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1. Introduction

It is quite common for linear operators to depend on several functions of which only
one is thought of as the main variable and the remaining ones are usually treated
as parameters. Examples of such operators are ubiquitous in harmonic analysis:
multiplier operators, homogeneous singular integrals associated with functions Ω on
the sphere, Littlewood–Paley operators, the Calderón commutators, and the Cauchy
integral along Lipschitz curves. Treating the additional functions that arise in these
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operators as frozen parameters often provides limited results that could be thought
analogous to those that one obtains by studying calculus of functions of several
variables by freezing variables. In this article, we advocate a more flexible point of
view in the study of linear operators, analogous to that employed in pure multivariable
calculus. Unfreezing the additional functions and treating them as input variables
provides a more robust approach that often yields sharper results in terms of the
regularity of the input functions.

We illustrate the power of this idea with a concrete example concerning the Hörmander–
Mihlin multiplier theorem [23], [34]. This says that for γ > n/2 there is a constant
Cp,n,γ such that∥∥(f̂σ)∨∥∥

Lp(Rn)
(1)

≤ Cp,n,γ
∥∥f∥∥

Lp(Rn)

[∥∥σ‖L∞(Rn) + sup
k∈Z

∥∥ϕ(ξ)σ(2kξ)
∥∥
L2
γ(Rn, dξ)

]
where 1 < p < ∞, while for p = 1 the inequality is still valid when the Lp norm on
the left is replaced by L1,∞. Here ϕ is a smooth function supported in the annulus
1/2 < |ξ| < 2 which is nonvanishing in the smaller annulus 1/

√
2 < |ξ| <

√
2, and

Lrγ(R
n) denotes the Sobolev space of functions on Rn with norm∥∥σ∥∥

Lrγ(Rn)
=

(∫
Rn

∣∣(σ̂(ξ)(1 + |ξ|2)γ/2
)∨

(x)
∣∣r dx)1/r

.

It makes sense to view the multiplier operator f 7→
(
f̂σ
)∨

as a bilinear operator
acting on f and σ, that is,

(f, σ) 7−→ B(f, σ) =
(
f̂σ
)∨
.

Then, when β > n/q and for q near infinity, we have

(2)
∥∥B(f, σ)

∥∥
L2 ≤

∥∥σ∥∥
L∞

∥∥f∥∥
L2 ≤ Cn,q,β

∥∥σ∥∥
Lqβ

∥∥f∥∥
L2 ,

where the last estimate follows by the Sobolev embedding theorem. To make the
example more transparent, let us assume that σ is supported in a compact set that
does not contain the origin. In view of the assumption on the support of σ and the
Sobolev embedding theorem, the estimate (1) with p = 1 reduces to

(3)
∥∥B(f, σ)

∥∥
L1,∞(Rn)

≤ Cn,γ
∥∥σ∥∥

L2
γ(Rn)

∥∥f∥∥
L1(Rn)

whenever γ > n/2. Interpolating bilinearly between (2) and (3) in the complex way,
we deduce for 1 ≤ p < 2 the inequality

(4)
∥∥B(f, σ)

∥∥
Lp,p′ (Rn)

≤ Cn,p,δ
∥∥σ∥∥

Lrδ(R
n)

∥∥f∥∥
Lp(Rn)

,

where
1

r
=

1

p
− 1

2

and

δ >
n

r
.
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Further use of interpolation provides an improved version of (4) in which Lp,p
′

is
replaced by the smaller space Lp whenever 1 < p < 2. The advantage of (4) versus
(1) is that, for p near 2, the number of derivatives required of σ in (4) is proportional
to the distance of p from 2, while in (1) this number of derivatives remains constant
for all p. This improvement is a result of bilinear interpolation and of the approach

of treating the linear multiplier operator f 7→
(
f̂σ
)∨

as a bilinear operator of both
functions f and σ.

Having made the point that important information can be extracted by unfreezing
parameters and treating them as variables, in the sequel we pursue this idea in a
more systematic way. The purpose of these lectures is to present certain fundamental
results concerning linear operators of several variables, henceforth called multilinear,
that indicate some of the unique challenges that appear in their study, albeit the
great similarities they share with their linear counterparts. For the purpose of clarity
in the presentation, we only discuss these results in the bilinear case. The proofs that
we provide may not contain all necessary details, but references are provided.

If a bilinear operator T commutes with translations, in the sense that

(5) T (f, g)(x+ t) = T (f( · + t), g( · + t))(x)

for all t, x ∈ Rn, then it incorporates a certain amount of homogeneity. Indeed, if it
maps Lp1 × Lp2 to Lp, then one must necessarily have 1/p1 + 1/p2 ≥ 1/p; this was
proved in [22] for compactly supported kernels but extended for general kernels in
recent work [12]. The situation where 1/p1 + 1/p2 = 1/p will be referred to as the
singular integral case. Bilinear operators that commute with translations as in (5)
are exactly the bilinear multiplier operators that have the form

T (f1, f2)(x) =

∫
Rn

∫
Rn

σ(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2) e2πix·(ξ1+ξ2) dξ1 dξ2

for some bounded function σ. The situation 1/p1 + 1/p2 > 1/p may also arise. For
instance, the fractional integrals

Jα(f, g)(x) =

∫
Rn

f(x− t) g(x+ t) |t|α−n dt

and

J ′α(f, g)(x) =

∫
Rn

∫
Rn

f(x− t) g(x− s) (|t|+ |s|)α−2n dt ds

map Lp1 × Lp2 to Lp whenever 1/p1 + 1/p2 = 1/p + α/n. The estimate for J ′α is
trivial as this operator is pointwise controlled by the product of two linear fractional
integrals, but the corresponding estimate for Jα requires more work; see [15], [27].

