A REMARK ON BILINEAR SQUARE FUNCTIONS

Abstract

We provide some remarks concerning a bilinear square function formed by products of Littlewood-Paley operators over arbitrary intervals. For $1<p_{1}, p_{2}<\infty$ with $1 / p=1 / p_{1}+1 / p_{2}$, we show that this square function is bounded from $L^{p_{1}}(\mathbf{R}) \times L^{p_{2}}(\mathbf{R})$ to $L^{p}(\mathbf{R})$ when $p>2 / 3$ and unbounded when $p<2 / 3$.

Little work is known in the area of bilinear Littlewood-Paley square functions besides the articles of Lacey [6], Diestel [4], and Bernicot [1]. In this note, we study a bilinear square function formed by products of Littlewood-Paley operators over arbitrary intervals.

Given an interval $I=[a, b)$ on \mathbf{R}, let Δ_{I} be the Littlewood-Paley operator defined by multiplication by the characteristic function of I on the Fourier transform side. The Fourier transform of an integrable function g on \mathbf{R} is defined by

$$
\widehat{g}(\xi)=\int_{\mathbf{R}} g(x) e^{-2 \pi i x \xi} d x
$$

and its inverse Fourier transform is defined by $g^{\vee}(\xi)=\widehat{g}(-\xi)$. In terms of these operators we have $\Delta_{I}(g)=\left(\widehat{g} \chi_{I}\right)^{\vee}$.

The Littlewood-Paley square function associated with the function f on \mathbf{R} is given by

$$
\begin{equation*}
S(f)=\left(\sum_{j \in \mathbf{Z}}\left|\Delta_{I_{j}}(f)\right|^{2}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

where $I_{j}=\left[-2^{j+1},-2^{j}\right) \cup\left[2^{j}, 2^{j+1}\right)$ and the classical Littlewood-Paley theorem says that

$$
\|S(f)\|_{L^{p}(\mathbf{R})} \leq C_{p}\|f\|_{L^{p}(\mathbf{R})}
$$

where $1<p<\infty$ and C_{p} is a constant independent of the function f in $L^{p}(\mathbf{R})$ (but depends on p).

In this note, we are interested in estimates for Littlewood-Paley square functions formed by products of Littlewood-Paley operators acting on two functions. To be precise, let a_{j} and b_{j} be strictly increasing sequences on the real line with the properties $\lim _{j \rightarrow \infty} a_{j}=$

[^0]$\lim _{j \rightarrow \infty} b_{j}=\infty$ and $\lim _{j \rightarrow-\infty} a_{j}=\lim _{j \rightarrow-\infty} b_{j}=-\infty$ and consider the bilinear square function
$$
S_{2}(f, g)=\left(\sum_{j \in \mathbf{Z}}\left|\Delta_{\left[a_{j}, a_{j+1}\right)}(f) \Delta_{\left[b_{j}, b_{j+1}\right)}(g)\right|^{2}\right)^{\frac{1}{2}}
$$
defined for suitable functions f, g on the line. We consider the question whether S_{2} satisfies the inequality
\[

$$
\begin{equation*}
\left\|S_{2}(f, g)\right\|_{L^{p}(\mathbf{R})} \leq C_{p_{1}, p_{2}}\|f\|_{L^{p_{1}}(\mathbf{R})}\|g\|_{L^{p_{2}}(\mathbf{R})} \tag{2}
\end{equation*}
$$

\]

for some constant $C_{p_{1}, p_{2}}$ independent of f, g where $1<p_{1}, p_{2}<\infty$ and $1 / p=1 / p_{1}+1 / p_{2}$. We have the following result concerning this operator:

Theorem 0.1. Let $1<p_{1}, p_{2}<\infty$ be given and define p by setting $1 / p=1 / p_{1}+1 / p_{2}$. Then if $p>2 / 3$, there is a constant $C_{p_{1}, p_{2}}$ such that (2) holds for all functions f, g on the line. Conversely, if (2) holds, then we must have $p \geq 2 / 3$.
Proof. Consider the maximal function

$$
\mathcal{M}(f)=\sup _{-\infty<a<b<\infty}\left|\Delta_{[a, b)}(f)\right|
$$

and notice that is pointwise controlled by

$$
2 \sup _{a \in \mathbf{R}}\left|\Delta_{(-\infty, a)}(f)\right|
$$

and thus is controlled by the following version of the Carleson operator

$$
\mathcal{C}(f)(x)=\sup _{N>0}\left|\int_{-\infty}^{N} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi\right| .
$$

In view of the Carleson-Hunt theorem [2], [5] we have that \mathcal{C} is bounded on $L^{r}(\mathbf{R})$ for $1<r<\infty$.

