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Abstract. Given Mikhlin-Hörmander multipliers mi, i = 1, . . . , N ,
with uniform estimates we prove an optimal

p
log(N + 1) bound in Lp

for the maximal function supi |F−1[mi
bf ]| and related bounds for maxi-

mal functions generated by dilations. These improve results in [7].

1. Introduction

Given a symbol m satisfying

(1.1) |∂αm(ξ)| ≤ Cα|ξ|−α

for all multiindices α, then by classical Calderón-Zygmund theory the oper-
ator f 7→ F−1[mf̂ ] defines an Lp bounded operator. We study two types of
maximal operators associated to such symbols.

First we consider N multipliers m1, . . . ,mN satisfying uniformly the con-
ditions (1.1) and ask for bounds

(1.2)
∥∥ sup

1≤i≤N
|F−1[mif̂ ]|

∥∥
p
≤ A(N)‖f‖p,

for all f ∈ S.
Secondly we form two maximal functions generated by dilations of a single

multiplier,

Mdyad
m f(x) = sup

k∈Z
|F−1[m(2k·)f̂ ]|(1.3)

Mmf(x) = sup
t>0

|F−1[m(t·)f̂ ]|(1.4)

and ask under what additional conditions on m these define bounded ope-
rators on Lp.

Concerning (1.3), (1.4) a counterexample in [7] shows that in general
additional conditions on m are needed for the maximal inequality to hold;
moreover positive results were shown using rather weak decay assumptions
on m. The counterexample also shows that the optimal uniform bound in
(1.2) satisfies

(1.5) A(N) ≥ c
√

log(N + 1).
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The extrapolation argument in [7] only gives the upper bound A(N) =
O(log(N + 1)) and the main purpose of this paper is to close this gap and
to show that the upper bound is indeed O(

√
log(N + 1)).

We will formulate our theorems with minimal smoothness assumptions
that will be described now.

Let φ ∈ C∞0 (Rd) be supported in {ξ : 1/2 < |ξ| < 2} so that∑
k∈Z

φ(2−kξ) = 1

for all ξ ∈ Rd \ {0}. Let η0 ∈ C∞c (Rd) so that η0 is even, η0(x) = 1
for |x| ≤ 1/2 and η0 is supported where |x| ≤ 1. For ` > 0 let η`(x) =
η0(2−`(x))− η0(2−`+1x) and define

Hk,`[m](x) = η`(x)F−1[φm(2k·)](x).

In what follows we set

‖m‖Y (q,α) := sup
k∈Z

∑
`≥0

2`α‖Hk,`[m]‖Lq .

Using the Hausdorff-Young inequality one gets

(1.6) ‖m‖Y (r′,α) . sup
k∈Z

‖φm(2k·)‖Br
α,1
, if 1 ≤ r ≤ 2

where Br
α,1 is the usual Besov space; this is well known, for a proof see

Lemma 3.3 below. Thus if m belongs to Y (2, d/2), then it is a Fourier
multiplier on Lp(Rd), for 1 < p <∞ (this follows from a slight modification
of Stein’s approach in [16], ch. IV.3, see also [15] for a related endpoint
bound).

Theorem 1.1. Suppose that 1 ≤ r < 2 and suppose that the multipliers mi,
i = 1, . . . , N satisfy the condition

(1.7) sup
i
‖mi‖Y (r′,d/r) ≤ B <∞.

Then for r < p <∞∥∥ sup
i=1,...,N

∣∣F−1[mif̂ ]
∣∣ ∥∥

p
≤ Cp,rB

√
log(N + 1)‖f‖p.

In particular, the conclusion of Theorem 1.1 holds if the multipliers mi

satisfy estimates (1.1) uniformly in i. By (1.6) we immediately get

Corollary 1.2. Suppose that 1 < r < 2, and

(1.8) sup
1≤i≤N

sup
t>0

‖φmi(t·)‖Br
d/r,1

≤ A.