Endpoint estimates for linear singular integrals are usually estimates of the form
L1 → L1 or L1 → L1,∞. The analogous bilinear estimates are of the form L1×L1 →
L1/2,∞. Although one expects some similarities with the linear case, there exist
some differences as well. For example, if a linear translation-invariant operator has
a positive kernel and it maps L1 to L1,∞, then it must have an integrable kernel and
thus it actually maps L1 to L1. In the bilinear case, it is still true that if a bilinear
translation-invariant operator has a positive kernel and maps L1×L1 to L1/2,∞, then
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it must have an integrable kernel, but having an integrable positive kernel does not
necessarily imply that the corresponding operator maps L1 × L1 to L1/2. Results of
this type have been studied in [20].

We end this section by discussing certain examples of bilinear operators.

Example 1. The “identity operator” in the bilinear setting is the product operator

B1(f, g)(x) = f(x) g(x).

In view of Hölder’s inequality, B1 maps Lp × Lq → Lr whenever 1/p+ 1/q = 1/r.

Example 2. The action of a linear operator L on the product fg gives rise to a more
general “degenerate bilinear operator”

B2(f, g)(x) = L(f g)(x),

that still maps Lp × Lq → Lr whenever 1/p + 1/q = 1/r, provided L is a bounded
operator on Lr.

Example 3. This example captures all interesting bilinear operators. Let L̃ be a
linear operator acting on functions defined on R2n. Then, for functions f, g on Rn,
we consider the tensor function (f ⊗ g)(x, y) = f(x)g(y) and define

B3(f, g)(x) = L̃(f ⊗ g)(x, x).

In particular, L̃ could be a singular integral acting on functions on R2n. Boundedness
of B3 from Lp(Rn)×Lq(Rn)→ Lr(Rn) is a delicate issue and will be investigated in

this article for certain classes of linear operators L̃.

2. Bilinear Calderón–Zygmund operators

It is appropriate to embark on our study with the class of operators that extend the
concept of Calderón–Zygmund operators in the multilinear setting. These operators
have kernels that satisfy standard estimates and possess boundedness properties anal-
ogous to those of the classical linear ones. This class of operators has been previously
studied by Coifman and Meyer [6], [7], [8], [9], [33], assuming sufficient smoothness
on their symbols and kernels. This area of research is still quite active. Recent de-
velopments include the introduction of a new class of multiple weights appropriate
for the boundedness of these operators on weighted Lebesgue spaces, see [31].

We will be working on n-dimensional space Rn. We denote by S(Rn) the space of
all Schwartz functions on Rn and by S ′(Rn) its dual space, the set of all tempered
distributions on Rn. We use the following definition for the Fourier transform in
n-dimensional euclidean space:

f̂(ξ) =

∫
Rn

f(x) e−2πix·ξ dx,

while f∨(ξ) = f̂(−ξ) denotes the inverse Fourier transform. A bilinear operator
T : S(Rn) × S(Rn) → S ′(Rn) is linear in every entry and consequently has two
formal transposes. The first transpose T ∗1 of T is defined via

〈T ∗1(f1, f2), h〉 = 〈T (h, f2), f1〉,
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for all f1, f2, h in S(Rn). Analogously one defines T ∗2 and we also set T ∗0 = T .
Let K(x, y1, y2) be a locally integrable function defined away from the diagonal

x = y1 = y2 in (Rn)3, which satisfies the size estimate

(6) |K(x, y1, y2)| ≤ A

(|x− y1|+ |x− y2|)2n

for some A > 0 and all (x, y1, y2) ∈ (Rn)3 with x 6= yj for some j. Furthermore,
assume that for some ε > 0 we have the smoothness estimates

|K(x, y1, y2)−K(x′, y1, y2)| ≤ A |x− x′|ε

(|x− y1|+ |x− y2|)2n+ε
(7)

whenever |x− x′| ≤ 1
2

max
(
|x− y1|, |x− y2|

)
, and also that

|K(x, y1, y2)−K(x, y′1, y2)| ≤
A |yj − y′j|ε

(|x− y1|+ |x− y2|)2n+ε
(8)

whenever |y1 − y′1| ≤ 1
2

max
(
|x − y1|, |x − y2|

)
, as well as a similar estimate with

the roles of y1 and y2 reversed. Kernels satisfying these conditions are called bilinear
Calderón–Zygmund kernels and are denoted by 2-CZK(A, ε). A bilinear operator T
is said to be associated with K if

(9) T (f1, f2)(x) =

∫
(Rn)2

K(x, y1, y2) f1(y1) f2(y2) dy1 dy2

whenever f1, f2 are smooth functions with compact support and x does not lie in the
intersection of the supports of f1 and f2.

