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Abstract. We study the lattice bump multiplier problem. Pre-
cisely, given a smooth bump supported in a ball centered at the
origin, we consider the multiplier formed by adding the translations
of this bump centered at N distinct lattice points. We investigate
the dependence on N of the Lp norm of the linear and bilinear
operators associated with this multiplier. We obtain sharp depen-
dence on N in the linear case and in the bilinear case when p > 1.

1. Introduction

The theory of bilinear multipliers was recently enriched by a surge
of interesting activity; see for instance [16], [7], [13], [11], [3], [4], [12].
The optimal smoothness required of the symbol to have boundedness
on a given Lp is closely related to questions about the boundedness
of a multiplier given by finite sum of translations of a given bump.
In this paper we promote this point of view and we study multiplier
operators associated with Fourier multipliers of this type. We focus on
the bilinear case, although we briefly discuss the Lp behavior of linear
multipliers of this sort.

We fix a smooth bump φ supported in the ball |ξ| ≤ 1
10

in Rn.
Consider the linear operator defined for k ∈ Zn

Sk,φ(f)(x) =

∫
Rn

f̂(ξ)φ(ξ − k)e2πix·ξ dξ,

where f̂(x) =
∫
Rn f(x)e−2πix·ξdx is the Fourier transform of a Schwartz

function f .
Suppose we are given a finite subset E of Zn. Associated with E and

φ we define a linear operator acting on Schwartz functions

LE,a,φ :=
∑
k∈E

akSk,φ(f),
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where a = {ak}k∈Z is a sequence of complex numbers satisfying |ak| ≤ 1
for all k. We pose the following problem about LE,a,φ.
Problem 1: Given p ∈ [1,∞] what is the smallest value α(p) such
that for all subsets E of Zn with |E| = N we have

‖LE,a,φ‖Lp→Lp ≤ Cp,n,φN
α(p) ?

The trivial L2 and L∞ estimates yield by interpolation that

(1) α(p) ≤ 2
∣∣∣1
p
− 1

2

∣∣∣.
But estimate (1) is not sharp as it can be improved by a factor of 1/2.
Results similar to the following are known in different formulations in
the literature, e.g. [10, inequality (7)], but for the sake of completeness
we include a proof for it in the next section.

Proposition 1.1. For any p ∈ [1,∞] and α(p) = |1
p
− 1

2
|, we have

(2) ‖LE,a,φ‖Lp→Lp ≤ CNα(p).

Conversely, we have

(3) sup
a: ‖a‖`∞≤1

sup
E: |E|=N

‖LE,a,φ‖Lp→Lp ≥ CNα(p).

Next, we consider the analogous, but more difficult, bilinear problem.
We fix a smooth bump Φ supported in the ball |ξ| ≤ 1

20
in R2n. For a

subset E of Z2n we consider the following bilinear operator

BE,Φ(f, g)(x) :=
∑

(k,l)∈E

S(k,l),Φ(f ⊗ g)(x, x).

Problem 2: Given p1, p2 with 1 ≤ p1, p2 ≤ ∞, what is the smallest
value α(p1, p2) such that for all subsets E of Rn with |E| = N we have

‖BE,Φ‖Lp1×Lp2→Lp ≤ Cp1,p2,n,Φ N
α(p1,p2) ?

We focus on the situation where p, p1, p2 satisfy 1/p = 1/p1 + 1/p2.
It is very natural to study multipliers appearing as sums of bumps

supported in lattices, as many decompositions in analysis lead to such
objects, e.g., wavelets, frames, ϕ transform, etc. Our present study
is motivated by the solution of boundedness of rough bilinear singular
integrals in the largest possible open set of exponents, obtained in [6].
This solution relies on standard techniques of harmonic analysis but
also uses a new treatment of columns of coefficients. A discretization
and adaptation of this idea builds the foundation of the proof of our
following main result that addresses Problem 2.
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Theorem 1.2. Let 1 ≤ p1, p2 <∞ and 1/p = 1/p1 + 1/p2.
(i) If p ≤ 1, then there is a constant C = Cp1,p2 such that

‖BE,Φ‖Lp1×Lp2→Lp ≤ CN
1

min(p1,p2)
+

1
2 max(p1,p2)

−1
2 .

