Definition 2.8, let α ∈ (0,∞) and p ∈ (n/(n+ ε), 1].
If f ∈ (Gε

0(β1, γ1))′ with

n(1/p − 1) < β1, γ1 < ε, (3.22)

and ‖f‖Hp
α(X ) < ∞, then f ∈ (Gε

0(β2, γ2))′ for every β2 and γ2 satisfying (3.22).

Remark 3.15. Let ε ∈ (0, 1) and p ∈ (n/(n + ε), 1]. Then,
(i) For any given β and γ satisfying (3.22), Theorem 3.13 implies that the definitions of

Hp
α(X ) and Hp

d(X ) are independent of the choices of any α ∈ (0,∞) and any (ε1, ε2, ε3)- AOTI
{Sk}k∈Z satisfying (ε1 ∧ ε2) > ε, ε1 � 1 and ε3 > 0.

(ii) Theorem 3.13 and Proposition 3.14 imply that the definitions of H∗, p(X ), Hp
α(X ) with

α ∈ (0,∞) and Hp
d(X ) are also independent of the choices of (Gε

0(β, γ))′ with β and γ satisfying
(3.22).

(iii) In the sequel, given p ∈ (n/(n + 1), 1], when we mention the Hardy spaces H∗, p(X ),
Hp

α(X ) with α ∈ (0,∞), and Hp
d(X ), we will assume that ε ∈ (n(1/p − 1), 1) is chosen so

that p ∈ (n/(n + ε), 1] and these Hardy spaces are defined via some (Gε
0(β, γ))′ with β and γ

satisfying (3.22), and some (ε1, ε2, ε3)- AOTI {Sk}k∈Z with (ε1 ∧ ε2) > ε, ε1 � 1 and ε3 > 0. By
Theorem 3.13, these Hardy spaces coincide with each other.

By an argument similar to the proof of [6, Lemma (2.8)] (see also [9, Theorem 2.1]), we can
verify the following conclusion, we omit the details.

Proposition 3.16. Let p ∈ (n/(n + 1), 1]. Then the space H∗, p(X ) is a complete quasi-
Banach space.

4 The atomic decomposition

The procedure to obtain the atomic decomposition for the Hardy space H∗, p(X ) when p ∈
(n/(n + 1), 1] is quite similar to that presented in [6] (see also [9]). To shorten the presentation
of this paper, we only give an outline by beginning with the following notions of atoms and
atomic Hardy spaces.

Definition 4.1. Let p ∈ (0, 1] and q ∈ [1,∞] ∩ (p,∞]. A function a ∈ Lq(X ) is said to be a
(p, q)-atom if

(A1) suppa ⊂ B(x0, r) for some x0 ∈ X and r > 0;
(A2) ‖a‖Lq(X ) � [μ(B(x0, r))]1/q−1/p;
(A3)

∫
X a(x) dμ(x) = 0.

Definition 4.2. Let p ∈ (0, 1] and q ∈ [1,∞] ∩ (p,∞]. Let ε ∈ (0, 1) and β, γ ∈ (0, ε).
The distribution f ∈ (Gε

0(β, γ))′ is an element of Hp, q
at (X ), if there exist {λj}j∈N ⊂ C and
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(p, q)-atoms {aj}j∈N such that f =
∑

j∈N
λjaj in (Gε

0(β, γ))′ and
∑

j∈N
|λj |p < ∞. Moreover,

we define

‖f‖Hp, q
at (Rn) := inf

{( ∑
j∈N

|λj |p
)1/p}

,

where the infimum is taken over all the decompositions of f as above.

Remark 4.3. (i) Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1], q ∈ [1,∞] ∩ (p,∞] and β, γ ∈ (n(1/p −
1), ε). Since each (p,∞)-atom is a (p, q)-atom, Hp,∞

at (X ) ⊂ Hp, q
at (X ). We will further show in

Theorems 4.5 and 4.16 below that Hp, q
at (X ) ⊂ H∗, p(X ) and H∗, p(X ) ⊂ Hp,∞

at (X ). This implies
that Hp,∞

at (X ) = Hp, q
at (X ).

(ii) We simply write Hp
at (X ) instead of Hp,∞

at (X ) without confusion.

An argument similar to the proof of [6, Lemma (2.3)] yields the following lemma, we omit
the details.

Lemma 4.4. Let ε ∈ (0, 1], p ∈ (n/(n + ε), 1], q ∈ [1,∞] ∩ (p,∞], β ∈ (n(1/p − 1), ε] and
γ ∈ (0, ε]. There exists a positive constant Cp, q such that for all h ∈ Lq(X ) with support
contained in B(x0, r0) with x0 ∈ X and r0 > 0, and

∫
X h(x) dμ(x) = 0,

∫
X

[h∗(x)]p dμ(x) � Cp, q[μ(B(x0, r0))]1−p/q‖h‖p
Lq(X ).

Lemma 4.4 together with a standard argument yields the following proposition.

Proposition 4.5. Let all the notation be as in Lemma 4.4. Then Hp, q
at (X ) ⊂ H∗, p(X );

moreover, there exists a positive constant C such that for all f ∈ Hp, q
at (X ), ‖f‖H∗, p(X ) �

C‖f‖Hp, q
at (X ).

The rest of this section is devoted to showing that H∗, p(X ) ⊂ Hp
at (X ) by following the

procedure of [6]. The following lemma when Ω is a bounded set (i. e., Ω is contained in some
ball of X ) was proved in [4, pp. 70–71] and in [5, Theorem 3.2], although the current version
was also claimed in [4, p. 70] without a proof; see also [6, p. 277] for another variant. A detailed
proof can be given by borrowing some ideas from [3, pp. 15–16], we omit the details.

Lemma 4.6. Let Ω be an open proper subset of X and let d(x) := inf{d(x, y) : y /∈ Ω}. For
any given C � 1, let r(x) := d(x)/(2C). Then there exist a positive number M , which depends
only on C and C3 but independent of Ω, and a sequence {xk}k such that if we denote r(xk) by
rk, then

(i) {B(xk, rk/4)}k are pairwise disjoint ;
(ii) ∪kB(xk, rk) = Ω;
(iii) for every given k, B(xk, Crk) ⊂ Ω;
(iv) for every given k, x ∈ B(xk, Crk) implies that Crk < d(x) < 3Crk;
(v) for every given k, there exists a yk /∈ Ω such that d(xk, yk) < 3Crk;
(vi) for every given k, the number of balls B(xi, Cri) whose intersections with the ball

B(xk, Crk) are non-empty is at most M.

Remark 4.7. If Ω is an open bounded subset of X and {rk}k in Lemma 4.6 is an infinite
sequence of positive numbers, then by the proofs in [5, pp. 623–624] and [4, p. 69], we further
have that limk→∞ rk = 0.
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Using Lemma 4.6, similarly to the proof of [6, Lemma (2.16)], we obtain the following tech-
nical lemma.

Lemma 4.8. Let Ω be an open subset of X with finite measure. Consider the sequence {xk}k

and {rk}k given in Lemma 4.6 for C = 15. Then there exist non-negative functions {φk}k

satisfying :
(i) for any given k, 0 � φk � 1, supp φk ⊂ B(xk, 2rk) and

∑
k φk = χΩ;

(ii) for any given k and x ∈ B(xk, rk), φk(x) � 1/M ;
(iii) there exists a positive constant C̃ independent of Ω such that for all k and all ε ∈ (0, 1],

‖φk‖G(xk,rk,ε,ε) � C̃Vrk
(xk).

From Lemma 4.8 and an argument similar to the proof of [6, Lemma (3.1)], we deduce the
following conclusion.

Lemma 4.9. Let ε ∈ (0, 1], β, γ ∈ (0, ε], and {φk}k be the partition of unity as in Lemma 4.8
associated with some open set Ω. Then for any given k, the linear operator

Φk(ϕ)(x) := φk(x)
[ ∫

X
φk(z) dμ(z)

]−1 ∫
X

[ϕ(x) − ϕ(z)]φk(z) dμ(z)

is bounded on Gε
0(β, γ) with an operator norm depending on k.