Certain homogeneous distributions of order−2n are examples of kernels in the class
2-CZK(A, ε). For this reason, boundedness properties of operators T with kernels in
2-CZK(A, ε) from a product Lp1 × Lp2 into another Lp space can only hold when

1

p1

+
1

p2

=
1

p
,

as dictated by homogeneity. If such boundedness holds for a certain triple of Lebesgue
spaces, then the corresponding operator is called bilinear Calderón–Zygmund.

The first main result concerning these operators is the bilinear extension of the
classical Calderón–Zygmund [3]; the linear result states that, if an operator with
smooth enough kernel is bounded on a certain Lr space, then it is of weak type (1, 1)
and is also bounded on all Lp spaces for 1 < p < ∞. A multilinear version of this
theorem has been obtained by Grafakos and Torres [22] for operators with kernels in
the class 2-CZK(A, ε). A special case of this result was also obtained by Kenig and
Stein [27]; all approaches build on previous work by Coifman and Meyer [6].

Theorem 1. Let T be a bilinear operator with kernel K in 2-CZK(A, ε). Assume
that, for some 1 ≤ q1, q2 ≤ ∞ and some 0 < q <∞ with

1

q1

+
1

q2

=
1

q
,



6 LOUKAS GRAFAKOS

T maps Lq1×Lq2 to Lq,∞. Then T can be extended to a bounded operator from L1×L1

into L1/2,∞. Moreover, for some constant Cn (that depends only on the parameters
indicated) we have that

(10) ‖T‖L1×L1→L1/2,∞ ≤ Cn
(
A+ ‖T‖Lq1×Lq2→Lq,∞

)
.

Proof. Set B = ‖T‖Lq1×Lq2→Lq,∞ . Fix an α > 0 and consider functions fj ∈ L1 for
1 ≤ j ≤ 2. Without loss of generality we may assume that ‖f1‖L1 = ‖f2‖L1 = 1.
Setting Eα = {x : |T (f1, f2)(x)| > α}, we need to show that for some constant
C = Cn we have

(11) |Eα| ≤ C(A+B)1/2α−1/2.

(Once (11) has been established for fj’s with norm one, the general case follows
immediately by scaling.) Let γ be a positive real number to be determined later.
For each j = 1, 2, apply the Calderón–Zygmund decomposition to the function fj at
height (αγ)1/2 to obtain ‘good’ and ‘bad’ functions gj and bj, and families of disjoint
cubes {Qj,k}k, such that fj = gj + bj and bj =

∑
k bj,k, where

support(bj,k) ⊂ Qj,k,∫
Qj,k

bj,k(x) dx = 0,

∫
Qj,k

|bj,k(x)| dx ≤ C(αγ)1/2|Qj,k|,∣∣ ∪k Qj,k

∣∣ ≤ C(αγ)−1/2, ‖bj‖L1 ≤ C, ‖gj‖Ls ≤ C(αγ)1/2s′ ,

for any 1 ≤ s ≤ ∞ (here s′ is the dual exponent of s). Now let

E1 = {x : |T (g1, g2)(x)| > α/4},
E2 = {x : |T (b1, g2)(x)| > α/4},
E3 = {x : |T (g1, b2)(x)| > α/4},
E4 = {x : |T (b1, b2)(x)| > α/4}.

Since |{x : |T (f1, f2)(x)| > α}| ≤
∑4

s=1 |Es|, it will suffice to prove estimate (11) for
each Es. Chebychev’s inequality and Lq1 × Lq2 → Lq,∞ boundedness give

|E1| ≤
(4B)q

αq
∥∥g1

∥∥q
Lq1

∥∥g2

∥∥q
Lq2
≤ CBq

αq

2∏
j=1

(αγ)
q

2q′
j

=
C ′Bq

αq
(αγ)(2− 1

q
) q
2 = C ′Bqα−

1
2γq−

1
2 .

(12)

We now show that

(13) |Es| ≤ Cα−1/2γ1/2.

Let l(Q) denote the side-length of a cube Q and let Q∗ be a certain expansion of
it with the same center. (This expansion only depends on the dimension.) Fix an
x /∈ ∪2

j=1 ∪kj (Qj,kj)
∗. Also fix the cube Q1,k1 and let c1,k1 be its center. For fixed
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y2 ∈ Rn, the mean value property of the function b1,k1 gives∣∣∣∣∣
∫
Q1,k1

K(x, y1, y2) b1,k1(y1) dy1

∣∣∣∣∣
=

∣∣∣∣∣
∫
Q1,k1

(
K(x, y1, y2)−K(x, c1,k1 , y2)

)
b1,k1(y1) dy1

∣∣∣∣∣
≤
∫
Q1,k1

|b1,k1(y1)| A |y1 − c1,k1|ε

(|x− y1|+ |x− y2|)2n+ε
dy1

≤
∫
Q1,k1

|b1,k1(y1)| C A l(Q1,k1)
ε

(|x− y1|+ |x− y2|)2n+ε
dy1,

where in the previous to last inequality we used that

|y1 − c1,k1| ≤ cn l(Q1,k1) ≤
1

2
|x− y1| ≤

1

2
max

(
|x− y1|, |x− y2|

)
.