Then for r < p <∞∥∥ sup
i=1,...,N

∣∣F−1[mif̂ ]
∣∣ ∥∥

p
≤ Cp,rA

√
log(N + 1)‖f‖p.
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Remark. If one uses Y (∞, d + ε) in (1.7) or B1
d+ε,1 in (1.8) one can use

Calderón-Zygmund theory (see [8], [7]) to prove the H1 − L1 boundedness
and the weak type (1, 1) inequality, both with constant O(

√
log(N + 1)).

Our second result is concerned with the operators Mdyad
m , Mm generated

by dilations.

Theorem 1.3. Suppose 1 < p <∞, q = min{p, 2}.
(i) Suppose that

(1.9) ‖φm(2k·)‖Lq
α
≤ ω(k), k ∈ Z,

holds for α > d/q and suppose that the nonincreasing rearrangement ω∗

satisfies

(1.10) ω∗(0) +
∞∑
l=2

ω∗(l)
l
√

log l
<∞.

Then Mdyad
m is bounded on Lp(Rd).

(ii) Suppose that (1.10) holds and (1.9) holds for α > d/p + 1/p′ if 1 <
p ≤ 2 or for α > d/2 + 1/p if p > 2. Then Mm is bounded on Lp(Rd).

If (1.9), (1.10) are satisfied with q = 1, α > d then Mm is of weak type
(1, 1), and Mm maps H1 to L1.

This improves the earlier result in [7] where the conclusion is obtained un-
der the assumption

∑∞
l=2 ω

∗(l)/l < ∞, however somewhat weaker smooth-
ness assumptions were made in [7].

In §2 we shall discuss model cases for Rademacher expansions. In §3 we
shall give the outline of the proof of Theorem 1.1 which is based on the
exp(L2) estimate by Chang-Wilson-Wolff [5], for functions with bounded
Littlewood-Paley square-function. The proof of a critical pointwise inequal-
ity is given in §4. The proof of Theorem 1.3 is sketched in §5. Some open
problems are mentioned in §6.

Acknowledgement: The second named author would like to thank Luboš
Pick for a helpful conversation concerning convolution inequalities in re-
arrangement invariant function spaces.

2. Dyadic model cases for Rademacher expansions

Before we discuss the proof of Theorem 1.1 we give a simple result on
expansions for Rademacher functions rj on [0, 1] which motivated the proof.

Proposition 2.1. Let ai ∈ `2. and let

Fi(s) =
∑

j

ai
jrj(s), s ∈ [0, 1].

Then ∥∥ sup
i<N

|Fi|
∥∥

L2[0,1]
. sup ‖ai‖`2

√
log(N + 1).
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Proof. We use the well known estimate for the distribution function of the
Rademacher expansions ([16], p. 277),

(2.1) meas
(
{s ∈ [0, 1] : |Fi(s)| > λ}

)
≤ 2 exp

(
− λ2

4‖ai‖2
`2

)
Set uN = (4 log(N + 1))1/2 sup1≤i≤N ‖ai‖`2 . Then

∥∥ sup
i=1,...,N

|Fi|
∥∥2

2
≤ u2

N + 2
N∑

i=1

∫ ∞

uN

λmeas
(
{s : |Fi(s)| > λ}

)
dλ

≤ u2
N + 4

N∑
i=1

∫ ∞

uN

λe−λ2/(4‖ai‖2
`2

)dλ ≤ u2
N + 4 sup

i=1,...,N
‖ai‖2

`2Ne
−u2

N/4

which is bounded by (1 + 4 log(N + 1)) supi ‖ai‖2
`2 . The claim follows. �

There is a multiplier interpretation to this inequality. One can work
with a single function f =

∑
ajrj and a family of bounded sequences (or

multipliers) {bi} and one forms Fi(s) =
∑

j b
i
jajrj(s). The norm then grows

as a square root of the logarithm of the number of multipliers; i.e. we have

Corollary 2.2.∥∥∥ sup
i=1,...,N

∣∣ ∑
j

bijajrj
∣∣∥∥∥

L2([0,1])
. sup

i
‖bi‖∞

√
log(N + 1)

∥∥∥∑
j

ajrj

∥∥∥
L2([0,1])

.

We shall now consider a dyadic model case for the maximal operators
generated by dilations.

Proposition 2.3. Consider a sequence b = {bi}i∈Z which satisfies

b∗(l) ≤ A

(log(l + 2))1/2
.