Lemma 4.10. Let β > 0, q ∈ (n/(n + β),∞) and M ∈ N. Then there exists a positive
constant C depending only on q, β and M such that for any given sequences of points {xk}k ⊂ X
and any positive numbers {rk}k satisfying that any point in X belongs to no more than M balls
of {B(xk, rk)}k, then

∫
X

[∑
k

μ(B(xk, rk))
μ(B(x, rk + d(x, xk)))

(
rk

rk + d(xk, x)

)β]q

dμ(x) � Cμ

( ⋃
k

B(xk, rk)
)

. (4.1)

Proof. By (2.2) and the definition of M, we have

rk

rk + d(xk, x)
�

(
μ(B(xk, rk))

μ(B(x, rk + d(x, xk)))

)1/n

� [M(χB(xk,rk))(x)]1/n.

By this, the assumption q(n+β)/n > 1, the Fefferman-Stein inequality on RD-spaces (see [40])
and the finite intersection property of balls {B(xk, rk)}k, we obtain that the left-hand side of
(4.1) is dominated by a multiple of

∫
X

[ ∑
k

(M(χB(xk,rk))(x))(n+β)/n

]q

dμ(x)

�
∫
X

[∑
k

(χB(xk,rk)(x))(n+β)/n

]q

dμ(x) � μ

( ⋃
k

B(xk, rk)
)

,

which completes the proof of Lemma 4.10.

Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1], β, γ ∈ (n(1/p − 1), ε) and H∗, p(X ) be as in (2.3). For
f ∈ H∗, p(X ) and t ∈ (0,∞), set Ω := {x ∈ X : f∗(x) > t}. By Remark 2.9 (iii), Ω is open.
Obviously μ(Ω) < ∞. Denote by {φk}k the partition of unity in Lemma 4.8 associated to Ω.
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Let {Φk}k be the corresponding linear operator in Lemma 4.9. For any ϕ ∈ Gε
0(β, γ), define the

distribution bk by setting
〈bk, ϕ〉 := 〈f, Φk(ϕ)〉. (4.2)

By following an approach in [6, Lemma (3.2)] or [9, Lemma 3.7], we obtain the following
Calderón-Zygmund type decomposition. To limit the length of the paper, we omit the details.
In what follows, for any set E ⊂ X , we denote X \ E by E�.

Proposition 4.11. With the previous notation, there exists a positive constant C such that
for all k and x ∈ X ,

b∗k(x) � Ct
Vrk

(xk)
μ(B(xk, rk + d(x, xk)))

(
rk

rk + d(xk, x)

)β

χB(xk,10rk)�(x)

+ Cf∗(x)χB(xk,10rk)(x) (4.3)

and ∫
X

[b∗k(x)]p dμ(x) � C

∫
B(xk,10rk)

[f∗(x)]p dμ(x); (4.4)

moreover, the series
∑

k bk converges in (Gε
0(β, γ))′ to a distribution b satisfying

b∗(x) � Ct
∑

k

Vrk
(xk)

μ(B(xk, rk + d(x, xk)))

(
rk

rk + d(xk, x)

)β

+ Cf∗(x)χΩ(x) (4.5)

and ∫
X

[b∗(x)]p dμ(x) � C

∫
Ω

[f∗(x)]p dμ(x); (4.6)

the distribution g := f − b satisfies that g ∈ (Gε
0(β, γ))′ and

g∗(x) � Ct
∑

k

Vrk
(xk)

μ(B(xk, rk + d(x, xk)))

(
rk

rk + d(xk, x)

)β

+ Cf∗(x)χΩ�(x). (4.7)

Applying Proposition 4.11, Lemma 4.10 and Corollary 3.11, and following an argument sim-
ilar to [6, Theorem (3.34)], we obtain the following density result on H∗, p(X ).

Proposition 4.12. Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1], β, γ ∈ (n(1/p − 1), ε) and H∗, p(X ) be
defined via the distribution space (Gε

0(β, γ))′ as in Definition 2.8. If q ∈ (1,∞), then Lq(X ) ∩
H∗, p(X ) is dense in H∗, p(X ).

Combining Lemmas 4.6, 4.8, 4.9 and Proposition 4.12, similarly to the proof of [6, Lemma
(3.36)], we obtain the following proposition.

Proposition 4.13. Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1], β, γ ∈ (n(1/p − 1), ε), q ∈ (1,∞) and
f ∈ Lq(X ) ∩ H∗, p(X ). Assume that there exists a positive constant C̃ such that for all x ∈ X ,
f(x) � C̃f∗(x). With the same notation as in Proposition 4.11, then there exists a positive
constant C independent of f , k and t such that

(i) if mk := [
∫
X φk(ξ) dμ(ξ)]−1

∫
X f(ξ)φk(ξ) dμ(ξ), then |mk| � Ct for all k;

(ii) if bk := (f − mk)φk, then supp bk ⊂ B(xk, 2rk) and the distribution on Gε
0(β, γ) induced

by bk coincides with bk in Proposition 4.11;
(iii) the series

∑
k bk converges in Lq(X ). It induces a distribution on Gε

0(β, γ) which coincides
with b in Proposition 4.11 and is still denoted by b. Moreover, supp b ⊂ Ωt;
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(iv) set g := f − b, then g = fχΩ� +
∑

k mkφk and for all x ∈ X , |g(x)| � Ct. Moreover, g

induces a distribution on Gε
0(β, γ) which coincides with g appearing in Proposition 4.11.

Remark 4.14. (a) If f does not satisfy |f(x)| � C̃f∗(x) for all x ∈ X , then by Theorem 3.10,
there exists a function h such that f and h induce the same distribution and |h(x)| � C̃f∗(x) =
C̃h∗(x) for all x ∈ X . Therefore, we can replace f by h since we only need to consider the
behavior of f as a distribution not as a function.

(b) Denote by C(X ) the space of continuous functions on X . If f ∈ C(X ), by Proposition 4.13
(ii), then bk ∈ C(X ) for all k. Applying Lemma 4.6 (vi) to

∑
k bk, we obtain that for any given

x ∈ X ,
∑

k bk(x) has only finite terms when it is restricted to some small neighborhood of x,
which further implies that b ∈ C(X ).

Lemma 4.15. Let ε ∈ (0, 1), q ∈ (n/(n + ε), 1), p ∈ (q, 1] and β, γ ∈ (n(1/p − 1), ε). If
h ∈ L2(X ) satisfying |h(x)| � 1 for all x ∈ X and h∗ ∈ Lq(X ), then there exist {λk}k∈N ⊂ C and
(p,∞)-atoms {ak}k∈N such that h =

∑
k∈N

λkak in (Gε
0(β, γ))′ and almost everywhere. More-

over, there exists a positive constant C independent of h such that
∑

k∈N
|λk|p � C‖h∗‖q

Lq(X ),
‖∑

k∈N
|λkak|‖L∞(X ) � C and ‖∑

k∈N
|λkak|‖r

Lr(X ) � C‖h∗‖q
Lq(X ) if r ∈ [1,∞).