Multiplying the derived inequality∣∣∣∣∣
∫
Q1,k1

K(x, y1, y2) b1,k1(y1) dy1

∣∣∣∣∣ ≤
∫
Q1,k1

C A |b1,k1(y1)| l(Q1,k1)
ε

(|x− y1|+ |x− y2|)2n+ε
dy1

by |g2(y2)| and integrating over y2, we obtain the estimate∫
Rn

|g2(y2)|

∣∣∣∣∣
∫
Q1,k1

K(x, y1, y2) b1,k1(y1) dy1

∣∣∣∣∣ dy2

≤
∥∥g2

∥∥
L∞

∫
Q1,k1

|b1,k1(y1)| AC l(Q1,k1)
ε

(|x− y1|+ |x− y2|)2n−n+ε
dy1

≤C A
∥∥g2

∥∥
L∞

∥∥b1,k1

∥∥
L1

l(Q1,k1)
ε(

l(Q1,k1) + |x− c1,k1|
)n+ε .

(14)

The last inequality is due to the fact that for x /∈ ∪2
j=1 ∪kj (Qj,kj)

∗ and yj ∈ Qj,kj we
have that |x− yj| ≈ l(Qj,kj) + |x− cj,kj |. It is now a simple consequence of (14) that
for x /∈ ∪2

j=1 ∪kj (Qj,kj)
∗ we have

(15) |T (b1, g2)(x)| ≤ C ′A (αγ)
1
2

(∑
k1

(αγ)1/2 l(Q1,k1)
n+ε

(l(Q1,k1) + |x− c1,k1|)n+ε

)
= C ′′AαγMε(x),

where

Mε(x) =
∑
k

l(Q1,k)
n+ε

(l(Q1,k) + |x− c1,k|)n+ε

is the Marcinkiewicz function associated with the family of cubes {Q1,k}k. It is a
known fact [41] that for some constant C there is an estimate

(16)

∫
Rn

Mε(x) dx ≤ C| ∪k Q1,k| ≤ C ′(αγ)−1/2.
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Using (15) and (16), an L1 estimate outside ∪2
j=1 ∪kj (Qj,kj)

∗ gives

(17) |{x /∈ ∪2
j=1 ∪kj (Qj,kj)

∗ : |T (b1, g2)(x)| > α/4}| ≤ C α−1/2Aγ1/2.

This estimate, in conjunction with

| ∪2
j=1 ∪kj(Qj,kj)

∗| ≤ C(αγ)−1/2,

yields the required inequality (13).
We have now proved (13) for γ > 0. Plugging in the value of γ = (A + B)−1 in

both (12) and (13) gives the required estimate (11) for |E2|. The estimate for |E3| is
symmetric, while the analogous estimate for |E4| requires a variation of the argument
for |E2|. Since two bad functions show up in this estimate, a double sum over pairs
of cubes appears and one has to use cancellation with respect to the smallest cube
in the pair. Then the length of the smaller cube in the numerator is controlled by
the square root of the length of the smaller cube times the square root of the length
of the larger cube. At the end, the term |T (b1, b2)| is pointwise controlled by a
product of Marcinkiewicz functions outside the union ∪2

j=1 ∪kj (Qj,kj)
∗ and one uses

an L1/2 estimate over this set (instead of an L1 estimate) in conjunction with Hölder’s
inequality. The previous choice of γ = (A + B)−1 yields the required estimate for
|E4|. �

Example 4. Let R1 be the bilinear Riesz transform in the first variable

R1(f1, f2)(x) = p.v.

∫
R

∫
R

x− y1

|(x− y1, x− y2)|3
f1(y1) f2(y2) dy1 dy2.

We will show later that this operator maps Lp1(R)×Lp2(R) to Lp(R) for 1/p1+1/p2 =
1/p, 1 < p1, p2 <∞, and 1/2 < p <∞. Thus by Theorem 1 it also maps L1 × L1 to
L1/2,∞. However, it does not map L1 × L1 to any Lorentz space L1/2,q for q <∞. In
fact, letting f1 = f2 = χ[0,1], an easy computation shows that R1(f1, f2)(x) behaves

at infinity like |x|−2. This fact indicates that in Theorem 1 the space L1/2,∞ is best
possible and cannot be replaced by any smaller space. In particular, it cannot be
replaced by L1/2.