Then for any sequence a = {an}∞n=1 we have∥∥∥ sup
k∈Z

∣∣ ∞∑
j=0

bj−kajrj
∣∣∥∥∥

2
≤ CA‖a‖2.

Proof. We may assume that both a and b are real valued sequences. Let

Hk(s) =
∞∑

j=1

bj−kajrj(s).

Then by orthogonality of the Rademacher functions

‖Hk‖2
2 =

∞∑
j=1

[bj−kaj ]2.

We shall use a result of Calderón [4] which states that if some linear operator
is bounded on L1(µ) and on L∞(µ) on a space with σ-finite measure µ, then
it is bounded on all rearrangement invariant function spaces on that space.
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In our case the intermediate space is the Orlicz space exp `, which coincides
with the space of all sequences γ = {γj}j∈Z that satisfy the condition

(2.2) γ∗(l) ≤ C

log(l + 2)
, l ≥ 0,

and the best constant in 2.2 is equivalent to the norm in exp(`). We apply
Calderón’s result to the operator T defined by

[Tγ]k =
∞∑

j=1

γj−ka
2
j

and get

sup
l≥0

log(l + 2)(Tγ)∗(l) ≤ C
∥∥{a2

n}
∥∥

`1
sup
l≥0

log(l + 2)γ∗(l).

Let ck = ‖Hk‖2 ≡ ([T (b2)]k)1/2 where b2 stands for the sequence {b2j}; then
by our bound for Tγ and the assumption on b it follows that

(2.3) c∗(l) ≤ C1A‖a‖`2
(
log(2 + l)

)−1/2
.

We can proceed with the proof as in Proposition 2.1, using again (2.1),
i.e.

meas({s ∈ [0, 1] : |Hk(s)| > α}) ≤ 2e−α2/4c2k .

Then we obtain for u > 0∥∥ sup
k
|Hk|

∥∥
2
≤ u2 + 4

∑
k

∫ ∞

u
αe−α2/4c2k

≤ u2 + 8
∑

k

c2ke
−u2/(4c2k)

= u2 + 8
∑
l≥0

(c∗(l))2e−u2/4(c∗(l))2 .

We set the cutoff level to be u = 10C1A‖a‖2 and obtain

‖ sup
k
|Hk|‖2

2 ≤ u2 + C2
1A

2
∑
l≥0

(2 + l)−5/2 . A2‖a‖2
2

which is what we wanted to prove. �

Remark: Since the Lp norm of
∑
ajrj is equivalent to the `2 norm of {aj}

one can also prove Lp analogues of the two propositions, for 0 < p <∞.

3. Proof of Theorem 1.1

To prove (1.2) we may assume that f̂ is compactly supported in Rd \ {0}
and thus we may assume that the multipliers mi are compactly supported
on a finite union of dyadic annuli. In view of the scale invariance of the
assumptions we may assume without loss of generality that

(3.1) mi(ξ) = 0, |ξ| ≤ 2N , i = 1, . . . , N.
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In the case of Fourier multipliers the inequality (2.1) will be replaced by
a “good-λ inequality” involving square-functions for martingales as proved
by Chang, Wilson and Wolff [5]. To fix notation let, for any k ≥ 0, Qk

denote the family of dyadic cubes of sidelength 2−k; each Q is of the form∏d
i=1[ni2−k, (ni + 1)2−k). Denote by Ek the conditional expectation,

Ekf(x) =
∑

Q∈Qk

χQ(x)
1
|Q|

∫
Q
f(y)dy

and by Dk the martingale differences,

Dkf(x) = Ek+1f(x)− Ekf(x).

The square function for the dyadic martingale is defined by

S(f) =
( ∑

k≥0

|Dkf(x)|2
)1/2

;

one has the inequality ‖S(f)‖p ≤ Cp‖f‖p for 1 < p <∞ (see [3], [2] for the
general martingale case, and for our special case cf. also Lemma 3.1 below).

