
A REMARK ON BILINEAR SQUARE FUNCTIONS

Abstract. We provide some remarks concerning a bilinear square
function formed by products of Littlewood-Paley operators over
arbitrary intervals. For 1 < p1, p2 <∞ with 1/p = 1/p1+1/p2, we
show that this square function is bounded from Lp1(R)× Lp2(R)
to Lp(R) when p > 2/3 and unbounded when p < 2/3.

Little work is known in the area of bilinear Littlewood-Paley square
functions besides the articles of Lacey [6], Diestel [4], and Bernicot [1].
In this note, we study a bilinear square function formed by products
of Littlewood-Paley operators over arbitrary intervals.

Given an interval I = [a, b) on R, let ∆I be the Littlewood-Paley
operator defined by multiplication by the characteristic function of I
on the Fourier transform side. The Fourier transform of an integrable
function g on R is defined by

ĝ(ξ) =

∫
R

g(x)e−2πixξ dx

and its inverse Fourier transform is defined by g∨(ξ) = ĝ(−ξ). In terms

of these operators we have ∆I(g) =
(
ĝχI
)∨

.
The Littlewood-Paley square function associated with the function

f on R is given by

(1) S(f) =
(∑
j∈Z

|∆Ij(f)|2
) 1

2
,

where Ij = [−2j+1,−2j) ∪ [2j, 2j+1) and the classical Littlewood-Paley
theorem says that ∥∥S(f)

∥∥
Lp(R)

≤ Cp‖f‖Lp(R)

where 1 < p < ∞ and Cp is a constant independent of the function f
in Lp(R) (but depends on p).

In this note, we are interested in estimates for Littlewood-Paley
square functions formed by products of Littlewood-Paley operators
acting on two functions. To be precise, let aj and bj be strictly in-
creasing sequences on the real line with the properties limj→∞ aj =

2000 Mathematics Subject Classification. 42Bxx.
The author would like to acknowledge the Simons Foundation.

1



2 A REMARK ON BILINEAR SQUARE FUNCTIONS

limj→∞ bj =∞ and limj→−∞ aj = limj→−∞ bj = −∞ and consider the
bilinear square function

S2(f, g) =
(∑
j∈Z

|∆[aj ,aj+1)(f)∆[bj ,bj+1)(g)|2
) 1

2

defined for suitable functions f, g on the line. We consider the question
whether S2 satisfies the inequality

(2)
∥∥S2(f, g)

∥∥
Lp(R)

≤ Cp1,p2‖f‖Lp1 (R)‖g‖Lp2 (R)

for some constant Cp1,p2 independent of f, g where 1 < p1, p2 < ∞
and 1/p = 1/p1 + 1/p2. We have the following result concerning this
operator:

Theorem 0.1. Let 1 < p1, p2 < ∞ be given and define p by setting
1/p = 1/p1+1/p2. Then if p > 2/3, there is a constant Cp1,p2 such that
(2) holds for all functions f, g on the line. Conversely, if (2) holds,
then we must have p ≥ 2/3.

Proof. Consider the maximal function

M(f) = sup
−∞<a<b<∞

|∆[a,b)(f)|

and notice that is pointwise controlled by

2 sup
a∈R
|∆(−∞,a)(f)|

and thus is controlled by the following version of the Carleson operator

C(f)(x) = sup
N>0

∣∣∣∣ ∫ N

−∞
f̂(ξ)e2πixξdξ

∣∣∣∣ .
In view of the Carleson-Hunt theorem [2], [5] we have that C is bounded
on Lr(R) for 1 < r <∞.

Consider the case where 2 ≤ p1 < ∞ and 1 < p2 < ∞. Then we
have that

S2(f, g) ≤
(∑
j∈Z

|∆[aj ,aj+1)(f)|2
) 1

2
sup
j∈Z
|∆[bj ,bj+1)(g)| = S(f)M(g)

where S is defined as in (1) with [aj, aj+1) in place of Ij. In view of the
Rubio de Francia inequality [7] we have that S is bounded on Lr(R) for
2 ≤ r <∞. An application of Hölder’s inequality yields the inequality

(3)
∥∥S2(f, g)

∥∥
Lp(R)

≤ ‖S(f)‖Lp1 (R)‖M(g)‖Lp2 (R)

and this (2) follows from the preceding inequality combined with the
boundedness of S on Lp1(R) and M on Lp2(R).
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An analogous argument holds with the roles of p1 and p2 are reversed,
i.e., when we have 1 < p1 < ∞ and 2 ≤ p2 < ∞. Thus boundedness
holds for all pairs (p1, p2) for which either p1 ≥ 2 or p2 ≥ 2. But there
exist points (p1, p2) with p = (1/p1 + 1/p2)

−1 > 2/3 for which neither
p1 nor p2 is at least 2. (For instance p1 = p2 = 7/5). To deal with
these intermediate points we use interpolation.