3. Endpoint estimates and interpolation for bilinear
Calderón–Zygmund operators

The real bilinear interpolation is significantly more complicated than the linear
one. Early versions appeared in the work of Janson [25] and Strichartz [43]. In this
exposition we will use a version of real bilinear interpolation appearing in [15]. This
makes use of the notion of bilinear restricted weak type (p, q, r) estimates. These are
estimates of the form

λ
∣∣{x : |T (χA, χB)(x)| > λ

}∣∣1/r ≤M |A|1/p|B|1/q

and have a wonderful interpolation property: if an operator T satisfies restricted weak
type (p0, q0, r0) and (p1, q1, r1) estimates with constants M0 and M1, respectively, then
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it also satisfies a restricted weak type (p, q, r) estimate with constant M1−θ
0 M θ

1 , where(
1

p
,
1

q
,
1

r

)
= (1− θ)

(
1

p0

,
1

q0

,
1

r0

)
+ θ

(
1

p1

,
1

q1

,
1

r1

)
.

We will make use of the following bilinear interpolation result; for a proof see [15].

Theorem 2. Let 0 < pij, pi ≤ ∞, i = 1, 2, 3, j = 1, 2, and suppose that the points
(1/p11, 1/p12), (1/p21, 1/p22), (1/p31, 1/p32) are the vertices of a nontrivial triangle in
R2. Let (1/q1, 1/q2) be in the interior of this triangle (i.e., a linear convex combi-
nation of the three vertices of the triangle) and suppose that (1/q1, 1/q2, 1/q) is the
same linear combination of the points (1/p11, 1/p12, 1/p1), (1/p21, 1/p22, 1/p2), and
(1/p31, 1/p32, 1/p3). Suppose that a bilinear operator T satisfies restricted weak type
(pi1, pi2, pi) estimates for i = 1, 2, 3. Then T has a bounded extension from Lq1 × Lq2
to Lq whenever 1/q ≤ 1/q1 + 1/q2.

There is an interpolation theorem saying that if a linear operator (that satisfies
a mild assumption) and its transpose are of restricted weak type (1, 1), then the
operator is L2 bounded. We begin this section by proving a bilinear analogue of this
result. For a more detailed version of the result below, see [21].

Theorem 3. Let 1 < p1, p2 < ∞ be such that 1/p1 + 1/p2 = 1/p < 1. Suppose that
a bilinear operator has the property that

(18) sup
A0,A1,A2

|A0|−1/p′ |A1|−1/p1|A2|−1/p2

∣∣∣∣ ∫
A0

T (χA1 , χA2) dx

∣∣∣∣ <∞,
where the supremum is taken over all subsets A0, A1, A2 of finite measure. Also
suppose that T , T ∗1, and T ∗2 are of restricted weak type (1, 1, 1/2); this means that
these operators map L1×L1 to L1/2,∞ when restricted to characteristic functions with
constants B0, B1, B2, respectively. Then there is a constant Cp1,p2 such that T maps
Lp1,1 × Lp2,1 to Lp,∞ when restricted to characteristic functions with norm at most

Cp1,p2B
1/(2p)
0 B

1/(2p′1)
1 B

1/(2p′2)
2 .

Proof. Let M be the supremum in (18). We consider the following cases:

Case 1: Suppose that

|A0|√
B0

≥ max

(
|A1|√
B1

,
|A2|√
B2

)
.

Since T maps L1×L1 to weak L1/2 when restricted to characteristic functions, there
exists a subset A′0 of A0 of measure |A′0| ≥ 1

2
|A0| such that∣∣∣∣ ∫

A′0

T (χA1 , χA2) dx

∣∣∣∣ ≤ C B0 |A1| |A2| |A0|1−
1

1/2
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for some constant C. Then∣∣∣∣ ∫
A0

T (χA1 , χA2) dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
A′0

T (χA1 , χA2) dx

∣∣∣∣+

∣∣∣∣ ∫
A0\A′0

T (χA1 , χA2) dx

∣∣∣∣
≤ C B0 |A1| |A2| |A0|−1 +M |A1|1/p1|A2|1/p2

(
1

2
|A0|

)1/p′

≤ C B0 |A1|1/p1
(√

B1√
B0

)1/p′1

|A2|1/p2
(√

B2√
B0

)1/p′2

|A0|1/p
′
1+1/p′2−1

+ M 2−1/p′ |A1|1/p1 |A2|1/p2|A0|1/p
′
.

It follows that M has to be less than or equal to

C B0

(√
B1√
B0

)1/p′1
(√

B2√
B0

)1/p′2

+M 2−1/p′

and consequently

M ≤ C

1− 2−1/p′
B

1/(2p)
0 B

1/(2p′1)
1 B

1/(2p′2)
2 .

Case 2: Suppose that
|A1|√
B1

≥ max

(
|A0|√
B0

,
|A2|√
B2

)
.