(ii) If p > 1, then there is a constant C = Cp1,p2 such that

‖BE,Φ‖Lp1×Lp2→Lp ≤ CNα(p1,p2),

where

(4) α(p1, p2) =
1

2

[
max

(1

p
− 1

2
, 0
)
−min

( 1

p1

− 1

2
, 0
)
−min

( 1

p2

− 1

2
, 0
)]
.

Moreover the power of N cannot be reduced in estimate (ii).

Remark 1.1. Let BE,a,Φ(f, g)(x) :=
∑

(k,l)∈E ak,lS(k,l),Φ(f ⊗ g)(x, x)

with |ak,l| ≤ 1. One see easily that all claims in Theorem 1.2 are valid
for BE,a,Φ as well.

In the local L2 case, i.e., the case where 2 ≤ p1, p2, p
′ ≤ ∞, Theorem

1.2 (ii) yields the constant α(p1, p2) = 1/4. Also when p ≥ 2 we have
α(p1, p2) = 1/2p′. Here p′ = p/(p− 1).

We also have results concerning upper and lower bounds for the con-
stant α(p1, p2) for indices outside the local L2 case. These are discussed
in Sections 5 and 6.

Throughout this paper, C will denote a constant independent of N
and dependent only on auxiliary parameters which may vary in different
occurrences.

2. The linear case: The proof of Proposition 1.1

We begin with the positive direction of Proposition 1.1, namely (2).

Proof of (2). We observe that the multiplier of LE,a,φ is

σ(ξ) =
∑
k∈E

akφ(ξ − k),

whose Fourier transform σ∨(x) = φ∨(x)
∑

k∈E ake
2πix·k satisfies∥∥σ∨∥∥

L1 ≤ ‖
∑
k∈E

ake
eπix·k‖L1([0,1]n)

due to the rapid decay of φ∨ and the periodicity of
∑

k∈E ake
eπix·k. This

in turn is bounded by

(5)
∥∥∥∑
k∈E

ake
eπix·k

∥∥∥
L2([0,1]n)

=
(∑

k

|ak|2
)1/2

≤ N1/2,
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having used that |ak| ≤ 1. This implies ‖LE,a,φ‖L1→L1 ≤ CN1/2. In-
terpolating between the trivial L2 estimate ‖LE,a,φ‖L2→L2 ≤ C and (5)
we obtain (2). �

Remark 2.1. We can prove a continuous version of Proposition 1.1.
Define φE(ξ) = φ ∗ χE, where the Lebesgue measure of E is N . Then
it is easy to verify that

‖φ∨E‖L1 ≤ ‖φ‖L2‖χE‖L2 ≤ C|E|1/2,

which implies that the associated operator given by convolution with φE
is bounded on Lp(Rn) with bound CNα(p).

We now turn to the proof of (3). We fix a smooth bump φ supported
in the ball of radius 1/10. We will need the following lemma.

Lemma 2.1. Let E = EN = {−N,−N+1, . . . , N−1, N}. For any fixed
p ∈ [1, 2], there exists a constant Cp > 0 and a sequence a = {ak}k∈E
such that for all positive integers N we have

(6) ‖LE,a,φ‖Lp→Lp ≥ CpN
α(p).

Proof. For simplicity we first consider the one-dimensional case.
We first take p ∈ (1, 2]. The following counterexample is inspired by

an example in [8]. Let

m(ξ) =
∑
|k|≤N

ak(t)φ(ξ − k), mN(ξ) =
∑
|k|≤N

ak(t)φ(Nξ − k),

where aj are the Rademacher functions. Take a smooth function ϕ
supported in the support of φ such that ϕφ 6= 0 and define f , fN via

f̂(ξ) = N
− 1

p′
∑
|k|≤N

ϕ(ξ − k), f̂N(ξ) =
∑
|k|≤N

ϕ(Nξ − k).