Given a pair of points (p1, p2) with p = (1/p1 + 1/p2)
−1 > 2/3 and

1 < p1, p2 < 2, we pick two pairs of points (p11, p
1
2) and (p21, p

2
2) with

p > p1 = (1/p11 + 1/p12)
−1 = p2 = (1/p21 + 1/p22)

−1 > 2/3

and 1 < p12 < 2 < p11 < ∞, < 2 and 1 < p22 < 2 < p21 < ∞.
For instance we take (p11, p

1
2, p

1) near (1, 2, 2/3) and (p21, p
2
2, p

2) near
(2, 1, 2/3). Then consider the three points W1 = (1/p11, 1/p

1
2, 1/p

1),
W2 = (1/p21, 1/p

2
2, 1/p

2), and W3 = (1/2, 1/2, 1) and notice that the
point (1/p1, 1/p2, 1/p) lies in the interior of the convex hull of W1, W2,
and W3. We consider the bi-sublinear operator

(f, g) 7→ S2(f, g)

which is bounded at the points W1, W2, and W3. Using Corollary 7.2.4
in [3] we obtain that S2 is bounded from Lp1(R) × Lp2(R) to Lp(R).
This completes the proof in the remaining case.

Next, we turn to the converse assertion of the theorem. Suppose that
for some 1 < p1, p2 <∞ with 1/p = 1/p1 + 1/p2 estimate (2) holds for
some constant Cp1,p2 and all suitable functions f, g on the line. Now
consider the sequences aj = bj = j and the functions

fN = gN = χ∨[0,N) .

Then we have

fN(x) = χ∨[0,N ](x) =

∫ N

0

e2πixξdξ =
e2πiNx − 1

2πix

and for j = 0, 1, . . . , N − 1 we have

∆[j,j+1)(fN)(x) =

∫ j+1

j

e2πixξdξ = e2πixj
∫ 1

0

e2πixξdξ =
e2πixj(e2πix − 1)

2πix
.

Consequently,(N−1∑
j=0

∣∣∆[j,j+1)(fN)(x)∆[j,j+1)(gN)(x)
∣∣2) 1

2
=
√
N

∣∣∣∣e2πix − 1

2πix

∣∣∣∣2
and thus ∥∥S2(fN , gN)

∥∥
Lp ≥

√
N

∥∥∥∥(e2πix − 1)2

4π2x2

∥∥∥∥
Lp

= c
√
N
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as long as p > 1/2. On the other hand we have

‖fN‖Lp1 = N
1− 1

p1

∥∥∥∥e2πix − 1

2πix

∥∥∥∥
Lp1

= cp1 N
1− 1

p1

whenever 1 < p1 <∞.
Now suppose that (2) holds. Then we must have

(4)
∥∥S2(fN , gN)

∥∥
Lp(R)

≤ Cp1,p2‖fN‖Lp1 (R)‖gN‖Lp2 (R)

and this implies that

c
√
N ≤ Cp1,p2cp1N

1− 1
p1 cp2N

1− 1
p2 = Cp1,p2cp1cp2N

2− 1
p

which forces p ≥ 2/3 by letting N →∞. �

It is unclear to us at the moment as to what happens when p = 2/3.
We now discuss a related larger square function. Let 1 < p1, p2 <∞

with 1/p1 + 1/p2 = 1/p. It is not hard to see that the square function

S22(f, g) =
(∑
j∈Z

∑
k∈Z

|∆[aj ,aj+1)(f)∆[bk,bk+1)(g)|2
) 1

2

is bounded from Lp1(R) × Lp2(R) to Lp(R) if and only if p1, p2 ≥ 2.
Indeed, one direction is a trivial consequence of Hölder’s inequality; for
the other direction, let

fN(x) = gN(x) = χ∨[0,N ](x) =

∫ N

0

e2πixξ dξ =
e2πiNx − 1

2πix
.

The preceding argument shows that∥∥S22(fM , gN)
∥∥
Lp ≥ c2

√
M
√
N

and we also have

‖fM‖Lp1 (R)‖gN‖Lp2 (R) = cp1cp2M
1− 1

p1N
1− 1

p2 .

Hence, letting M → ∞ with N fixed or N → ∞ with M fixed, we
obtain that both p1 and p2 satisfy p1, p2 ≥ 2.

I would like to end this note by expressing a few feelings about Cora
Sadosky. Although, I have not had a very close personal relationship
with her, I have always admired the great dedication and enthusiasm
Cora has displayed in mathematics and the sincere love and support she
has provided to young people who wished to pursue a research career
in harmonic analysis. I warmly recall the personal interest she showed
in my search for a permanent position in the USA. Cora’s untimely
passing away was a big loss for our harmonic analysis community and
we are all proud of the strong legacy she has left behind.
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