The result from [5] says that there is a constant cd > 0 so that for all
λ > 0, 0 < ε < 1, one has

(3.2) meas
({
x : sup

k≥0
|Ekg(x)− E0g(x)| > 2λ, S(g) < ελ

})
)

≤ Cexp(−cd
ε2

)meas
({
x : sup

k≥0
|Ekg(x)| > ελ

})
;

see [5] (Corollary 3.1 and a remark on page 236). To use (3.2) we need a
pointwise inequality for square functions applied to convolution operators.

Choose a radial Schwartz function ψ which equals 1 on the support of φ
(defined in the introduction) and is compactly supported in Rd \ {0}, and
define the Littlewood-Paley operator Lk by

(3.3) L̂kf(ξ) = ψ(2−kξ)f̂(ξ)

Let M be the Hardy-Littlewood maximal operator and define the operator
Mr by

Mr = (M(|f |r))1/r.

Denote by M = M ◦M ◦M the three-fold iteration of the maximal operator.
Now define

(3.4) Gr(f) =
( ∑

k∈Z

(
M[|Lkf |r]

)2/r
)1/2

.

From the Fefferman-Stein inequality for vector-valued maximal functions
[9],

(3.5) ‖Gr(f)‖p ≤ Cp,r‖f‖p, 1 < r < 2, r < p <∞.
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Lemma 3.1. Let Tf = F−1[mf̂ ] and let 1 < r ≤ ∞. Then for x ∈ Rd,

(3.6) S(Tf)(x) ≤ Ar‖m‖Y (r′,d/r)Gr(f)(x).

The proof will be given in §4.
We shall also need

Lemma 3.2. Let Tf = F−1[mf̂ ] and suppose that m(ξ) = 0 for |ξ| ≤ 2N .
Then

(3.7) |E0Tf(x)| ≤ C2−N/rCr‖m‖Y (r′,d/r)(M(|f |r))1/r.

We now give the proof of Theorem 1.1. Let Tif = F−1[mif̂ ]. We need to
estimate∥∥ sup

1≤i≤N
|Tif |

∥∥
p

=
(
p4p

∫ ∞

0
λp−1meas({x : sup

i
|Tif(x)| > 4λ})dλ

)1/p
.

Now by Lemma 3.1 one gets the pointwise bound

(3.8) S(Tif) ≤ ArBGr(f).

We note that

{x : sup
1≤i≤N

|Tif(x)| > 4λ} ⊂ Eλ,1 ∪ Eλ,2 ∪ Eλ,3

where with

(3.9) εN :=
( cd

10 log(N + 1)

)1/2

we have set

Eλ,1 = {x : sup
1≤i≤N

|Tif(x)− E0Tif(x)| > 2λ,Gr(f)(x) ≤ εNλ

ArB
},

Eλ,2 = {x : Gr(f)(x) >
εNλ

ArB
},

Eλ,3 = {x : sup
1≤i≤N

|E0Tif(x)| > 2λ}.

By (3.8),

(3.10) Eλ,1 ⊂
N⋃

i=1

{x : |Tif(x)| > 2λ, S(Tif) ≤ εNλ},

and thus using the good-λ inequality (3.2) we obtain

meas(Eλ,1) ≤
N∑

i=1

meas
(
{x : |Tif(x)− E0Tif(x)| > 2λ, S(Tif) ≤ εNλ}

)
≤

N∑
i=1

C exp(− cd

ε2
N

)meas({x : sup
k
|Ek(Tif)| > λ}).
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Hence (
p

∫ ∞

0
λp−1meas(Eλ,1)dλ

)1/p

.
( N∑

i=1

exp(− cd

ε2
N

)
∥∥ sup

k
|Ek(Tif)|

∥∥p

p

)1/p

.
( N∑

i=1

exp(− cd

ε2
N

)
∥∥Tif

∥∥p

p

)1/p

. B
(
N exp(− cd

ε2
N

)
)1/p‖f‖p . B‖f‖p(3.11)

uniformly in N (by our choice of εN in (3.9)).
Next, by a change of variable,(

p

∫ ∞

0
λp−1meas(Eλ,2)dλ

)1/p
=
ArB

εN

∥∥Gr(f)
∥∥

p

. B
√

log(N + 1)‖f‖p(3.12)