Proof. For any θ ∈ (0, 1), we define a sequence of functions {Hm}m∈N as follows. Set H0 := h.
Proceeding by induction, assume that Hm−1 is defined. Then set Ωm := {x ∈ X : (Hm−1)∗(x) >

θm} and define Hm as the function g in Proposition 4.13 associated to f = Hm−1 and t = θm.
Notice that each Ωm has a decomposition of Ωm =

⋃
i B(xm,i, rm,i) satisfying (i) through (vi)

of Lemma 4.6. Then define {φm,i}i in the same way as in Lemma 4.8. If m � 1, then we have

Hm = Hm−1 −
∑

i

bm,i, (4.8)

where bm,i is as in Proposition 4.12 (ii). Moreover, there exists a positive constant C7 such that
for all m ∈ N and all x ∈ X ,

|Hm(x)| � C7θ
m (4.9)

and

H∗
m(x) � h∗(x) + C7

m∑
i=1

θi
∑

j

μ(B(xi,j , ri,j))
μ(B(xi,j , ri,j + d(xi,j , x)))

(
ri,j

ri,j + d(xi,j , x)

)β

. (4.10)

Notice that (4.9) follows immediately from the definition of Hm and Proposition 4.13 (iv). To
prove (4.10), we first have that for any x /∈ Ωm, by (4.8) and (4.5),

H∗
m(x) � H∗

m−1(x) + Cθm
∑
j∈N

μ(B(xm,j , rm,j))
μ(B(xm,j , rm,j + d(xm,j , x)))

(
rm,j

rm,j + d(xm,j , x)

)β

, (4.11)

where C is the constant given in (4.5). Observe that for any x ∈ Ωm, Lemma 4.6 (ii) implies
that x ∈ B(xm,j , rm,j) for some j ∈ N. From this and (4.7), we deduce that if x ∈ Ωm, then

H∗
m(x) � t � θm

∑
j∈N

μ(B(xm,j , rm,j))
μ(B(xm,j , rm,j + d(xm,j , x)))

(
rm,j

rm,j + d(xm,j , x)

)β

. (4.12)

Combining (4.11) and (4.12) and repeating this process m times yield (4.10).
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For every k ∈ N, by (4.8), h = Hk +
∑k

m=1

∑
j bm,j almost everywhere. By Proposition 4.13

(iii), Remark 4.14 and (4.9), we obtain h =
∑∞

m=1

∑
j bm,j almost everywhere. The assumption

h∗ ∈ L2(X ) together with (4.10) and Lemma 4.10 further implies that Hm ∈ L2(X ). Thus by
(4.9) and the size condition of ϕ, we obtain that for any ϕ ∈ Gε

0(β, γ),
∣∣∣∣〈h, ϕ〉 −

k∑
m=1

∑
j

〈bm,j , ϕ〉
∣∣∣∣ = |〈Hk, ϕ〉| =

∣∣∣∣
∫
X

Hk(x)ϕ(x) dμ(x)
∣∣∣∣ � θk‖ϕ‖G(β,γ) → 0,

as k → ∞, which further implies that

h = lim
k→∞

k∑
m=1

∑
j

bm,j =
∑
m∈N

∑
j

bm,j (4.13)

in (Gε
0(β, γ))′. By the expression given in Proposition 4.13 (ii) for bm,j , (4.9) and Proposi-

tion 4.13 (i), we obtain that for all x ∈ X ,

|bm,j(x)| � |Hm−1(x)| +
∣∣∣∣
[ ∫

X
φm,j(x) dμ(x)

]−1 ∫
X

Hm−1(x)φm,j(x) dμ(x)
∣∣∣∣

� 2C7θ
m−1. (4.14)

Let λm,j := 2C7θ
m−1μ(B(xm,j , 2rm,j))1/p and em,j := (λm,j)−1bm,j. It is easy to verify that

each em,j is a (p,∞)-atom. Then from (4.13), we deduce that

h =
∑
m∈N

∑
j

λm,jem,j (4.15)

holds in (Gε
0(β, γ))′ and almost everywhere. To estimate

∑
m∈N

∑
j |λm,j |p, by Lemma 4.6,

∑
m∈N

∑
j

|λm,j |p �
∑
m∈N

θmpμ(Ωm).

By the definition of Ωm, (4.10) and Lemma 4.10, we obtain that there exists a positive constant
C8 such that for all m ∈ N,

θmqμ(Ωm) �
∫
X

[H∗
m−1(x)]q dμ(x)

�
∫
X

[h∗(x)]q dμ(x) + (C7)q
m−1∑
i=1

θiq

×
∫
X

[ ∑
j

μ(B(xi,j , ri,j))
μ(B(xi,j , ri,j + d(xi,j , x)))

(
ri,j

ri,j + d(xi,j , x)

)β]q

dμ(x)

� C8

[ ∫
X

[h∗(x)]q dμ(x) +
m−1∑
i=1

θiqμ(Ωi)
]
.

Let b0 :=
∫
X h∗(x)q dμ(x) and bm := θmqμ(Ωm) for m ∈ N. Then the formula above can be

written as bm � C8

∑m−1
i=0 bi. By induction, we obtain bi � b0(C8+2)i for every i ∈ Z+. That is,

θiqμ(Ωi) � (C8 + 2)i
∫
X [h∗(x)]q dμ(x). Choose θ > 0 small enough such that θp−q(C8 + 2) < 1.

Then,
∑
m∈N

∑
j

|λm,j |p �
∑
m∈N

θ(p−q)m(C8 + 2)m

∫
X

[h∗(x)]q dμ(x) �
∫
X

[h∗(x)]q dμ(x).
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By the fact supp em,j ⊂ B(xm,j , rm,j), (4.14) and Lemma 4.6, we obtain that for all x ∈ X ,∑
m,j

|λm,jem,j(x)| �
∑
m∈N

θmχΩm(x) � 1,

which implies that
∑

m,j |λm,jem,j | ∈ L∞(X ). When r ∈ [1,∞), by Hölder’s inequality,
∥∥∥∥

∑
m,j

|λm,jem,j|
∥∥∥∥

Lr(X )

�
∑
m∈N

θm[μ(Ωm)]1/r �
[ ∑

m∈N

θmpμ(Ωm)
]1/r

.

Thus ‖∑
m,j |λm,jem,j|‖r

Lr(X ) � ‖h∗‖q
Lq(X ), which completes the proof of Lemma 4.15.

Theorem 4.16. Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1] and β, γ ∈ (n(1/p − 1), ε). If f ∈
H∗, p(X ), then there exist {λk}k∈N ⊂ C and (p,∞)-atoms {ak}k∈N such that f =

∑
k∈N

λkak

in (Gε
0(β, γ))′. Moreover, there exists a constant C � 1 such that

1
C
‖f‖H∗, p(X ) �

{ ∑
k∈N

|λk|p
}1/p

� C‖f‖H∗, p(X ).

Proof. We only give an outline of the proof since it is similar to that of [6, Theorem (4.13)].
First assume that f∗ ∈ Lp(X )∩L2(X ), then Theorem 3.10 tells us that f can be represented by
a function satisfying |f(x)| � Cf∗(x). For any given integer k, set Ωk := {x ∈ X : f∗(x) > 2k}.
By Proposition 4.13, we have f = Bk + Gk, where Bk and Gk are the functions b and g in
Proposition 4.13 corresponding to t = 2k. Since Bk + Gk = Bk+1 + Gk+1, we then define

hk := Gk+1 − Gk = Bk − Bk+1. (4.16)

Thus for any m ∈ N, we have f − ∑m
k=−m hk = Bm+1 + G−m. Notice that |G−m(x)| � 2−m

for all x ∈ X and suppBm ⊂ Ωm by Proposition 4.13. Then following the arguments in [6,
p. 300], we deduce that for any q ∈ (n/(n + ε), 1], ‖h∗

k‖Lq(X ) � 2kμ(Ωk) by Lemma 4.10
and Proposition 4.11; and moreover f =

∑
k∈Z

hk holds in (Gε
0(β, γ))′ (here, we need to use

Proposition 3.16) and almost everywhere.
By (4.16), we obtain that supphk ⊂ Ωk and there exists a positive constant C̃ such that

|hk(x)| � C̃2k for all x ∈ X and k ∈ Z. Applying Lemma 4.15 to C̃−12−khk and q ∈ (n/(n +
ε), p) yields that C̃−12−khk =

∑
i∈N

λk,iak,i in (Gε
0(β, γ))′ and almost everywhere, where {ak,j}j

are (p,∞)-atoms and {λk,j}j ⊂ C satisfying
∑

i |λk,i|p � ‖2−kh∗
k‖q

Lq(X ) � μ(Ωk). Let ρk,i :=

C̃2kλk,i. Then hk =
∑

i ρk,iak,i, and thus f =
∑

k∈Z

∑
i ρk,iak,i in (Gε

0(β, γ))′ and almost
everywhere. Moreover,

∑
k∈Z

∑
i |ρk,i|p �

∑
k∈Z

2kpμ(Ωk) � ‖f∗‖p
Lp(X ). This together with

Proposition 4.5 shows the theorem with the additional assumption f∗ ∈ L2(X ). The general
case of the theorem then follows from the density of L2(X )∩H∗, p(X ) in H∗, p(X ) and standard
arguments as in [6, pp. 301–302], which completes the proof of Theorem 4.16.