Here we use that T ∗1 maps L1 × L1 to weak L1/2 when restricted to characteristic
functions. Then there exists a subset A′1 of A1 of measure |A′1| ≥ 1

2
|A1| such that∣∣∣∣ ∫

A′1

T ∗1(χA0 , χA2) dx

∣∣∣∣ ≤ C B1 |A0| |A2| |A1|−1

for some constant C. Equivalently, we write this statement as∣∣∣∣ ∫
A0

T (χA′1 , χA2) dx

∣∣∣∣ ≤ C B1 |A0| |A2| |A1|−1

by the definition of the first dual operator T ∗1. Therefore we obtain∣∣∣∣ ∫
A0

T (χA1 , χA2) dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
A0

T (χA′1 , χA2) dx

∣∣∣∣+

∣∣∣∣ ∫
A0

T (χA1\A′1 , χA2) dx

∣∣∣∣
≤ C B1 |A0| |A2| |A1|−1 +M |A0|1/p

′|A2|1/p2
(

1

2
|A1|

)1/p1

≤ C B1 |A1|−1+1/p+1/p′2

(√
B0√
B1

)1/p

|A2|1/p2
(√

B2√
B1

)1/p′2

|A0|1/p
′

+ M 2−1/p1|A1|1/p1|A2|1/p2|A0|1/p
′
.

By the definition of M , it follows that

M ≤ C

1− 2−1/p1
B

1/(2p)
0 B

1/(2p′1)
1 B

1/(2p′2)
2 .
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Case 3: Suppose that
|A2|√
B2

≥ max

(
|A0|√
B0

,
|A1|√
B1

)
;

here we proceed as in Case 2 with the roles of A1 and A2 interchanged.
Then the statement of the theorem follows with

Cp1,p2 = C max

(
1

1− 2−1/p1
,

1

1− 2−1/p2
,

1

1− 2−1/p′

)
.

�

Assumption (18) is not as restrictive as it looks. To apply this theorem for bilinear
Calderón–Zygmund operators, one needs to consider the family of operators whose
kernels are truncated near the origin, i.e.,

Kδ(x, y1, y2) = K(x, y1, y2) χ̃
(
(|x− y1|+ |x− y2|)/δ

)
,

where χ̃ is a smooth function that is equal to 1 on [2,∞) and vanishes on [0, 1]. The
kernels Kδ are essentially in the same Calderón–Zygmund kernel class as K, that is, if
K lies in 2-CZK(A, ε), then Kε lie in 2-CZK(A′, ε), where A′ is a multiple of A. Using
Hölder’s inequality with exponents p1, p2, p′, it is easy to see that for the operators
Tδ with kernels Kδ, the assumption (18) holds with constants depending on δ.

Theorem 3 provides an interpolation machinery needed to pass from bounds at
one point to bounds at every point for bilinear Calderón–Zygmund operators. (An
alternative interpolation technique was described in [22].) We have:

Theorem 4. Suppose that a bilinear operator T with kernel in 2-CZK(A, δ) and
all of its truncations Tδ map Lr1 × Lr2 to Lr for a single triple of indices r1, r2,
r satisfying 1/r1 + 1/r2 = 1/r and 1 < r1, r2, r < ∞ uniformly in δ. Then T is
bounded from Lp1 × Lp2 to Lp for all indices p1, p2, p satisfying 1/p1 + 1/p2 = 1/p
and 1 < p1, p2 ≤ ∞, 1/2 < p <∞.

Proof. Since Tδ maps Lr1 × Lr2 → Lr and r > 1, duality gives that T ∗1δ maps Lr
′ ×

Lr2 → Lr
′
1 and T ∗2δ maps Lr1 ×Lr′ → Lr

′
2 (uniformly in δ). It follows from Theorems

2 and 3 that Tδ are bounded from Lp1 × Lp2 → Lp for all indices p1, p2, p satisfying
1/p1 + 1/p2 = 1/p and 1 < p1, p2 < ∞, 1/2 < p < ∞. Passing to the limit,
using Fatou’s lemma, the same conclusion may be obtained for the nontruncated
operator T . The case p1 =∞ or p2 =∞ follows by duality from the case p = 1. �

The only drawback of this approach is that it is based on the assumption that
if T is bounded from Lr1 × Lr2 → Lr, then so are all its truncations Tδ (uniformly
in δ > 0). This is hardly a problem in concrete applications since the kernels of T
and Tδ satisfy equivalent estimates (uniformly in δ > 0) and the method used in the
proof of boundedness of the former almost always applies for the latter.

Proposition 1. Let T be a bilinear operator associated with a kernel of class 2-CZK(A, ε)
that maps Lq1×Lq2 to Lq for some choice of indices q1, q2, q that satisfy 1/q1 +1/q2 =
1/q. Then T has an extension that maps

L∞ × L∞ −→ BMO
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with bound a constant multiple of A+B. By duality, T also maps

L∞ ×H1 −→ L1,

and also
H1 × L∞ −→ L1,

where H1 is the Hardy 1-space.

The proof is based on a straightforward adaptation of the Peetre, Spanne, and
Stein result [35], [39], [40] on boundedness of a linear Calderón–Zygmund operator
from L∞ to BMO, and is omitted.

4. The bilinear T1 theorem

In this section we quickly discuss the bilinear version of the T1 theorem. The
scope of this theorem is to provide a sufficient condition for boundedness of bilinear
Calderón–Zygmund operators at some point, i.e., Lq1 × Lq2 → Lq,∞ for some choice
of points q1, q2, q. Once this is known, then the bilinear version of the Calderón–
Zygmund theorem (Theorem 1) combined with interpolation yields boundedness of
these operators in the entire range of indices where boundedness is possible.