Consider the case where $2 \leq p_{1}<\infty$ and $1<p_{2}<\infty$. Then we have that

$$
S_{2}(f, g) \leq\left(\sum_{j \in \mathbf{Z}}\left|\Delta_{\left[a_{j}, a_{j+1}\right)}(f)\right|^{2}\right)^{\frac{1}{2}} \sup _{j \in \mathbf{Z}}\left|\Delta_{\left[b_{j}, b_{j+1}\right)}(g)\right|=S(f) \mathcal{M}(g)
$$

where S is defined as in (1) with $\left[a_{j}, a_{j+1}\right)$ in place of I_{j}. In view of the Rubio de Francia inequality [7] we have that S is bounded on $L^{r}(\mathbf{R})$ for $2 \leq r<\infty$. An application of Hölder's inequality yields the inequality

$$
\begin{equation*}
\left\|S_{2}(f, g)\right\|_{L^{p}(\mathbf{R})} \leq\|S(f)\|_{L^{p_{1}}(\mathbf{R})}\|\mathcal{M}(g)\|_{L^{p_{2}}(\mathbf{R})} \tag{3}
\end{equation*}
$$

and this (2) follows from the preceding inequality combined with the boundedness of S on $L^{p_{1}}(\mathbf{R})$ and \mathcal{M} on $L^{p_{2}}(\mathbf{R})$.

An analogous argument holds with the roles of p_{1} and p_{2} are reversed, i.e., when we have $1<p_{1}<\infty$ and $2 \leq p_{2}<\infty$. Thus boundedness holds for all pairs $\left(p_{1}, p_{2}\right)$ for which either $p_{1} \geq 2$ or $p_{2} \geq 2$. But there exist points $\left(p_{1}, p_{2}\right)$ with $p=\left(1 / p_{1}+1 / p_{2}\right)^{-1}>2 / 3$ for which neither p_{1} nor p_{2} is at least 2. (For instance $p_{1}=p_{2}=7 / 5$). To deal with these intermediate points we use interpolation.

Given a pair of points $\left(p_{1}, p_{2}\right)$ with $p=\left(1 / p_{1}+1 / p_{2}\right)^{-1}>2 / 3$ and $1<p_{1}, p_{2}<2$, we pick two pairs of points $\left(p_{1}^{1}, p_{2}^{1}\right)$ and $\left(p_{1}^{2}, p_{2}^{2}\right)$ with

$$
p>p^{1}=\left(1 / p_{1}^{1}+1 / p_{2}^{1}\right)^{-1}=p^{2}=\left(1 / p_{1}^{2}+1 / p_{2}^{2}\right)^{-1}>2 / 3
$$

and $1<p_{2}^{1}<2<p_{1}^{1}<\infty,<2$ and $1<p_{2}^{2}<2<p_{1}^{2}<\infty$. For instance we take $\left(p_{1}^{1}, p_{2}^{1}, p^{1}\right)$ near $(1,2,2 / 3)$ and $\left(p_{1}^{2}, p_{2}^{2}, p^{2}\right)$ near $(2,1,2 / 3)$. Then consider the three points $W_{1}=\left(1 / p_{1}^{1}, 1 / p_{2}^{1}, 1 / p^{1}\right)$, $W_{2}=\left(1 / p_{1}^{2}, 1 / p_{2}^{2}, 1 / p^{2}\right)$, and $W_{3}=(1 / 2,1 / 2,1)$ and notice that the point $\left(1 / p_{1}, 1 / p_{2}, 1 / p\right)$ lies in the interior of the convex hull of W_{1}, W_{2}, and W_{3}. We consider the bi-sublinear operator

$$
(f, g) \mapsto S_{2}(f, g)
$$

which is bounded at the points W_{1}, W_{2}, and W_{3}. Using Corollary 7.2.4 in [3] we obtain that S_{2} is bounded from $L^{p_{1}}(\mathbf{R}) \times L^{p_{2}}(\mathbf{R})$ to $L^{p}(\mathbf{R})$. This completes the proof in the remaining case.

Next, we turn to the converse assertion of the theorem. Suppose that for some $1<p_{1}, p_{2}<\infty$ with $1 / p=1 / p_{1}+1 / p_{2}$ estimate (2) holds for some constant $C_{p_{1}, p_{2}}$ and all suitable functions f, g on the line. Now consider the sequences $a_{j}=b_{j}=j$ and the functions

$$
f_{N}=g_{N}=\chi_{[0, N)}^{\vee}
$$

Then we have

$$
f_{N}(x)=\chi_{[0, N]}^{\vee}(x)=\int_{0}^{N} e^{2 \pi i x \xi} d \xi=\frac{e^{2 \pi i N x}-1}{2 \pi i x}
$$

and for $j=0,1, \ldots, N-1$ we have

$$
\Delta_{[j, j+1)}\left(f_{N}\right)(x)=\int_{j}^{j+1} e^{2 \pi i x \xi} d \xi=e^{2 \pi i x j} \int_{0}^{1} e^{2 \pi i x \xi} d \xi=\frac{e^{2 \pi i x j}\left(e^{2 \pi i x}-1\right)}{2 \pi i x}
$$

