A REMARK ON BILINEAR SQUARE FUNCTIONS

ABSTRACT. We provide some remarks concerning a bilinear square
function formed by products of Littlewood-Paley operators over
arbitrary intervals. For 1 < py,ps < oo with 1/p =1/p1+1/p2, we
show that this square function is bounded from LP*(R) x LP2(R)
to LP(R) when p > 2/3 and unbounded when p < 2/3.

Little work is known in the area of bilinear Littlewood-Paley square
functions besides the articles of Lacey [6], Diestel [4], and Bernicot [1].
In this note, we study a bilinear square function formed by products
of Littlewood-Paley operators over arbitrary intervals.

Given an interval I = [a,b) on R, let A; be the Littlewood-Paley
operator defined by multiplication by the characteristic function of I
on the Fourier transform side. The Fourier transform of an integrable
function g on R is defined by

mozégmamﬁm

and its inverse Fourier transform is defined by ¢"(£) = g(—¢). In terms
of these operators we have A;(g) = (§X1)v.

The Littlewood-Paley square function associated with the function
f on R is given by

1
(1) S = (X 1anE)"
jez
where I; = [-2971 —27) U [27,271) and the classical Littlewood-Paley
theorem says that

IS oy < Coll Fllocey

where 1 < p < oo and C), is a constant independent of the function f
in LP?(R) (but depends on p).

In this note, we are interested in estimates for Littlewood-Paley
square functions formed by products of Littlewood-Paley operators
acting on two functions. To be precise, let a; and b; be strictly in-
creasing sequences on the real line with the properties lim;_,, a; =
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lim; o b; = 00 and lim;_,_ a; = lim;_,_, b; = —oo and consider the
bilinear square function

Sa(£:9) = (3 180y (0,0, (9))
JEZ
defined for suitable functions f, g on the line. We consider the question
whether S, satisfies the inequality

(2) HS2(f’ g)HLp(R) < Cpl,pzHfHLpl(R)HgHLP2(R)

for some constant C), ,, independent of f,g where 1 < p;,ps < 00
and 1/p = 1/p1 + 1/ps. We have the following result concerning this
operator:

Theorem 0.1. Let 1 < p1,pa < 00 be given and define p by setting
1/p=1/p1+1/ps. Thenifp > 2/3, there is a constant C,, ,, such that
(2) holds for all functions f,g on the line. Conversely, if (2) holds,
then we must have p > 2/3.

Proof. Consider the maximal function

M(f) = sup  [Apy(f)]

—oo<a<b<oo

and notice that is pointwise controlled by

25up [A(—os,a)(f)]
aeR

and thus is controlled by the following version of the Carleson operator

N ~ .
/_ Fleyermtag

In view of the Carleson-Hunt theorem [2], [5] we have that C is bounded
on L"(R) for 1 < r < 0.

Consider the case where 2 < p; < oo and 1 < py < oo. Then we
have that

52(f7 g) < <Z |A[aj,aj+1)(f)|2> ’ ?gg |A[bj,bj+1)(g)| = S(f)/\/l(g)

JEZ

C(f)(x) = sup

N>0

where S is defined as in (1) with [a;, a;+1) in place of I;. In view of the
Rubio de Francia inequality [7] we have that S is bounded on L"(R) for
2 <r < oco. An application of Holder’s inequality yields the inequality

3) 1S2(F: )| oy < ISC) los o IM (@) ooy

and this (2) follows from the preceding inequality combined with the
boundedness of S on L”*(R) and M on L”?(R).
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An analogous argument holds with the roles of p; and p, are reversed,
i.e., when we have 1 < p; < oo and 2 < py < oo. Thus boundedness
holds for all pairs (p;,p2) for which either p; > 2 or p, > 2. But there
exist points (p1, p2) with p = (1/p; + 1/p2)~! > 2/3 for which neither
p1 nor pe is at least 2. (For instance p; = py = 7/5). To deal with
these intermediate points we use interpolation.

Given a pair of points (py, p2) with p = (1/p; + 1/p2)~! > 2/3 and
1 < p1,pa < 2, we pick two pairs of points (p}, p3) and (p?, p3) with

p>p'=(1/pi+1/py) " =p"=1/pi+1/p3)"" >2/3

and 1 < p} < 2 < pl <0, <2and 1 < p2 <2 < p? < cc.
For instance we take (pi,pi, p') near (1,2,2/3) and (p?,p3,p?) near
(2,1,2/3). Then consider the three points Wi = (1/pi,1/p3, 1/p'),
Wy = (1/p%,1/p3,1/p?), and W3 = (1/2,1/2,1) and notice that the
point (1/p1,1/p2,1/p) lies in the interior of the convex hull of Wy, W,
and W3. We consider the bi-sublinear operator

(fug) = SQ(f7g)

which is bounded at the points Wy, Wy, and W3. Using Corollary 7.2.4
in [3] we obtain that Sy is bounded from LP*(R) x L»?(R) to LP(R).
This completes the proof in the remaining case.