For ε ∈ (0, 1] and β, γ ∈ (0, ε), let G̊ε
b(β, γ) be the set of functions in G̊ε

0(β, γ) with bounded
support. Let C0(X ) be the set of continuous functions on X which tends to zero at infinity.
From Theorem 4.16 and the existence of an approximation of the identity with bounded support
(see [23, Theorem 2.1]), we can deduce the following density result. We omit the details.

Proposition 4.17. Let ε ∈ (0, 1), p ∈ (n/(n+ ε), 1] and β, γ ∈ (n(1/p−1), ε). Then G̊ε
b(β, γ)

is a dense subset of H∗, p(X ); for any p ∈ [1,∞), G̊ε
b(β, γ) is a dense subset of Lp(X ); and if

p = ∞, G̊ε
b(β, γ) is a dense subset of C0(X ).
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Proposition 4.5, Theorem 4.16, Remarks 3.15 and 2.4 imply the following conclusion.

Corollary 4.18. Let α ∈ (0,∞), p ∈ (n/(n+1), 1] and q ∈ (p,∞]∩ [1,∞]. Then Hp, q
at (X ) =

H∗, p(X ) = Hp
α(X ) = Hp

d(X ) with equivalent quasi-norms.

Remark 4.19. Let ε, p, β and γ be as in Theorem 4.16. For any f ∈ (Gε
0(β, γ))′, define

that for all x ∈ X , f̃∗(x) := sup{|〈f, ϕ〉| : ϕ ∈ G(ε, ε), ‖ϕ‖G(x,r,ε,ε) � 1 for some r > 0} and
H̃∗, p(X ) := {f ∈ (Gε

0(β, γ))′ : ‖f̃∗‖Lp(X ) < ∞} with the norm ‖f‖H̃∗, p(X ) := ‖f̃∗‖Lp(X ). Obvi-

ously, for all x ∈ X , by the definitions, we have f̃∗(x) � f∗(x), which implies that H∗, p(X ) ⊂
H̃∗, p(X ). Repeating the procedure of the atomic decompositions, we see that Theorem 4.16
still holds with H∗, p(X ) replaced by H̃∗, p(X ), which further implies that H̃∗, p(X ) ⊂ Hp

at (X ).
Combining this with Corollary 4.18 gives that H∗, p(X ) = H̃∗, p(X ). We also point out that
when p ∈ (1,∞], by a slight modification for the proofs of Proposition 3.9 and Corollary 3.11,
we also have that for all β, γ ∈ (0, ε), H̃∗, p(X ) = Lp(X ). This observation was used in [35].

5 Some applications

As the first application, we show that H∗, p(X ) coincides with the Hardy space Hp(X ) defined
in terms of the Littlewood-Paley function in [23, 24], via the atomic characterizations of these
spaces.

Definition 5.1. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and {Sk}k∈Z be an (ε1, ε2, ε3)-AOTI . Let
ε ∈ (0, ε1 ∧ ε2), p ∈ (n/(n + ε), 1] and β, γ ∈ (n(1/p − 1), ε). For k ∈ Z, set Dk := Sk − Sk−1.
For any f ∈ (G̊ε

0(β, γ))′, the Lusin-area function (also called the Littlewood-Paley S-function)
Ṡ(f) is defined by

Ṡ(f)(x) :=
{ ∞∑

k=−∞

∫
d(x,y)<2−k

|Dk(f)(y)|2 dμ(y)
V2−k(x)

}1/2

.

Define Hp(X ) := {f ∈ (G̊ε
0(β, γ))′ : ‖Ṡ(f)‖Lp(X ) < ∞} and ‖f‖Hp(X ) := ‖Ṡ(f)‖Lp(X ).

Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1] and β, γ ∈ (n(1/p − 1), ε). Define H̊p
at (X ) by replacing the

distribution space (Gε
0(β, γ))′ with (G̊ε

0(β, γ))′ in the definition of Hp, 2
at (X ); see Definition 4.2

or [23, 24]. It follows from [24, Theorem 2.21] that H̊p
at (X ) coincides with Hp(X ) when p ∈

(n/(n+1), 1]. This together with Theorem 4.16 tells us that in order to prove Hp(X ) = H∗, p(X ),
it suffices to show H̊p

at (X ) = Hp
at (X ). To this end, we start with the following two technical

lemmas. The proof of the first lemma is trivial and we omit the details.

Lemma 5.2. Let ε ∈ (0, 1) and β, γ ∈ (0, ε). If f ∈ (Gε
0(β, γ))′ and 〈f, ϕ〉 = 0 for all

ϕ ∈ G̊ε
0(β, γ), then f is a constant.

Let α ∈ (0,∞). Coifman and Weiss (see [5, (2.2)]) introduced the following Lipschitz space
Lip α(X ), namely, ϕ ∈ Lip α(X ) if and only if for all x, y ∈ X and x �= y, |ϕ(x) − ϕ(y)| �
C[μ(B)]α, where B is any ball containing both x and y and C is a positive constant depending
only on ϕ. Define H̃p

at (X ) by replacing (Gε
0(β, γ))′ with ( Lip 1/p−1(X ))′ in Definition 4.2, where

( Lip 1/p−1(X ))′ is the dual space of Lip 1/p−1(X ); see [5].
The following key observation establishes the connection between spaces of test functions

and the Lipschitz spaces above. This plays a key role in establishing the connection between
the Hardy spaces introduced in this paper and [23, 24] with the atomic Hardy spaces H̃p

at (X )
of Coifman and Weiss; see Remark 5.5 below.
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Lemma 5.3. Let β ∈ (0, 1] and γ ∈ (0,∞). Then there exists a positive constant C such
that for all ϕ ∈ G(β, γ) and x, y ∈ X , |ϕ(x) − ϕ(y)| � C‖ϕ‖G(β,γ)[μ(B(x, d(x, y)))]β/n.

Proof. For any x, y ∈ X satisfying d(x, y) � (1 + d(x, x1))/2, by the fact μ(B(x1, 1 +
d(x, x1))) ∼ μ(B(x, 1 + d(x, x1))) and (2.2), we obtain

μ(B(x1, 1 + d(x, x1)))
μ(B(x, d(x, y)))

� μ(B(x, 1 + d(x, x1)))
μ(B(x, d(x, y)))

�
(

1 + d(x, x1)
d(x, y)

)n

.

This together with the regularity of ϕ yields that

|ϕ(x) − ϕ(y)| � ‖ϕ‖G(β,γ)[μ(B(x, d(x, y)))]β/n .

For any x, y ∈ X satisfying d(x, y) > (1 + d(x, x1))/2, using the fact μ(B(x1, 1 + d(x, x1))) ∼
μ(B(x, 1 + d(x, x1))) and (2.2) again, we also obtain

μ(B(x1, 1 + d(x, x1)))
μ(B(x, d(x, y)))

�
(

1 + d(x, x1)
d(x, y)

)κ

.

This together with the size condition of ϕ also yields that

|ϕ(x) − ϕ(y)| � ‖ϕ‖G(β,γ) � ‖ϕ‖G(β,γ)[μ(B(x, d(x, y)))]β/n ,

which completes the proof of Lemma 5.3.

Theorem 5.4. Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1] and β, γ satisfy (3.22). Then H̊p
at (X ) =

Hp
at (X ) with equivalent quasi-norms.