Then ‖f‖Lp = ‖fN‖Lp ≤ C as the Dirichlet kernelDN(x) =
∑
|k|≤N e

2πixk

has Lp norm comparable to N1/p′ . Let Tm be the linear operator

associated with m in the form Tm(f) = (f̂m)∨, then ‖Tm(f)‖Lp =
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‖TmN
(fN)‖Lp , and by applying Khintchine’s inequality we have∫ 1

0

‖TmN
(fN)‖pLp(R)dt =

∫ 1

0

∫
R

∣∣∣∣ ∑
|k|≤N

ak(t)N
−1(φϕ)∨(N−1x)e2πix k

N

∣∣∣∣pdxdt
∼
∫
R

( ∑
|k|≤N

∣∣∣N−1(φϕ)∨(N−1x)e2πix k
N

∣∣∣2) p
2

dx

∼N−p
∫
R
N

p
2 |(φϕ)∨(N−1x)|pdx

∼N ( 1
p
− 1

2
)p.(7)

Denote supa ‖LE,a,φ‖Lp→Lp by Cp(N), then∫ 1

0

‖Tm(f)‖pLpdt ≤ Cp(N)p.

In summary Cp(N) ≥ C ′pN
α(p). In particular, we can find a sequence

a such that ‖LE,a,φ‖Lp→Lp ≥ CpN
α(p) with Cp < C ′p for p ∈ (1, 2].

Notice that ‖f‖1 ≤ C logN by the L1-norm of DN , therefore we can
only show that C1(N) ≥ CN1/2(logN)−1 by the same argument. On
the other hand, interpolation can help us to remove the logarithmic
term below.

We next consider the case when p = 1. Suppose that (6) fails for
p = 1. This is equivalent to saying that for any C > 0 there exists a
corresponding NC such that

(8) sup
a
‖LE,a,φ‖L1→L1 ≤ CN

α(1)
C = CN

1
2
C .

Interpolating between supa ‖LE,a,φ‖L2→L2 ≤ C ′ and (8) we obtain that,
when p ∈ (1, 2), for any Cp > 0 there exists a number N (by choosing
C in (8) small enough) such that

sup
a
‖LE,a,φ‖Lp→Lp ≤ Cp

2
Nα(p);

this contradicts (6) for p ∈ (1, 2). In other words (6) holds when p = 1.
We now consider the higher dimensional case. The idea is simply to

consider products of the one-dimensional example. We briefly describe
this example.

Taking

m(ξ) =
∑
|k|≤N

ak(t)φ(ξ1 − k)
n∏
j=2

φ(ξj − 1),
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and defining

f̂(ξ) = N−1/p′
∑
|k|≤N

ϕ(ξ1 − k)
n∏
j=2

ϕ(ξj − 1),

we have

Tm(f)(x) = N−1/p′
( ∑
|k|≤N

ak(t)(φϕ)∨(x1)e2πix1k
) n∏
j=2

(φϕ)∨(xj)e
2πixj .

Since the variables are separated, this is essentially the one-dimensional
case, and running the same argument as before yields the same neces-
sary condition.

Combining these results we obtain the proof of Proposition 1.1. �

3. The bilinear problem

In this section we begin the study of the bilinear problem lattice
bump in 2n dimensions. We apply the Fourier series method of Coifman
and Meyer [1, 2] to express the smooth bump Φ as a sum of products of
bumps in each half of the variables. As the function Φ is supported in
the ball B(0, 1/20), which is contained in [−1/2, 1/2]2n we can express
it in Fourier series as

Φ(ξ, η) =
∑
r,s∈Zn

cr,se
2πir·ξe2πis·ηφ(ξ)φ(η) ,

where φ(ξ) is smooth, is equal to 1 on |ξ| ≤ 1/20, and vanishes outside
|ξ| ≤ 1/10. Moreover,

cr,s =

∫
B(0,1/20)

Φ(x, y)e−2πi(x·r+y·s)dxdy

and an easy integration by parts shows that

|cr,s| ≤ CM(1 + |r|+ |s|)−M

for every M > 0, where CM depends on the L∞ norms of sufficiently
many derivatives of Φ. Letting φr(ξ) = e2πir·ξφ(ξ), we have that

S(k,l),Φ(f ⊗ g)(x, x) =
∑
r,s∈Zn

cr,sSk,φr(f)(x)Sl,φs(g)(x)

and in view of the rapid decay of cr,s, it will suffice to study an analogous
problem for Sk,φr(f)(x)Sl,φs(g)(x) in place of S(k,l)(f ⊗ g)(x, x) and
obtain estimates for the norm that are independent of r and s.
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We make the remark that the same approach can handle the two
adjoints of BE. Let us look at the first adjoint of S(k,l)(f ⊗ g). This is
associated with the multiplier