Next, we turn to the converse assertion of the theorem. Suppose that
for some 1 < py,p2 < oo with 1/p = 1/p; + 1/p, estimate (2) holds for
some constant Cj, ,,, and all suitable functions f,g on the line. Now
consider the sequences a; = b; = j and the functions

I =9n = XN -

Then we have

N
fN(x) = XE(),N] (:C) = / e27rzx§d£ —
0
and for j =0,1,..., N — 1 we have

7+1 ) o 1 ) 6271'1':0]' 6271'1'9: -1
Bselite) = [ et = et [ msge - S,

e27riNoc -1

2mix

i 2mix
Consequently,
N—1 9 1 6271’ix _ 1 2
<Z |A[j,j+1)(fN)(x)A[j,jH)(gN)(x)‘ ) =VN omiT
§=0
and thus

2mix 1)2

4722

1920w o)), > «NH@

=cVN
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as long as p > 1/2. On the other hand we have

L 627ri:c -1

| fnllem = N #

2mir || e

whenever 1 < p; < o0.
Now suppose that (2) holds. Then we must have

(4) ”SQ(fN?gN)HLp(R) < Ophm||fN||LP1(R)||gN||LP2(R)
and this implies that

1

C\/N < Cm,pzcle_ﬁcple_% = Cm,pomeQNZi;
which forces p > 2/3 by letting N — oc. O

It is unclear to us at the moment as to what happens when p = 2/3.
We now discuss a related larger square function. Let 1 < py,ps < o0
with 1/p1 + 1/ps = 1/p. Tt is not hard to see that the square function

Sas(f, 9) <Z Z |Aaj 0,0 (f A[bk,bk+1)(g)|2> ’

JEZ kEZ

is bounded from L**(R) x LP*(R) to LP(R) if and only if p;,py > 2.
Indeed, one direction is a trivial consequence of Holder’s inequality; for
the other direction, let

N
fN(l') = gN(:L‘) = XE{LN] (aj) — / 627r7,1’§ dé —
0
The preceding argument shows that

HS22(fM;gN)||Lp > VM VN

Jun

eQmNa: -1

2mix

and we also have

_ 1 _ 1
1 farll s oy | g || Loz (R) = Cpppp M TPE N T2

Hence, letting M — oo with N fixed or N — oo with M fixed, we
obtain that both p; and py satisfy py, ps > 2.

I would like to end this note by expressing a few feelings about Cora
Sadosky. Although, I have not had a very close personal relationship
with her, I have always admired the great dedication and enthusiasm
Cora has displayed in mathematics and the sincere love and support she
has provided to young people who wished to pursue a research career
in harmonic analysis. [ warmly recall the personal interest she showed
in my search for a permanent position in the USA. Cora’s untimely
passing away was a big loss for our harmonic analysis community and
we are all proud of the strong legacy she has left behind.



A REMARK ON BILINEAR SQUARE FUNCTIONS 5

REFERENCES

Bernicot, F., LP estimates for non smooth bilinear Littlewood-Paley square
functions, Math. Ann. 351 (2011), 1-49.

Carleson, L., On convergence and growth of partial sums of Fourier series,
Acta Math. 116 (1966), no. 1, 135-157.

Grafakos, L., Modern Fourier Analysis, 8rd Edition, GTM 250, Springer, New
York, 2015.

Diestel, G., Some remarks on bilinear Littlewood-Paley theory, J. Math. Anal.
Appl. 307 (2005) 102-119.

Hunt, R., On the convergence of Fourier series, 1968 Orthogonal Expansions
and Their Continuous Analogues (Proc. Conf., Edwardsville, Tll., 1967), pp.
235-255, Southern Illinois Univ. Press, Carbondale Tl1.

Lacey, M., On Bilinear Littlewood-Paley Square Functions, Publ. Mat. 40
(1996) 387-396.

Rubio de Francia, J.-L., A Littlewood—Paley inequality for arbitrary intervals,
Rev. Mat. Iberoamericana 1 (1985), no. 2, 1-14.

E-mail address: grafakosl@missouri.edu