Finally, from Lemma 3.2 and the Fefferman-Stein inequality

meas(Eλ,3) ≤
N∑

i=1

meas
(
{x : |E0Tif(x)| > 2λ}

)
and thus (

p

∫ ∞

0
λp−1meas(Eλ,3)dλ

)1/p
= 2

∥∥ sup
i=1,...,N

|E0(Tif)|
∥∥

p

≤ 2
( N∑

i=1

∥∥E0(Tif)
∥∥p

p

)1/p
. BN1/p2−N/r‖f‖p . B‖f‖p.(3.13)

The asserted inequality follows from (3.11), (3.12), and (3.13). �

For completeness we mention the well known relation of the Y (r′, α) con-
ditions with Besov and Sobolev norms.

Lemma 3.3. Let 1 ≤ r ≤ 2 and α > d/r. Then

‖m‖Y (r′,d/r) . sup
k
‖φm(2k·)‖Br

d/r,1

. sup
k
‖φm(2k·)‖Lr

α
. sup

k
‖φm(2k·)‖L2

α

Proof. By the Hausdorff-Young inequality and the definition of the Besov
space we have

∞∑
`=0

2`d/r‖Hk,`‖r′ .
∞∑

`=0

2`d/r‖[φm(2k·)] ∗ η̂`‖r . ‖φm(2k·)‖Br
d/r,1

.
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By elementary imbedding properties ‖g‖Br
d/r,1

. ‖g‖Lr
γ

if γ > d/r. Finally

‖φm(2k·)‖Lr
γ

. C ′r‖φm(2k·)‖L2
γ
, if 1 < r ≤ 2. In this last inequality we

used that for χ ∈ C∞c we have ‖χg‖L
r0
γ

. ‖g‖L
r1
γ

for r0 ≤ r1, γ ≥ 0; this is
trivial for integers γ from Hölder’s inequality and follows for all γ ≥ 0 by
interpolation. �

4. Proofs of Lemma 3.1 and Lemma 3.2

Choose a radial Schwartz function β with the property that β̂ is supported
in {x : |x| ≤ 1/4} so that β(ξ) 6= 0 in {ξ : 1/4 ≤ |ξ| ≤ 4} and β(0) = 0. Now
choose a function ψ̃ ∈ C∞c so that ψ̃(ξ)(β(ξ))2 = 1 for all ξ ∈ supp φ, here
φ is as in the formulation of the theorem. Define operators Tk, Bk, L̃k by

T̂kf(ξ) = φ(2−kξ)m(ξ)f̂(ξ)

B̂kf(ξ) = β(2−kξ)f̂(ξ)̂̃
Lkf(ξ) = ψ̃(2−kξ)f̂(ξ).

Then T =
∑

k Tk =
∑

k B
2
kL̃kTkLk and we write

(4.1) DkTf =
∑
n∈Z

(DkBk+n)(Bk+nL̃k+n)Tk+nLk+nf.

Sublemma 4.1.

(4.2) |BkL̃kf(x)| . Mf(x).

Proof. Immediate. �

Sublemma 4.2. For s ≥ 0,

|Ek+1Bk+sf(x)|+ |EkBk+sf(x)| . 2−s/q′Mqf(x)(4.3)

and

(4.4) |DkBk−sf(x)| . 2−sMf(x).

Proof. We give the proof although the estimates are rather standard (for
similar calculations in other contexts see for example [6], [12], [10], [13]).

For (4.3) first note this inequality is trivial if s is small and assume, say,
s ≥ 10. For Q ∈ Qk, s > 0 let bs(Q) be the set of all x ∈ Q for which the
`∞ distance to the boundary of Q is ≤ 2−k−s+1.