Consequently,

$$
\left(\sum_{j=0}^{N-1}\left|\Delta_{[j, j+1)}\left(f_{N}\right)(x) \Delta_{[j, j+1)}\left(g_{N}\right)(x)\right|^{2}\right)^{\frac{1}{2}}=\sqrt{N}\left|\frac{e^{2 \pi i x}-1}{2 \pi i x}\right|^{2}
$$

and thus

$$
\left\|S_{2}\left(f_{N}, g_{N}\right)\right\|_{L^{p}} \geq \sqrt{N}\left\|\frac{\left(e^{2 \pi i x}-1\right)^{2}}{4 \pi^{2} x^{2}}\right\|_{L^{p}}=c \sqrt{N}
$$

as long as $p>1 / 2$. On the other hand we have

$$
\left\|f_{N}\right\|_{L^{p_{1}}}=N^{1-\frac{1}{p_{1}}}\left\|\frac{e^{2 \pi i x}-1}{2 \pi i x}\right\|_{L^{p_{1}}}=c_{p_{1}} N^{1-\frac{1}{p_{1}}}
$$

whenever $1<p_{1}<\infty$.
Now suppose that (2) holds. Then we must have

$$
\begin{equation*}
\left\|S_{2}\left(f_{N}, g_{N}\right)\right\|_{L^{p}(\mathbf{R})} \leq C_{p_{1}, p_{2}}\left\|f_{N}\right\|_{L^{p_{1}(\mathbf{R})}}\left\|g_{N}\right\|_{L^{p_{2}(\mathbf{R})}} \tag{4}
\end{equation*}
$$

and this implies that

$$
c \sqrt{N} \leq C_{p_{1}, p_{2}} c_{p_{1}} N^{1-\frac{1}{p_{1}}} c_{p_{2}} N^{1-\frac{1}{p_{2}}}=C_{p_{1}, p_{2}} c_{p_{1}} c_{p_{2}} N^{2-\frac{1}{p}}
$$

which forces $p \geq 2 / 3$ by letting $N \rightarrow \infty$.
It is unclear to us at the moment as to what happens when $p=2 / 3$.
We now discuss a related larger square function. Let $1<p_{1}, p_{2}<\infty$ with $1 / p_{1}+1 / p_{2}=1 / p$. It is not hard to see that the square function

$$
S_{22}(f, g)=\left(\sum_{j \in \mathbf{Z}} \sum_{k \in \mathbf{Z}}\left|\Delta_{\left[a_{j}, a_{j+1}\right)}(f) \Delta_{\left[b_{k}, b_{k+1}\right)}(g)\right|^{2}\right)^{\frac{1}{2}}
$$

is bounded from $L^{p_{1}}(\mathbf{R}) \times L^{p_{2}}(\mathbf{R})$ to $L^{p}(\mathbf{R})$ if and only if $p_{1}, p_{2} \geq 2$. Indeed, one direction is a trivial consequence of Hölder's inequality; for the other direction, let

$$
f_{N}(x)=g_{N}(x)=\chi_{[0, N]}^{\vee}(x)=\int_{0}^{N} e^{2 \pi i x \xi} d \xi=\frac{e^{2 \pi i N x}-1}{2 \pi i x} .
$$

The preceding argument shows that

$$
\left\|S_{22}\left(f_{M}, g_{N}\right)\right\|_{L^{p}} \geq c^{2} \sqrt{M} \sqrt{N}
$$

and we also have

$$
\left\|f_{M}\right\|_{L^{p_{1}}(\mathbf{R})}\left\|g_{N}\right\|_{L^{p_{2}}(\mathbf{R})}=c_{p_{1}} c_{p_{2}} M^{1-\frac{1}{p_{1}}} N^{1-\frac{1}{p_{2}}} .
$$

Hence, letting $M \rightarrow \infty$ with N fixed or $N \rightarrow \infty$ with M fixed, we obtain that both p_{1} and p_{2} satisfy $p_{1}, p_{2} \geq 2$.

I would like to end this note by expressing a few feelings about Cora Sadosky. Although, I have not had a very close personal relationship with her, I have always admired the great dedication and enthusiasm Cora has displayed in mathematics and the sincere love and support she has provided to young people who wished to pursue a research career in harmonic analysis. I warmly recall the personal interest she showed in my search for a permanent position in the USA. Cora's untimely passing away was a big loss for our harmonic analysis community and we are all proud of the strong legacy she has left behind.

References

[1] Bernicot, F., L^{p} estimates for non smooth bilinear Littlewood-Paley square functions, Math. Ann. 351 (2011), 1-49.
[2] Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), no. 1, 135-157.
[3] Grafakos, L., Modern Fourier Analysis, 3rd Edition, GTM 250, Springer, New York, 2015.
[4] Diestel, G., Some remarks on bilinear Littlewood-Paley theory, J. Math. Anal. Appl. 307 (2005) 102-119.
[5] Hunt, R., On the convergence of Fourier series, 1968 Orthogonal Expansions and Their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), pp. 235-255, Southern Illinois Univ. Press, Carbondale Ill.
[6] Lacey, M., On Bilinear Littlewood-Paley Square Functions, Publ. Mat. 40 (1996) 387-396.
[7] Rubio de Francia, J.-L., A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1-14.

E-mail address: grafakosl@missouri.edu

[^0]: 2000 Mathematics Subject Classification. 42Bxx.
 The author would like to acknowledge the Simons Foundation.