Φ(−ξ − η − k, η − l) =Φ(−(ξ + k + l)− (η − l), η − l)
=Φ∗1(ξ − (−l − k), η − l),

where Φ∗1(ξ, η) = Φ(−ξ − η, η). Now notice that as (k, l) varies over
E, then (−k − l, l) varies over

E1∗ =
{

(−k − l, l) : (k, l) ∈ E
}

and |E1∗| = |E|, while the bump Φ∗1 is smooth, has L∞ norm 1 and
is supported in {(ξ, η) : |ξ + η|2 + |η|2 ≤ 1

400
} which is contained in

{(ξ, η) : |(ξ, η)| ≤
√

3
20
}, which is only slightly larger than B(0, 1/20).

Thus any theorem about BE,Φ can also be applied to the first adjoint
B∗1E,Φ = BE∗1,Φ∗1 of BE,Φ, which has the same characteristics as BE,Φ.
This symmetry is one main advantage of BE,Φ(f, g)(x) compared with
Sk,φr(f)(x)Sl,φs(g)(x).

4. The case p1 = p2 = 2

In this section we prove the sufficiency part of Theorem 1.2. By
duality and interpolation it will suffice to consider only the case p1 =
p2 = 2 and p = 1. The trivial estimate is

‖BE,Φ‖L2×L2→L1 ≤ C N,

but it turns out that the optimal value of the constant α(2, 2) = 1/4.
The consideration here is related to the proof of [9, Theorem 1.3], which
enhances the combinatorial argument in [6]

Proof. We denote by E ′ the set of all k ∈ Zn with the property that
there exists an l ∈ Zn such that the point (k, l) ∈ E. That is E ′ is the
set of all first coordinates of elements of E. We think of the set E as
a union of columns Colk indexed by k ∈ E ′ and we write

E =
⋃
k∈E′

Colk.

By the argument in Section 3 it suffices to consider the case when
BE,Φ(f, g) is a sum of products of operators of the form

TσN (f, g) :=
∑
k∈E′

Sk(f)
∑

l: (k,l)∈Colk

Sl(g),

where σN :=
∑

(k,l)∈E φr(ξ − k)φs(η − l), and we have dropped the
dependence on φr and φs for notational convenience.
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We split the columns in large and small. Precisely, we write

E = E1 ∪ E2,

where E1 contains all columns of size ≥ K and E2 contains all columns
of size < K, for some K to be chosen later. Analogously we split

E ′ = E ′1 ∪ E ′2,
where E ′1 and E ′2 is the set of all first coordinates of columns in E1 and
E2, respectively. Correspondingly we define:

T 1
σN

(f, g) =
∑
k∈E′1

Sk(f)
∑

l: (k,l)∈Colk

Sl(g)

and

T 2
σN

(f, g) =
∑
k∈E′2

Sk(f)
∑

l: (k,l)∈Colk

Sl(g)

=
∑

l: ∃k (k,l)∈E2

Sl(g)
∑

k: (k,l)∈E2

Sk(f)

so that
TσN (f, g) = T 1

σN
(f, g) + T 2

σN
(f, g).

We start with T 1
σN

. We have∥∥T 1
σN

(f, g)
∥∥
L1 ≤

∑
k∈E′1

∥∥Sk(f)
∑

l: (k,l)∈Colk

Sl(g)
∥∥
L1

≤
∑
k∈E′1

∥∥Sk(f)
∥∥
L2

∥∥∥ ∑
l: (k,l)∈Colk

Sl(g)
∥∥∥
L2

≤
( ∑
k∈E′1

∥∥Sk(f)
∥∥2

L2

) 1
2
( ∑
k∈E′1

∥∥∥ ∑
l: (k,l)∈Colk

Sl(g)
∥∥∥2

L2

) 1
2

≤‖φ‖L∞‖f‖L2(#E ′1)
1
2‖φ‖L∞‖g‖L2 ,

exploiting the orthogonality of Sk’s on L2.
Notice that as there are N points in E and each column in E ′1 has

least K elements, this means that there are at most N/K columns in
E ′1. We conclude that

(9)
∥∥T 1

σN
(f, g)

∥∥
L1 ≤ (N/K)

1
2‖φ‖2

L∞‖f‖L2‖g‖L2 .