Proof. Since (Gε
0(β, γ))′ ⊂ (G̊ε

0(β, γ))′, we then obviously have Hp, 2
at (X ) ⊂ H̊p

at (X ). We still
need to show H̊p

at (X ) ⊂ Hp
at (X ) by Corollary 4.18. If f ∈ H̊p

at (X ), then f ∈ (G̊ε
0(β, γ))′ with

some β and γ as in (3.22) and there exist a sequence of (p, 2)-atoms {ak}k∈N and {λk}k∈N ⊂ C

with
∑

k∈N
|λk|p < ∞ such that f =

∑
k∈N

λkak in (G̊ε
0(β, γ))′. For any ϕ ∈ Gε

0(β, γ) with β

and γ as in (3.22), set
〈f̃ , ϕ〉 :=

∑
k∈N

λk〈ak, ϕ〉. (5.1)

Let a be a (p, 2)-atom supported on B := B(x0, r0) and ϕ ∈ Gε
0(β, γ). Notice that ϕ ∈

G(n(1/p − 1), γ) since β > n(1/p − 1). Then applying (A3), Lemma 5.3, Hölder’s inequality
and (A2), we obtain

|〈a, ϕ〉| =
∣∣∣∣
∫
X

a(x)[ϕ(x) − ϕ(x0)] dμ(x)
∣∣∣∣ � ‖ϕ‖Gε

0(β,γ).

Combining this with (5.1) yields that

|〈f̃ , ϕ〉| � ‖ϕ‖Gε
0(β,γ)

∑
k∈N

|λk| � ‖ϕ‖Gε
0(β,γ)

( ∑
k∈N

|λk|p
)1/p

,

which further tells us that f̃ ∈ (Gε
0(β, γ))′, f̃ =

∑
k∈N

λkak in (Gε
0(β, γ))′ and f̃ = f on G̊ε

0(β, γ).
Moreover, f̃ ∈ Hp

at (X ).
Suppose that there exists another extension of f , say g̃ ∈ Hp

at (X ). Then g̃ ∈ (Gε
0(β, γ))′

and g̃ = f on G̊ε
0(β, γ). By Lemma 5.2, f̃ − g̃ is a constant. Note that f̃ ∈ Hp

at (X ) and the



2276 Loukas GRAFAKOS et al.

non-zero constant function does not belong to Hp
d(X ) = Hp

at (X ) (see Corollary 4.18). Hence,
g̃ /∈ Hp

at (X ). This contradiction implies that f̃ ∈ Hp
at (X ) is the unique extension of f ∈ Hp(X ).

Taking over all decompositions of f yields that ‖f̃‖Hp
at (X ) � ‖f‖H̊p

at (X ), which completes the
proof of Theorem 5.4.

Remark 5.5. (i) Notice that ε ∈ (0, 1) is arbitrary. By Theorem 5.4 and Corollary 4.18,
we obtain that for any p ∈ (n/(n + 1), 1], H∗, p(X ) coincides to Hp(X ) with equivalent quasi-
norms. As a consequence, H∗, p(X ) also coincide with the Triebel-Lizorkin spaces F̊ 0

p, 2(X ) with
equivalent quasi-norms; see [23].

(ii) Let ε ∈ (0, 1), p ∈ (n/(n + ε), 1] and β, γ ∈ (n(1/p − 1), ε). Lemma 5.3 implies that
Gε

0(β, γ) ⊂ Lip 1/p−1(X ) and thus H̃p
at (X ) ⊂ Hp

at (X ) by their definitions. Conversely, given
any f ∈ Hp

at (X ), f has a decomposition as f =
∑

j∈N
λjaj in (Gε

0(β, γ))′, where {λj}j∈N ⊂ C,
{aj}j∈N are (p,∞)-atoms and

∑
j∈N

|λj |p < ∞. It is not difficult (see Theorem 5.4) to show
that

∑
j∈N

λjaj converges to an element in ( Lip 1/p−1(X ))′, say f̃ . Thus f̃ =
∑

j∈N
λjaj in

(Gε
0(β, γ))′ by Lemma 5.3. Therefore, f = f̃ ∈ H̃p

at (X ), which implies that Hp
at (X ) ⊂ H̃p

at (X ).
So H̃p

at (X ) = Hp
at (X ) = H̊p

at (X ) with equivalent quasi-norms, which answers a question in
[24, Remark 2.30].

(iii) From now on, for p ∈ (n/(n + 1), 1], we use Hp(X ) to denote H∗, p(X ), Hp
α(X ) with

α ∈ (0,∞), Hp
d(X ), H̃p

at (X ), Hp
at (X ) and H̊p

at (X ) if there exists no confusion.
As another application, we extend the results of [25] to RD-spaces. Suppose that p ∈

(n/(n + 1), 1] and q ∈ [1,∞] ∩ (p,∞]. Denote by Hp, q
fin (X ) the vector space of all finite

linear combinations of (p, q)-atoms. Notice that Hp, q
fin (X ) consists of all Lq(X ) functions with

bounded support and integral 0. Clearly, Hp, q
fin (X ) is a dense subset of Hp

at (X ). Define the
quasi-norm on Hp, q

fin (X ) by

‖f‖Hp,q
fin (X )

:= inf
{( N∑

j=1

|λj |p
)1/p

:f =
N∑

j=1

λjaj , N ∈ N, {λj}N
j=1 ⊂ C, and {aj}N

j=1 are (p, q)-atoms
}

.

Motivated by [25], we obtain the following theorem by means of atomic characterizations for
H∗, p(X ) in Section 4.

Theorem 5.6. Let p ∈ (n/(n + 1), 1]. Then the following hold :
(a) if q ∈ (p,∞) ∩ [1,∞), then ‖ · ‖Hp, q

fin (X ) and ‖ · ‖Hp(X ) are equivalent quasi-norms on
Hp, q

fin (X ).

(b) ‖ · ‖Hp, ∞
fin (X ) and ‖ · ‖Hp(X ) are equivalent quasi-norms on Hp,∞

fin (X ) ∩ C(X ).

Proof. For any f ∈ Hp, q
fin (X ) with p ∈ (n/(n+1), 1] and q ∈ (p,∞]∩ [1,∞], we obviously have

‖f‖Hp
at (X ) � ‖f‖Hp, q

fin (X ). By Remark 5.5 (iii), we further have ‖f‖Hp(X ) � ‖f‖Hp, q
fin (X ). Thus,

to complete the proof of the theorem, it suffices to show that for all f ∈ Hp, q
fin (X ) when q < ∞

or Hp,∞
fin ∩ C(X ) when q = ∞, ‖f‖Hp, q

fin (X ) � ‖f‖H∗, p(X ).
Let x1 be as in Definition 2.5. We may assume that f ∈ Hp, q

fin (X ) with ‖f‖H∗, p(X ) = 1, and
further assume that supp f ⊂ B(x1, R) for some R > 0. Let all the notation be as in Section 4.
For each k ∈ Z, set Ωk := {x ∈ X : f∗(x) > 2k}. Let Hk

0 := C̃−12−khk, where hk and C̃

are as in Theorem 4.16. Replace h, θ, Hm−1 and Ωm for m ∈ N in the proof of Lemma 4.15,
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respectively, by Hk
0 , θk, Hk

m−1 and Ωk
m. Repeating the proof of Lemma 4.15 for Hk

0 , θk, Hk
m−1

and Ωk
m, we obtain that Ωk

m := {x ∈ X : (Hk
m−1)∗(x) > (θk)m} =

⋃
i B(xk

m,i, r
k
m,i), where the

balls {B(xk
m,i, r

k
m,i)}i satisfy (i) through (vi) of Lemma 4.6, and that Hk

m = Hk
m−1 −

∑
i bk

m,i,
and

bk
m,i =

{
Hk

m−1 −
[ ∫

X
φk

m,i(x) dμ(x)
]−1 ∫

X
Hk

m−1(x)φk
m,i(x) dμ(x)