The linear T1 theorem was obtained by David and Journé [10]. Its original for-
mulation involves three conditions equivalent to L2 boundedness. These conditions
are that T1 ∈ BMO, T ∗1 ∈ BMO, and that a certain weak boundedness property
holds. This version of the David–Journé T1 theorem was extended to the multilinear
setting by Christ and Journé [5]. Another version of the T1 theorem using exponen-
tials appears in [10] and is better suited for our purposes. This version is as follows:
A linear operator T with kernel in the Calderón–Zygmund class CZK(A, ε) maps
L2(Rn)→ L2(Rn) if and only if

sup
ξ∈Rn

(
‖T (e2πiξ·( · ))‖BMO + ‖T ∗(e2πiξ·( · ))‖BMO

)
<∞.

In this section we will state and prove a multilinear version of the T1 theorem using
the characterization stated above.

Theorem 5. Fix 1 < q1, q2, q <∞ with

(19)
1

q1

+
1

q2

=
1

q
.

Let T be a continuous bilinear operator from S(Rn) × S(Rn) → S ′(Rn) with kernel
K in 2-CZK(A, ε). Then T has a bounded extension from Lq1 ×Lq2 to Lq if and only
if

(20) sup
ξ1∈Rn

sup
ξ2∈Rn

‖T (e2πiξ1·( · ), e2πiξ2·( · ))‖BMO ≤ B

and also

(21) sup
ξ1∈Rn

sup
ξ2∈Rn

‖T ∗j(e2πiξ1·( · ), e2πiξ2·( · ))‖BMO ≤ B

for all j = 1, 2. Moreover, if (20) and (21) hold then we have that

‖T‖Lq1×Lq2→Lq ≤ cn,q1,q2(A+B),
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for some constant cn,m,qj depending only on the parameters indicated.

Proof. Obviously the necessity of conditions (20) and (21) follows from Proposition 1.
The thrust of this theorem is provided by the sufficiency of these conditions, i.e., the
fact that, if (20) and (21) hold, then T extends to a bounded operator from Lq1×Lq2
to Lq. Although we are not going to be precise in the proof of this result, we make
some comments. The outline of the proof is based on another formulation of the T1
theorem given by Stein [42]. Let us consider the set of all C∞ functions supported
in the unit ball of Rn satisfying

‖∂αφ‖L∞ ≤ 1

for all multiindices |α| ≤ [n/2] + 1. Such functions are called normalized bumps. For
a normalized bump φ, x0 ∈ Rn, and R > 0, define the function

φR,x0(x) = φ

(
x− x0

R

)
.

The formulation in [42, Theorem 3, page 294] says that a necessary and sufficient
condition for an operator T with kernel of class CZK(A, ε) to be L2-bounded is that
for some constant B > 0 we have

‖T (φR,x0)‖L2 + ‖T ∗(φR,x0)‖L2 ≤ BRn/2

for all normalized bumps φ, all R > 0 and all x0 ∈ Rn. Moreover, the norm of the
operator T on L2 (and therefore on Lp) is bounded by a constant multiple of A+B.
Adopting this terminology in the bilinear setting, we say that a bilinear operator T
is BMO-restrictedly bounded with bound C if

‖T (φR1,x1

1 , φR2,x2

2 )‖BMO ≤ C <∞,
and

‖T ∗j(φR1,x1

1 , φR2,x2

2 )‖BMO ≤ C <∞
for all j = 1, 2, all normalized bumps φj, all Rj > 0, and all xj ∈ Rn.

The main observation is that if (20) and (21) are satisfied, then T is BMO-
restrictedly bounded with bound a multiple of B > 0. This observation can be
obtained from the corresponding result for linear operators. Consider the linear op-
erator

T
φ
R2,x2
2

(f1) = T (f1, φ
R2,x2

2 )

obtained from T by freezing an arbitrary normalized bump in the second entry. It is
easy to see that T

φ
R2,x2
2

satisfies the linear BMO-restrictedly boundedness condition

with bound B. It follows from this that TφRm,xmm
maps the space of bounded functions

with compact support to BMO with norm at most a multiple of A+B, i.e.,

(22) ‖T (g, φR2,x2

2 )‖BMO ≤ c(A+B)‖g‖L∞

holds for bounded functions g with compact support.
Now consider the operators Tg1 defined by

Tg1(f2) = T (g1, f2),
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for a compactly supported and bounded function g1. The estimate (22) is saying
that Tg1 satisfies the linear BMO-restrictedly boundedness condition with constant
a multiple of (A+B)‖g1‖L∞ . The corresponding linear result implies that

T : Lq × L∞c −→ Lq,

with norm controlled by a multiple of A + B. (Here L∞c is the space of bounded
functions with compact support.) Furthermore, this result can be used as a starting
point for the boundedness of T from L1×L1 to L1/2,∞, which in turn implies bound-
edness of T in the range Lq1 ×Lq2 → Lq for all 1 < q1, q2 ≤ ∞, 1/2 < q <∞, in view
of Theorem 4. �

As an application, we obtain a bilinear extension of a result of Bourdaud [2].