We continue with T 2
σN

. We have∥∥T 2
σN

(f, g)
∥∥
L1

=
∥∥∥ ∑
l: ∃k (k,l)∈E2

Sl(g)
∑

k: (k,l)∈E2

Sk(f)
∥∥∥
L1
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≤
∑

l: ∃k (k,l)∈E2

∥∥∥Sl(g)
∑

k: (k,l)∈E2

Sk(f)
∥∥∥
L1

≤
∑

l: ∃k (k,l)∈E2

∥∥Sl(g)
∥∥
L2

∥∥∥ ∑
k: (k,l)∈E2

Sk(f)
∥∥∥
L2

≤
[ ∑
l: ∃k (k,l)∈E2

∥∥Sl(g)
∥∥2

L2

] 1
2
[ ∑
l: ∃k (k,l)∈E2

∥∥∥ ∑
k: (k,l)∈E2

Sk(f)
∥∥∥2

L2

] 1
2

≤‖φ‖L∞‖g‖L2

[ ∑
l: ∃k (k,l)∈E2

∑
k: (k,l)∈E2

∥∥Sk(f)
∥∥2

L2

] 1
2

=‖φ‖L∞‖g‖L2

[ ∑
k∈E′2

∑
l: (k,l)∈Colk

∥∥Sk(f)
∥∥2

L2

] 1
2

≤‖φ‖L∞‖g‖L2K
1
2

[ ∑
k∈E′2

∥∥Sk(f)
∥∥2

L2

] 1
2

≤‖φ‖L∞‖g‖L2K
1
2‖φ‖L∞‖f‖L2 .

This yields

(10)
∥∥T 2

σN
(f, g)

∥∥
L1 ≤ K

1
2‖φ‖2

L∞‖f‖L2‖g‖L2 .

In view of (9) and (10), the optimal choice of K = N1/2. This proves

(11)
∥∥TσN (f, g)

∥∥
L1 ≤ N

1
4‖φ‖2

L∞‖f‖L2‖g‖L2 .

We have now proved the sufficiency direction in Theorem 1.2. �

5. Bilinear case: Sufficiency

Recalling (4) we notice that α(1, 1) = 3/4 and α(1, 2) = α(2, 1) =
1/2. We begin with the following result which is nontrivial when p < 1.

Proposition 5.1. If E ⊂ Z2n has cardinality N , then

‖BE,Φ‖Lp1×Lp2→Lp ≤ CN

for 1 ≤ p1, p2 ≤ ∞ with 1/p = 1/p1 + 1/p2.

Proof. Recall that

BE,Φ(f, g)(x) =

∫∫
f̂(ξ)ĝ(η)

∑
(k,l)∈E

Φ((ξ, η)− (k, l))e2πix·(ξ+η)dξdη

=

∫∫
K(y, z)f(x− y)g(x− z)dydz,
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where K(y, z) = Φ∨(y, z)
∑

(k,l)∈E e
2πi(y,z)·(k,l).

Setting ψ(y) = (1 + |y|)−2n, as |Φ∨(y, z)| ≤ Cψ(y)ψ(z) we have
|K(y, z)| ≤ CNψ(y)ψ(z), which implies that

|BE,Φ(f, g)(x)| ≤ CN(|f | ∗ ψ)(x) (|g| ∗ ψ)(x).

As a result we obtain

‖BE,Φ(f, g)‖Lp ≤ CN‖|f | ∗ ψ‖Lp1‖|g| ∗ ψ‖Lp2 ≤ CN‖f‖Lp1‖g‖Lp2 ,

hence the conclusion follows. �

Remark 5.1. This result is sharp for (p1, p2) = (1, 1) by Proposi-
tion 6.1, discussed in the next section.

Corollary 5.2. Fix 1
2
< p < 1. There is a constant C such that

‖BE,Φ‖L2p×L2p→Lp ≤ CN
3
4p
−1

2 .

Proof. Interpolating using [5, Theorem 7.2.9] between the estimate at
the point (1,1,1/2) [Proposition 5.1] and at the point (2, 2, 1) obtained
in Section 4, we deduce the conclusion. �

For some endpoints, we can also reduce one half of the exponent of
the estimate in Proposition 5.1 as in the linear case.