}
φk

m,i (5.2)

with {φk
m,i}i as in Lemma 4.8 associated to Ωk

m.
By the procedure of the atomic decomposition of f in Theorem 4.16 and Lemma 4.15, we

obtain that
f =

∑
k∈Z

hk =
∑
k∈Z

∑
m∈N

∑
i

ρk
m,ia

k
m,i (5.3)

in (Gε
0(β, γ))′ and almost everywhere. Moreover, it also follows from the proofs of Theorem 4.16

and Lemma 4.15 that
(i) every ak

m,i is a (p,∞)-atom and supp ak
m,i ⊂ B(xk

m,i, 2rk
m,i) ⊂ Ωk

m;
(ii) bk

m,i = C2−kρk
m,ia

k
m,i, where C is a positive constant independent of k, m and i;

(iii) for any k ∈ Z, hk =
∑

m∈N

∑
i ρk

m,ia
k
m,i and supphk ⊂ Ωk;

(iv) for any L ∈ Z+, Hk
L =

∑∞
m=L+1

∑
i bk

m,i in (Gε
0(β, γ))′ and almost everywhere;

(v) there exists a positive constant C independent of f such that
∑
k,m,i

|ρk
m,i|p � C‖f‖p

H∗, p(X ) = C;

(vi) given any r ∈ [1,∞], there exists a positive constant C independent of f and k ∈ Z such
that ‖∑

m, i |ρk
m,ia

k
m,i|‖Lr(X ) � C2k[μ(Ωk)]1/r.

We claim that there exists a positive constant C̃ depending only on X such that for all
x ∈ X \ B(x1, 16R),

f∗(x) � C̃[μ(B(x1, R))]−1/p. (5.4)

Assume this claim for a moment, which will be proved at the end of the proof of this theorem.
Denote by k′ the largest integer k satisfying 2k � C̃[μ(B(x1, R))]−1/p. Then for any k > k′, we
have Ωk ⊂ B(x1, 16R). Define h and �, respectively, by

h :=
∑
k�k′

∑
m∈N

∑
i

ρk
m,ia

k
m,i and � :=

∑
k>k′

∑
m∈N

∑
i

ρk
m,ia

k
m,i. (5.5)

Observe that supp � ⊂ B(x1, 16R). This together with supp f ⊂ B(x1, R) and f = h + � yields
that supp h ⊂ B(x1, 16R). By Property (vi) above,

|h| �
∑
k�k′

∑
m∈N

∑
i

|ρk
m,ia

k
m,i| �

∑
k�k′

2k � [μ(B(x1, R))]−1/p.

Combining this with the fact supph ⊂ B(x1, 16R) and the Lebesgue dominated convergence
theorem, we further obtain that

∑
k�k′

∑
m∈N

∑
i ρk

m,ia
k
m,i converges in L1(X ) and thus h has

integral 0. Therefore, h is a multiple of some (p,∞)-atom.
Now we assume that q ∈ [1,∞) ∩ (p,∞) and conclude the proof of (a). For any N :=

(N1, N2) ∈ N × N, set

�N :=
N1∑

k=k′+1

∑
i+m�N2

ρk
m,ia

k
m,i.
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Obviously �N ∈ Hp, q
fin (X ). Notice that f = h+ �N +(�− �N ). Thus, to finish the proof of (a), it

suffices to show that when N1 and N2 are large enough, �− �N is an arbitrary small multiple of
some (p, q)-atom. Notice that � − �N has bounded support since both � and �N do. Moreover,

∫
X

[�(x) − �N(x)] dμ(x) =
∫
X

[f(x) − h(x) − �N (x)] dμ(x) = 0.

So it suffices to show that for any η > 0, there exist N1, N2 ∈ N large enough such that

‖� − �N‖Lq(X ) < η. (5.6)

To see this, notice that by (5.5),

‖� − �N‖Lq(X ) �
∥∥∥∥

∑
k>N1

∣∣∣∣
∑
m, i

ρk
m,ia

k
m,i

∣∣∣∣
∥∥∥∥

Lq(X )

+
∥∥∥∥

N1∑
k=k′+1

∣∣∣∣
∑

i+m>N2

ρk
m,ia

k
m,i

∣∣∣∣
∥∥∥∥

Lq(X )

=: I + II.

For any given s ∈ Z and almost every z ∈ (Ωs \ Ωs+1), by (iii) and (vi) above, we have

∑
k>k′

∣∣∣∣
∑
m, i

ρk
m,ia

k
m,i(z)

∣∣∣∣ � C
∑

k′<k�s

2k � C2s � Cf∗(z),

where C is a positive constant independent of f and s. It follows that for all z ∈ X ,

∑
k>k′

∣∣∣∣
∑
m, i

ρk
m,ia

k
m,i(z)

∣∣∣∣ � f∗(z). (5.7)

Assume first that q > 1. Since f ∈ Lq(X ), we have f∗ ∈ Lq(X ), which together with (5.7) and
the Lebesgue dominated convergence theorem gives that I tends to 0 as N1 → ∞. Let now
q = 1. Notice that supp

∑
k>N1

|hk| ⊂ ΩN1 by (iii). This combined with (5.3) yields that

∑
k>N1

|hk(z)| �
∣∣∣∣f(z)−

∑
k�N1

|hk|
∣∣∣∣ � |f(z)| + C2N1 .

For each k ∈ Z, set fk
1 := fχ{|f |>2k} and fk

2 := f − fk
1 . By this, the fact f∗(x) � M(f)(x)

for all x ∈ X , the boundedness of M from L1(X ) to weak-L1(X ) (see [5]), and f ∈ L1(X ), we
obtain that when k → ∞,

2kμ(Ωk) � 2kμ({x ∈ X : M(f)(x) > 2k})
� 2kμ({x ∈ X : M(fk

1 )(x) > 2k−1}) � ‖fk
1 ‖L1(X ) → 0.

This implies that when q = 1, we also have I �
∫
ΩN1

[f(x) + 2k] dμ(x) → 0 as N1 → ∞.
Property (vi) implies that for any given N1 ∈ N, there exists N2 ∈ N large enough such that
II < η for any η > 0. Therefore, (5.6) holds.

Then, using Property (v) above, we obtain

‖f‖p
Hp, q

fin (X )
� Cp +

N1∑
k=k′+1

|ρk
m,i|p + ηp � 1,

which completes the proof of (a).
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Now we turn to the proof of (b). Since f∗(x) � CX ‖f‖L∞(X ), where CX is a positive constant
depending only on X , we have Ωk = ∅ for all k satisfying 2k � CX ‖f‖L∞(X ). Denote by k′′ the
largest integer for which the last inequality does not hold. Combining this with the definition
of Ωk and (5.5), we have

� =
∑

k′<k�k′′

∑
m∈N

∑
i

ρk
m,ia

k
m,i, (5.8)

since for every k′ < k � k′′, supp hk ⊂ Ωk ⊂ B(x1, 16R). Moreover, by (4.16) and Remark 4.14
(b), we have hk ∈ C(X ) for all k ∈ Z. From this and (5.2), it follows that every bk

1,i ∈ C(X ).
Thus Hk

1 = hk − ∑
i bk

1,i ∈ C(X ) by Lemma 4.6 (vi). This combined with an argument of
induction on m further tells us that Hk

m ∈ C(X ) and bk
m,i ∈ C(X ) for all k, m, i. Therefore,

every ak
m,i ∈ C(X ) by Property (ii) above.

For any L ∈ N and δ > 0, set FL
1 := {(k, m, i) : k′ < k � k′′, m > L},

FL, δ
2 := {(k, m, i) : k′ < k � k′′, 1 � m � L, 2rm,i � δ}

and FL, δ
3 := {(k, m, i) : k′ < k � k′′, 1 � m � L, 2rm,i > δ}. By (5.8), we write � =

�L
1 + �L, δ

2 + �L, δ
3 with �L

1 :=
∑

(k, m, i)∈F L
1

ρk
m,ia

k
m,i and for j = 2, 3,

�L, δ
j :=

∑
(k, m, i)∈F L, δ

j

ρk
m,ia

k
m,i.