Fix a cube Q0 ∈ Qk+1. If Q′ is a dyadic subcube of sidelength 2−k−s+1

subcube which is not contained in bs(Q) then Bk+s[fχQ′ ] is supported in
Q0 and using the cancellation of F−1[β] we see that Ek+1Bk+s[χQ′g] = 0 for
all g. Let Vs(Q0) be the union over all dyadic cubes of sidelength 2−k−s+1

whose closures intersect the boundary of Q0. Then

Ek+1Bk+s[χQ0g] = Ek+1Bk+s[gχVs(Q0)]

for all g. In view of the support properties of β̂ we note that Bk+s[gχVs(Q0)] is
also supported in Vs−1(Q0). Observe that this set has measure O(2−kd2−s).
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It follows that for x ∈ Q0

|Ek+1Bk+sf(x)| ≤ 2d|Q0|−1

∫
Vs−1(Q0)

|Bk+s[χVs(Q0)f ](y)|dy

. |Q0|−1
( ∫

Q0

|f(y)|qdy
)1/q2−(kd+s)/q′

. 2−s/q′
(
M(|f |q)

)1/q

By the same argument one obtains this bound also for |EkBk+sf | and thus
(4.3) follows.

The inequality (4.4) DkBk−sf is a simple consequence of the smoothness
of the convolution kernel of Bk−s and the cancellation properties of the
operator Dk = Ek+1 − Ek. �

Sublemma 4.3. Let 1 < r <∞. We have

(4.5) |Tkf(x)| ≤ C‖m‖Y (r′,d/r)Mrf(x).

Proof. We may decompose Tk using the kernels Hk,l and obtain

|Tkf(x)| =
∣∣∣ ∞∑

`=0

∫
2kdHk,`(2ky)f(x− y)dy

∣∣∣
≤

∞∑
`=0

(
2kd

∫
|Hk,`(2ky)|r′dy

)1/r′(
2kd

∫
|y|≤2−k+`

|f(x− y)|rdy
)1/r

≤
∞∑

`=0

2`d/r‖Hk,`‖r′
(
M(|f |r)(x)

)1/r
. �

Proof of Lemma 3.1. To estimate the terms in (4.1) we use Sublemma 4.1
to bound Bk+nL̃k+n, Sublemma 4.2 to bound DkBk+n and Sublemma 4.3
to bound Tk+n. This yields that

|DkB
2
k+nL̃k+nTk+nLk+nf(x)| . ‖m‖Y (r′,d/r)

×

{
2−n/q′Mq ◦M ◦Mr(Lk+nf)(x) if n ≥ 0
2nM ◦M ◦Mr(Lk+nf)(x) if n < 0,

and straightforward estimates imply the asserted bound. �

Proof of Lemma 3.2. We split E0Tf =
∑

k≥N−2 E0B
2
kL̃kTk, and by the

sublemmas we get

|E0B
2
kL̃kTkf(x)| . 2−k/r‖m‖Y (r′,d/r)Mr ◦M ◦Mr(f)(x)

which implies the assertion. �
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5. Maximal functions generated by dilations

For the proof of Theorem 1.3 we use arguments in [7] and applications of
Theorem 1.1. Let us first consider the dyadic maximal operator Mdyad

m .
Let

Ij = {k ∈ Z : ω∗(22j
) < |ω(k)| ≤ ω∗(22j−1

)}.

We split m =
∑

j mj where mj is supported in the union of dyadic annuli
∪k∈Ij

{ξ : 2k−1 < |ξ| < 2k+1}.
By Lemma 3.1 in [7] we can find a sequence of integers B = {i} so that

for each j the sets bi + Ij are pairwise disjoint, and Z = ∪42j+1

n=−42j+1
(n+B).

Let T j
kf = F−1[mj(2k·)f̂ ]. We write

(5.1) sup
k
|Tkf | = sup

|n|≤42j+1

sup
i∈Z

|Tbi+nf |

and split the sup in i according to whether i > 0, i = 0, i < 0. We use the
standard equivalence of the Lp norm of expansions of Rademacher functions
{ri}∞i=1 with the `2 norm of the sequence of coefficients (see [16], p. 276).