Lemma 5.3. There exists a constant C > 0 such that

‖BE,Φ‖L∞×L∞→L∞ ≤ C N
1
2 .

Proof. Obviously ‖BE,Φ(f, g)‖∞ is bounded by ‖K‖L1(R2n)‖f‖∞‖g‖∞,

where K(y, z) = Φ∨(y, z)
∑

(k,l)∈E e
2πi(y,z)·(k,l). We argue as in the proof

of (2) in the linear case to show that ‖K‖L1(R2n) is bounded by N1/2,
which concludes the proof. �

For the most general case 1 < p1, p2 < ∞, we obtain the follow-
ing nontrivial estimate from Lemma 5.3 via duality and multilinear
interpolation.

Proposition 5.4. (i) If p < 1, then there is a constant C = Cp1,p2
such that

‖BE,Φ‖Lp1×Lp2→Lp ≤ CN
1

min(p1,p2)
+

1
2 max(p1,p2)

−1
2 .

(ii) Fix i ∈ {1, 2}. If 1 < pi < 2, and 1 < p < 2, then there is a
constant C = Cp1,p2 such that

‖BE,Φ‖Lp1×Lp2→Lp ≤ CN
1

2pi .
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(iii) If p > 2, then there is a constant C = Cp such that

‖BE,Φ‖Lp1×Lp2→Lp ≤ CN
1
2
− 1

2p .

Proof of Proposition 5.4. It follows from Lemma 5.3 and duality that
we have the rate of growth N1/2 when (p1, p2, p) is one of (∞,∞,∞),
(1,∞, 1), and (∞, 1, 1).

Estimate (i). It suffices to consider the case 1 < p1 < p2, and p < 1,
when the desired estimate is

‖BE,Φ‖Lp1×Lp2→Lp ≤ CN
1
p1

+
1

2p2
−1

2 .

It follows from interpolation between (1, 1, 1
2
), (2, 2, 1), and (1,∞, 1).

Estimate (ii) follows by interpolating between (2, 2, 1), (2,∞, 2), and
(1,∞, 1) when i = 1. The case i = 2 follows by symmetry.

Estimate (iii) follows from interpolation between (∞, 2, 2), (2,∞, 2),
and (∞,∞,∞) . �

6. Bilinear case: necessity

Our main result in this section, stated below, includes the necessity
direction in Theorem 1.2.

Proposition 6.1. Fix a smooth bump Φ supported in the ball |ξ| ≤ 1
20

in R2n. Then for all p1, p2 with 1 ≤ p1, p2 <∞ satisfying 1/p1 +1/p2 =
1/p we have

sup
E
‖BE,Φ‖Lp1×Lp2→Lp ≥ CNmax(α(p1,p2), 1

p
−1).

In particular, ‖BE,Φ‖L1×L1→L1/2 ≥ CN , and estimate (ii) in Theo-
rem 1.2 is sharp when p ≥ 1.

We recall that BE,Φ(f, g)(x) :=
∑

(k,l)∈E S(k,l),Φ(f ⊗ g)(x, x). Via an
argument similar to that used in the proof of Lemma 2.1, it suffices to
consider the case n = 1, which we discuss below.

Let

α′(p1, p2) =
1

2

[1

p
− 1

2
−min

( 1

p1

− 1

2
, 0
)
−min

( 1

p2

− 1

2
, 0
)]
.

Note that α′(p1, p2) = α(p1, p2) when p ≤ 2. We need two lemmas to
prove Proposition 6.1.