We claim that for any given k and m, if {rk
m,i}i is an infinite sequence, then limi→∞ rk

m,i = 0.
To see this, by Remark 4.7, it suffices to show that every Ωk

m is bounded in X . To verify that
Ωk

m is bounded, recall that [5, Lemma 3.9] implies that if f ∈ L1
loc (X ) with bounded support,

then for each α > 0, the set {x ∈ X : M(f)(x) > α} is contained in a ball depending on
α. Therefore by this and the fact (Hk

m−1)
∗ � M(Hk

m−1) (see Proposition 3.9), we only need
to show that every Hk

m−1 has bounded support, which follows from an inductive argument.
In fact, since supp f ⊂ B(x1, R), by [5, Lemma 3.9] and the fact f∗ � M(f), we know
that each Ωk is bounded in X , which together with suppHk

0 = supphk ⊂ Ωk yields that
Hk

0 has bounded support. Notice that Hk
m = Hk

m−1 − ∑
i bk

m,i and supp (
∑

i bk
m,i) ⊂ Ωk

m

by Proposition 4.13 (iii). Therefore, if suppHk
m−1 is bounded, then arguing similarly as above

implies that Ωk
m is bounded, and therefore supp Hk

m is bounded in X . Thus, the claim holds.
For any L ∈ N and δ > 0, by this claim, we obtain that FL, δ

3 is finite and �L, δ
3 is a linear

combination of finite continuous (p,∞)-atoms.

From Properties (ii), (iv) and (4.9), we obtain that for all x ∈ X ,

|�L
1 (x)| �

∑
k′<k�k′′

2k|Hk
L(x)| �

∑
k′<k�k′′

2k(θk)L,

which implies that limL→∞ ‖�L
1 ‖L∞(X ) = 0.

Given any L ∈ N, let us now show that for any η > 0, there exists δ > 0 small enough such
that ‖�L, δ

2 ‖L∞(X ) < η. Notice that for any given k and m, Hk
m ∈ C(X ) with a bounded support.

Therefore, for any η > 0, there exists δ > 0 such that for any k′ < k � k′′, 0 � m � L and any
x, y ∈ X satisfying d(x, y) < δ, |Hk

m(x)−Hk
m(y)| < η/L. For any (k, m, i) ∈ FL, δ

2 , by (5.2), we
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have

|bk
m,i(x)| =

∣∣∣∣Hk
m−1(x) − Hk

m−1(x
k
m,i)

−
[ ∫

X
φk

m,i(z) dμ(z)
]−1 ∫

X
(Hk

m−1(z) − Hk
m−1(x

k
m,i))φ

k
m,i(z) dμ(z)

∣∣∣∣φk
m,i(x)

< 2η/L,

which further implies that for any given L ∈ N, there exists a positive δ such that ‖�L,δ
2 ‖L∞(X ) �∑

k′<k�k′′ 2k
∑

m�L η/L � η. Hence, � can be decomposed into a continuous part and a part
that is uniformly arbitrarily small, say, �L, δ

3 and �L
1 + �L, δ

2 . Therefore, � is continuous. Further-
more, h = f − � is also continuous and thus h is a multiple of some continuous (p,∞)-atom.

To find a finite atomic decomposition of �, we use once more the decomposition � = (�L
1 +

�L, δ
2 ) + �L, δ

3 . Obviously �L, δ
3 is a finite linear combination of continuous (p,∞)-atoms and

‖�L, δ
3 ‖Hp, ∞

fin (X ) � ‖f‖H∗, p(X ). Observe that �L
1 + �L, δ

2 = � − �L, δ
3 . Thus �L

1 + �L, δ
2 has bounded

support and integral 0 since � and �L, δ
3 do. This together with the known fact that ‖�L

1 +
�L, δ
2 ‖L∞(X ) can be arbitrary small implies that �L

1 + �L, δ
2 is a small multiple of some continuous

(p,∞)-atom. Thus f = h + �L, δ
3 + (�L

1 +�L,δ
2 ) and ‖f‖Hp,∞

fin (X ) � 1, which completes the proof
of (b).

To finish the proof of the theorem, we still need to prove the claim (5.4). Let ε ∈ (0, 1) and
β, γ ∈ (n(1/p − 1), ε). Recall that

f∗(x) := sup{|〈f, ϕ〉| : ϕ ∈ Gε
0(β, γ), ‖ϕ‖G(x,r,β,γ) � 1 for some r > 0}.

If ϕ ∈ Gε
0(β, γ) satisfying ‖ϕ‖G(x,r,β,γ) � 1 for some r � 4d(x, x1)/3, then by an argument

similar to [9, Lemma 2.2], we obtain that there exists a positive constant C depending only
on X , β and γ such that for any y ∈ B(x, d(x, x1)), ‖ϕ‖G(y,r,β,γ) � C. This implies that
|〈f, ϕ〉| � f∗(y) for any y ∈ B(x, d(x, x1)). Taking p-power average on the ball B(x, d(x, x1))
and using B(x1, R) ⊂ B(x, 2d(x, x1)), (2.2) and ‖f∗‖Lp(X ) � 1, we obtain

|〈f, ϕ〉| �
{

1
μ(B(x, d(x, x1)))

∫
B(x,d(x,x1))

[f∗(y)]p dμ(x)
}1/p

� [μ(B(x1, R))]−1/p. (5.9)

Next assume that ϕ ∈ Gε
0(β, γ) satisfying ‖ϕ‖G(x,r,β,γ) � 1 for some r ∈ (0, 4d(x, x1)/3). We

choose ξ ∈ C∞
c (R) satisfying 0 � ξ � 1, ξ(x) = 1 if |x| � 1 and ξ(x) = 0 if |x| � 2. Set

ϕ̃(z) := ϕ(z)ξ(16d(z,x1)
d(x,x1)

). Obviously ϕ̃ ∈ Gε
0(β, γ). Moreover, there exists a positive constant C

independent of ϕ such that for all y ∈ B(x1, d(x, x1)),

‖ϕ̃‖G(y,r,β,γ) � C. (5.10)

Assume (5.10) for a moment. Then using (5.10) and supp f ⊂ B(x1, R), we obtain that
|〈f, ϕ〉| = |〈f, ϕ̃〉| � f∗(y) for all y ∈ B(x1, R), which together with an argument similar to
(5.9) yields that |〈f, ϕ〉| � [μ(B(x1, R))]−1/p. This combined with (5.9) yields (5.4).

Thus to finish the proof of (5.4), we still need to verify (5.10). Notice that if ϕ̃(z) �= 0,
then d(z, x) � d(x, x1) − d(z, x1) � 7d(x, x1)/8 and thus for all y ∈ B(x1, d(x, x1)), d(z, y) �
23d(z, x)/7. By this and the size condition of ϕ, we have

|ϕ̃(z)| � |ϕ(z)|χ{d(z,x1)�d(x,x1)/8}(z) � 1
μ(B(z, r + d(z, y)))

(
r

r + d(z, y)

)γ

. (5.11)
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For any z, z′ ∈ X satisfying d(z, z′) � (r + d(z, y))/2, we estimate |ϕ̃(z) − ϕ̃(z′)| in the
following two cases. First, assume that d(z, z′) � (r + d(z, x))/4. Note that if ϕ̃(z) − ϕ̃(z′) �=
0, then max{d(z, x1), d(z′, x1)} � d(x, x1)/8. This together with d(z, z′) � (r + d(z, x))/4
and r < 4d(x, x1)/3 implies that d(z, x1) � 17d(x, x1)/18 and thus d(x, x1)/18 � d(z, x) �
35d(x, x1)/18. We further have d(z, y) � 37d(z, x). From these and (2.2), it follows that when
d(z, z′) � (r + d(z, x))/4,

|ϕ̃(z) − ϕ̃(z′)| � ϕ(z)
[
ξ

(
16d(z, x1)
d(x, x1)

)
− ξ

(
16d(z′, x1)
d(x, x1)

)]
+ |ϕ(z) − ϕ(z′)|

�
(

d(z, z′)
r + d(z, y)

)β 1
μ(B(z, r + d(z, y)))

(
r

r + d(z, y)

)γ

.