Then∥∥∥ sup
|n|≤42j+1

sup
i>0

|T j
bi+nf |

∥∥∥
p
≤

∥∥∥ sup
|n|≤42j+1

( ∑
i>0

|T j
bi+nf |

2
)1/2∥∥∥

p

≤ Cp

∥∥∥ sup
|n|≤42j+1

( ∫ 1

0

∣∣∣ ∞∑
i=1

ri(s)T
j
bi+nf

∣∣∣pds)1/p∥∥∥
p

≤ Cp

∥∥∥( ∫ 1

0
sup

|n|≤42j+1

∣∣∣ ∞∑
i=1

ri(s)T
j
bi+nf

∣∣∣pds)1/p∥∥∥
p

= Cp

( ∫ 1

0

∥∥∥ sup
|n|≤42j

∣∣∣ ∞∑
i=1

ri(s)T
j
bi+nf

∣∣∣∥∥∥p

p
ds

)1/p

which reduce matters for the dyadic maximal function to an application of
Theorem 1.1 (of course the terms above with i ≤ 0 are handled similarly).
Thus we obtain the estimate

‖Mdyad
mj

‖Lp→Lp . 2j/2ω∗(22j−1
).

For the full maximal operator we use standard decompositions by smoo-
thing out the rescaled dyadic pieces. We just sketch the argument. Assume
that p ≥ 2 and that the assumption of Theorem 1.3, (ii), with α > d/2+1/p
holds. Then one can decompose mj =

∑
l≥0mj,l where mj,l has essentially

the same support property as mj (with slightly extended dyadic annuli) and
where

‖φmj,l(2k·)‖L2
α−1/p

+ 2−l‖φ 〈ξ,∇〉[mj,l(2k·)]‖L2
α−1/p

. ω∗(22j−1
)2−l/p.
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One then uses a standard argument (see e.g. [17], p. 499) to see that

sup
t>0

|F−1[mj,l(t·)f̂ ]| ≤ C sup
k>0

|F−1[mj,l(2k·)f̂ ]|+

C
( ∫ 2

1
|F−1[mj,l(2ku·)f̂ ]|pdu

) 1
p′p

( ∫ 2

1

∣∣(∂/∂u)F−1[mj,l(2ku·)f̂ ]|pdu
) 1

p2

and straightforward estimates reduce matters to the dyadic case treated
above. For the weak-type estimate (or the H1 → L1 estimate) one has to
combine this argument with Calderón-Zygmund theory and the Lp estimates
for 1 < p < 2 follow then by an analytic interpolation. Similar arguments
appear in [8] and [7]; we omit the details. �

6. Open problems

Concerning Theorem 1.1 one can ask about Lp boundedness for p > 2
under merely the assumption mi ∈ Y (p′, α), α > d/p. Combining our
present result with those in [7] one can show that if for some 2 < r <∞

(6.1) sup
i
‖mi‖Y (r′,α) ≤ A, α > d/r

then for r ≤ p <∞

(6.2)
∥∥ sup

i=1,...,N

∣∣F−1[mif̂ ]
∣∣ ∥∥

p
≤ Cp,r,αA(log(N + 1))1/r′‖f‖p.

Indeed one can imbed the multipliers in analytic families so that for L∞ →
BMO boundedness one has Y (1 + ε1, ε2) conditions and the O(log(N + 1))
result of [7] applies. For p = 2 on has the usual Y (2, d/2+ ε) conditions and
Theorem 1.1 applies giving an O((log(N + 1))1/2) bound.

Problem 1: Does (6.2) hold with an O(
√

log(N + 1)) bound if we assum-
ing (6.1) with r > 2 ?

Problem 2: To which extent can one relax the smoothness conditions in
Theorems 1.1 and 1.3 to obtain L2 bounds? In particular what happens in
Theorem 1.3 if one imposes localized L2

α conditions for α < d/2, assuming
again minimal decay assumptions on ω∗.

Finally we discuss possible optimal decay estimates for the maximal op-
erators generated by dilations. The hypothesis in Theorem 1.3 is equivalent
with the assumption

{2j/2ω∗(22j
)} ∈ `1.

The counterexamples in [7] leave open the possibility that the conclusion of
Theorem 1.1 might hold under the weaker assumption {2j/2ω∗(22j

)} ∈ `∞,
i.e.

(6.3) ω∗(l) ≤ C
(
log(2 + l)

)−1/2;

this is in fact suggested by the dyadic model case in Proposition 2.3. The
latter condition would be optimal and leads us to formulate
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Problem 3. Suppose m is a symbol satisfying (1.9) for sufficiently large
α. Does Lp boundedness hold merely under the assumption (6.3)?
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