Lemma 6.2. For all 1 ≤ p1, p2 <∞ with 1/p = 1/p1 + 1/p2 we have

(12) sup
E
‖BE,Φ‖Lp1×Lp2→Lp ≥ CNα′(p1,p2).
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Proof. It suffices to prove the conclusion for
∑

(k,l)∈E ak,lSk(f)Sl(g)

with ak,l ∈ {1,−1}. Actually if we verify that∥∥∥ ∑
(k,l)∈E

ak,lSk(f)Sl(g)
∥∥∥
Lp1×Lp2→Lp

≥ 3CNα′(p1,p2)

with ak,l ∈ {−1, 1}, then we must have (12); otherwise we obtain that∥∥∥ ∑
(k,l)∈E

ak,lSk(f)Sl(g)
∥∥∥
Lp1×Lp2→Lp

≤ 2CNα′(p1,p2)

since we can write∑
(k,l)∈E

ak,lSk(f)Sl(g) = BE1,Φ(f, g)−BE2,Φ(f, g)

for appropriate sets E1 and E2.
Inspired by the examples in [7] for n = 1, we define1

m(ξ, η) =

√
N∑

k=1

√
N∑

l=1

ak(t1)al(t2)ak+l(t3)ck+lφ(ξ − k)φ(η − l),

where ak(t) are Rademacher functions, and cl = 1 when 9
√
N/10 ≤

l ≤ 11
√
N/10 and 0 elsewhere. We also define

f̂N(ξ) = N
− 1

2p′1

√
N∑

k=1

ak(t1)ϕ̂(ξ − k) , ĝN(η) = N
− 1

2p′2

√
N∑

l=1

al(t2)ϕ̂(η − l).

By a calculation analogous to that in (7) we obtain(∫ 1

0

∥∥Tm(fN , gN)
∥∥p
Lpdt3

) 1
p

∼ N
1
2

( 1
p
− 1

2
).

On the other hand(∫ 1

0

‖fN‖p1Lp1 dt1

) 1
p1

∼ N
1
2

( 1
p1
− 1

2
)
.

Let C0(N) = supE ‖BE,Φ‖Lp1×Lp2→Lp , where the supremum is taken
over all E with |E| = N , then

N
1
2

( 1
p
− 1

2
) ∼

∥∥∥∥∥Tm(fN , gN)
∥∥
Lp

∥∥∥
Lp(dt3)

≤ C0(N)‖fN‖Lp1‖gN‖Lp2 .

Taking Lp1(dt1) and Lp2(dt2) norms on both sides, we obtain that

C0(N) ≥ C
N

1
2

( 1
p
− 1

2 )

N
1
2

( 1
p1
− 1

2
)+ 1

2
( 1
p2
− 1

2
)

= CN
1
4 ,

1∑√
N

k=1 ak means
∑[

√
N ]

k=1 ak, where [
√
N ] is the integer part of

√
N.
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using the estimates for fN and gN . This estimate works for all choices
of indices p1, p2, p with 1/p1 + 1/p2 = 1/p but it is sharp only in the
local L2 case, i.e. in the case where 2 ≤ p1, p2, p

′ ≤ ∞.
Now if all the coefficients ak(t) are equal to 1 in the definition of

fN , then ‖fN‖p1 ≤ C for p1 ∈ (1, 2], which is smaller than N
1
2

( 1
p1
− 1

2
)

if
p1 < 2. So in the case p1 ≤ 2 ≤ p2, we modify the multiplier m by

m(ξ, η) =

√
N∑

k=1

√
N∑

l=1

al(t2)ak+l(t3)ck+lφ(ξ − k)φ(η − l)

correspondingly, which gives then

C0(N) ≥ CN
1
2

( 1
p
− 1

2
− 1

p2
+ 1

2
)

= CN
1

2p1 .

By symmetry we have C0(N) ≥ CN
1

2p2 when p2 ≤ 2 ≤ p1. In analogous
way, when 1 ≤ p1, p2 ≤ 2 we set ak(t1) = al(t2) = 1 to obtain the lower

bound C0(N) ≥ CN
1
2

( 1
p
− 1

2
). Combining these estimates in one form,

we obtain the lower bound C Nα′(p1,p2). �

Lemma 6.3. There exists a set E ⊂ Z2 with cardinality N such that

(13) ‖BE,Φ‖Lp1×Lp2→Lp ≥ CN
1
p
−1
.

In particular ‖BE,Φ‖L1×L1→L1/2 ≥ CN .

This estimate is stronger than (12) when 1
2
≤ p < 2

3
.

Proof. We consider the multiplier

m(ξ, η) :=
N∑

j=−N

φ(ξ − j)φ(η + j),

whose inverse Fourier transform is

K(y, z) = φ∨(y)φ∨(z)
N∑

j=−N

e2πij(y−z).