Secondly, suppose that d(z, z′) > (r+d(z, x))/4. Since |ϕ̃(z)− ϕ̃(z′)| � |ϕ̃(z)|+ |ϕ̃(z′)|, we need
only to show that |ϕ̃(z)| + |ϕ̃(z′)| is bounded by the last formula above. To this end, by the
support condition of ϕ̃, we may assume that d(z, x1) � d(x, x1)/8 and d(z′, x1) � d(x, x1)/8.
These assumptions together with d(z, z′) � (r + d(z, x))/4 and r < 4d(x, x1)/3 yield that
d(z, y) � 5d(z, x) and r + d(z, y) � 10(r + d(z′, x)). From this and (2.2), it follows that when
d(z, z′) � (r + d(z, y))/2 and d(z, z′) > (r + d(z, x))/4,

|ϕ̃(z) − ϕ̃(z′)| �
(

d(z, z′)
r + d(z, x)

)β[
1

μ(B(z, r + d(z, x)))

(
r

r + d(z, x)

)γ

+
1

μ(B(z′, r + d(z′, x)))

(
r

r + d(z′, x)

)γ]

�
(

d(z, z′)
r + d(z, y)

)β 1
μ(B(z, r + d(z, y)))

(
r

r + d(z, y)

)γ

.

Combining this with (5.11) yields (5.10). Therefore, (5.4) holds. This finishes the proof of
Theorem 5.6.

Remark 5.7. Let p ∈ (n/(n + 1), 1], f ∈ G̊ε
b(β, γ) for some ε ∈ (0, 1) and let β, γ ∈

(n(1/p−1), ε). From Proposition 4.17 and the proof of (b) of Theorem 5.6, it follows easily that f

admits an atomic decomposition of the form f =
∑N

j=1 λjaj, where N ∈ N, {aj}N
j=1 ⊂ G̊ε

b(β, γ)
are (p,∞)-atoms, {λj}N

j=1 ⊂ C and
∑N

j=1 |λj |p � ‖f‖p
H∗, p(X ). This combined with the density

of G̊ε
b(β, γ) in H∗, p(X ) and Remark 5.5 implies that Hp,∞

fin (X ) ∩ C(X ) is dense in Hp,∞
at (X ).

Before turning to the boundedness of operators, we first recall some notions; see [34].

Definition 5.8. (i) A quasi-Banach space B is a vector space endowed with a quasi-norm
‖ ·‖B which is non-negative, non-degenerate (i.e., ‖f‖B = 0 if and only if f = 0), homogeneous,
and obeys the quasi-triangle inequality, i. e., there exists a constant K � 1 such that for all f ,
g ∈ B, ‖f + g‖B � K(‖f‖B + ‖g‖B).

(ii) Let r ∈ (0, 1]. A quasi-Banach space Br with the quasi norm ‖ · ‖Br is said to be a
r-quasi-Banach space if ‖f + g‖r

Br
� ‖f‖r

Br
+ ‖g‖r

Br
for all f , g ∈ B.

(iii) For any given r-quasi-Banach space Br with r ∈ (0, 1] and linear space Y, an operator
T from Y to Br is called to be Br-sublinear if for any f , g ∈ Y and λ, ν ∈ C,

‖T (λf + νg)‖Br � (|λ|r‖T (f)‖r
Br

+ |ν|r‖T (g)‖r
Br

)1/r (5.12)
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and
‖T (f)− T (g)‖Br � ‖T (f − g)‖Br . (5.13)

From Theorem 5.6, it is easy to deduce the following criterion on boundedness of sublinear
operators in Hardy spaces Hp(X ).

Theorem 5.9. Let p ∈ (n/(n + 1), 1] and r ∈ [p, 1]. Suppose that Br is an r-quasi-Banach
space and one of the following holds :

(i) q ∈ (p,∞) ∩ [1,∞) and T : Hp, q
fin (X ) → Br is a Br-sublinear operator such that

A := sup{ ‖Ta‖Br : a is a (p, q)-atom} < ∞;

(ii) T : Hp,∞
fin (X ) ∩ C(X ) → Br is a Br-sublinear operator such that

A := sup{ ‖Ta‖Br : a is a continuous (p,∞)-atom} < ∞.

Then T uniquely extends to a bounded Br-sublinear operator from Hp(X ) to Br.

Proof. Assume that (i) holds. Then for any f ∈ Hp, q
fin (X ), we write f =

∑N
j=1 λjaj , where

N ∈ N, {λj}N
j=1 ⊂ C and {aj}N

j=1 are (p, q)-atoms. Using (i), (5.12) and the fact for all
ν ∈ (0, 1],

∑∞
i=1 |ai| � {∑∞

i=1 |ai|ν}1/ν , we then obtain

‖T (f)‖Br �
( N∑

j=1

|λj |r
)1/r

�
( N∑

j=1

|λj |p
)1/p

.

Taking the infimum over all finite atomic decompositions of f and using Theorem 5.6 and
Remark 5.5, we deduce that for all f ∈ Hp, q

fin (X ),

‖Tf‖Br � ‖f‖Hp(X ). (5.14)

For any f ∈ Hp(X ), by the density of Hp, q
fin (X ) in Hp(X ), there exists a sequence {fN}∞N=1 ⊂

Hp, q
fin (X ) such that ‖f − fN‖Hp(X ) → 0 as N → ∞. This together with (5.13) and (5.14) yields

that {T (fN)}N is a Cauchy sequence in Br. Define T̃ (f) := limN→∞ T (fN) in Br. By (5.13)
and (5.14), it is easy to see that T̃ (f) is well defined, unique and satisfies (5.14). Thus, T̃ gives
the desired extension of T .

If (ii) holds, using Remark 5.7 and arguing as in the previous case, we also obtain the desired
conclusion. This finishes the proof of Theorem 5.9.

Remark 5.10. (i) Notice that any Banach space is a 1-quasi-Banach space, and the quasi-
Banach spaces �q, Lq(X ) and Hq(X ) with q < 1 are typical q-quasi-Banach spaces.

(ii) According to the Aoki-Rolewicz theorem (see [41, 42]), any quasi-Banach space is, in
essential, a q-quasi-Banach space, where q = 1/ log2(2K) and K is as in Definition 5.8 (i).
Thus, Theorem 5.9 actually holds for general quasi-Banach spaces.
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13 Alexopoulos G. Spectral multipliers on Lie groups of polynomial growth. Proc Amer Math Soc, 120: 973–

979 (1994)

14 Varopoulos N T. Analysis on Lie groups. J Funct Anal, 76: 346–410 (1988)

15 Varopoulos N T, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Cambridge: Cambridge

University Press, 1992

16 Nagel A, Stein E M, Wainger S. Balls and metrics defined by vector fields. I. Basic properties. Acta Math,

155: 103–147 (1985)

17 Nagel A, Stein E M. The �b-heat equation on pseudoconvex manifolds of finite type in C
2. Math Z, 238:

37–88 (2001)

18 Nagel A, Stein E M. Differentiable control metrics and scaled bump functions. J Differential Geom, 57:

465–492 (2001)

19 Nagel A, Stein E M. On the product theory of singular integrals. Rev Mat Iberoamericana, 20: 531–561

(2004)

20 Nagel A, Stein E M. The ∂b-complex on decoupled boundaries in C
n. Ann of Math (2), 164: 649–713

(2006)

21 Danielli D, Garofalo N, Nhieu D M. Non-doubling Ahlfors measures, perimeter measures, and the charac-

terization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces. Mem Amer Math Soc,
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