We remark that
∑N

j=−N e
2πijs is real by symmetry. Moreover we have

|(2N + 1)−
∑N

j=−N e
2πijs| ≤ N for s ≤ 1/(50N). We now take

f(y) = g(y) = 100Nχ[0,(100N)−1](y),

which satisfy ‖f‖L1 = ‖g‖L1 = 1. Then

Tm(f, g)(x) =

∫∫
K(x− y, x− z)f(y)g(z)dydz
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satisfies that

(14) |Tm(f, g)(x)| ≥ CN for |x| ≤ (100)−1

if we choose φ appropriately so that |φ∨(x)| ≥ 1 for |x| ≤ 1
50

. This
yields that ‖Tm(f, g)‖L1/2 ≥ CN . In summary ‖Tm‖L1×L1→L1/2 ≥ CN .
From this example we also obtain that

‖Tm‖Lp1×Lp2→Lp ≥ C N

N1/p′1N1/p′2
≥ CN

1
p
−1.

This concludes the proof of the lemma. �

We provide the following intuitive understanding of the proof of (13).
As m is supported in a tube with dimensions N×1 along the antidiago-
nal, the kernel K = m∨ is essentially equal to the constant N in a tube
of dimensions 1 × N−1 along the diagonal, in view of the uncertainty
principle. If f ⊗ g is supported in a square of length N−1 of height N2,
then K ∗ (f ⊗ g)(x, x) is essentially K ∗ (f ⊗ g)(0, 0) ∼ N3N−2 ∼ N
for |x| ≤ C. This gives the claimed lower bound of BE,Φ.

Remark 6.1. Suppose that 1 ≤ p1, p2 ≤ 2. We have α′(p1, p2) =
1
2p
− 1

4
. Note that α′(p1, p2) ≥ 1

p
− 1 if and only if p ≥ 2

3
. In other

words, the example in Lemma 6.3 provides a larger lower bound for
‖BE,Φ‖Lp1×Lp2→Lp when p < 2

3
.

We now provide the proof of Proposition 6.1.

Proof of Proposition 6.1. It follows from (12) and the discussion in Sec-
tion 3 that

sup
E
‖B∗1E,Φ‖Lp1×Lp2→Lp ≥ CNα′(p1,p2).

More precisely if 1 < p1 ≤ 2 and 1 ≤ p ≤ 2, we have

sup
E
‖B∗1E,Φ‖Lp1×Lp2→Lp ≥ CN1/(2p1),

which implies by duality that

sup
E
‖BE,Φ‖Lp′×Lp2→Lp′1

≥ CN1/(2p1).

We can rephrase this estimate as

sup
E
‖BE,Φ‖Lp1×Lp2→Lp ≥ CN1/(2p′),

which matchesNα(p1,p2) as the upper bound, and is greater than α′(p1, p2) =
N1/4 when p ≥ 2, which happens exactly when α(p1, p2) ≥ α′(p1, p2).

In summary, we obtain that

sup
E
‖BE,Φ‖Lp1×Lp2→Lp ≥ CNα(p1,p2),

which combined with (13) finishes the proof. �
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We finish this section by giving the formal proof of Theorem 1.2; this
was essentially done in last three sections.

Proof of Theorem 1.2. We refer where we discussed the sufficient part
first. The local L2 case is proved in Section 4. The case when p > 1
but the local L2 case is given by Proposition 5.4 (ii) and (iii). The
case when p ≤ 1 is Proposition 5.4 (i). The necessity is provided by
Proposition 6.1. �

Remark 6.2. One notices that 3
4p
− 1

2
> 1

p
− 1 when p > 1

2
, and

3
4p
− 1

2
> 1

2p
− 1

4
for p < 1, therefore, as of this writing, there is a

gap between the positive result from Lp × Lp → Lp/2 for p < 1 in
Corollary 5.2 and our two counterexamples.
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[10] L. Grafakos, P. Honźık, D. Ryabogin. On the p-independence boundedness prop-
erty of Calderón-Zygmund theory. J. Reine Angew. Math. 602 (2007), 227–234.

[11] L. Grafakos, A. Miyachi, H. V. Nguyen, N. Tomita. Multilinear Fourier mul-
tipliers with minimal Sobolev regularity, II. J. Math. Soc. Japan 69 (2017),
529562.
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