Example 5. Consider the class of bilinear pseudodifferential operators

T (f1, f2)(x) =

∫
Rn

∫
Rn

σ(x, ξ1, ξ2) f̂1(ξ1) f̂2(ξ2) e2πix·(ξ1+ξ2) dξ1 dξ2

with symbols σ satisfying

(23) |∂αx∂
β1

ξ1
∂β2

ξ2
σ(x, ξ1, ξ2)| ≤ Cα,β(1 + |ξ1|+ |ξ2|)|α|−(|β1|+|β2|),

for all n-tuples α, β1, β2 of nonnegative integers. It is easy to see that such operators
have kernels in 2-CZK. For these operators we have that

T
(
e2πiη1·( · ), e2πiη2·( · )

)
= σ(x, η1, η2) e2πix·(η1+η2),

which is uniformly bounded in ηj ∈ Rn. Theorem 5 implies that a necessary and
sufficient condition for T to map a product of Lp spaces into another Lebesgue space
with the usual relation on the indices is that T ∗j(e2πiη1·( · ), e2πiη2·( · )) are in BMO
uniformly in ηk ∈ Rn. In particular, this is the case if all the transposes of T have
symbols that also satisfy (23).

We now look for sufficient conditions on a singular kernel K0 so that the corre-
sponding translation invariant operator

(24) T (f1, f2)(x) =

∫
Rn

∫
Rn

K0(x− y1, x− y2) f1(y1) f2(y2) dy1 dy2

maps Lp1 × Lp2 to Lp when the indices satisfy 1/p1 + 1/p2 = 1/p. We have the
following:

Theorem 6. Let K0(u1, u2) be a locally integrable function on (Rn)2 \ {(0, 0)} which
satisfies the size estimate

(25) |K0(u1, u2)| ≤ A|(u1, u2)|−2n,

the cancellation condition

(26)

∣∣∣∣ ∫∫
R1<|(u1,u2)|<R2

K0(u1, u2) du1 du2

∣∣∣∣ ≤ A <∞

for all 0 < R1 < R2 <∞, and the smoothness condition

(27) |K0(u1, u2)−K0(u1, u
′
2)| ≤ A

|u2 − u′2|ε

|(u1, u2)|2n+ε
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whenever |u2 − u′2| < 1
2
|u2|. Then the multilinear operator T given by (24) maps

Lp1 × Lp2 into Lp when 1 < pj < ∞ and (29) is satisfied. In particular, this is the
case if K0 has the form

K0(u1, u2) =

Ω

(
(u1, u2)

|(u1, u2)|

)
|(u1, u2)|2n

and Ω is an integrable function with mean value zero on the sphere S2n−1 which is
Lipschitz of order ε > 0.

Proof. This theorem is a consequence of Theorem 5. As in the previous application
of this theorem (with some formal computations that are easily justified), we have

T
(
e2πiη1·( · ), e2πiη2·( · )

)
(x) = e2πix·(η1+η2) K̂0(η1, η2),

which is a bounded function, hence in BMO. The fact that K̂0 is bounded is a
standard fact; see for instance [1]. And certainly the same result is valid for all
smooth truncations of K0, a condition needed in the application of Theorem 4. The
calculations with the transposes are similar; for example,

T ∗1
(
e2πiη1·( · ), e2πiη2·( · )

)
(x) = e2πix·(η1+η2) K̂0(−η1 − η2, η2),

which is also in BMO. �

Another application of this result concerns the bilinear extension of the classical
Hörmander–Mihlin multiplier theorem discussed in the Introduction. The multilinear
analogue of the Hörmander–Mihlin multiplier theorem was obtained by Coifman and
Meyer [6], [7] on Lp for p ≥ 1 and extended to indices p < 1 in [22] and [27].

Theorem 7. Suppose that a(ξ1, ξ2) is a C∞ function on (Rn)2\{(0, 0)} which satisfies

(28) |∂β1

ξ1
∂β2

ξ2
a(ξ1, ξ2)| ≤ Cβ1,β2(|ξ1|+ |ξ2|)−(|β1|+|β2|)

for all multiindices β1, β2. Then the corresponding bilinear operator T with symbol a
is a bounded operator from Lp1 × Lp2 into Lp when 1 < pj <∞ and

(29)
1

p1

+
1

p2

=
1

p
,

and it also maps L1 × L1 to L1/2,∞.

Proof. Indeed, conditions (28) easily imply that the inverse Fourier transform of a
satisfies

(30) |∂β1

ξ1
∂β2

ξ2
a∨ (x1, x2)| ≤ Cβ1,β2(|x1|+ |x2|)−(2n+|β1|+|β2|)

for all multiindices β1, β2. It follows that the kernel

K(x, y1, y2) = a∨(x− y1, x− y2)

of the operator T satisfies the required size and smoothness conditions (6), (7), and
(8). The Lq1 × Lq2 → Lq boundedness of T for a fixed point (1/q1, 1/q2, 1/q) follows
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from the bilinear T1 theorem (Theorem 5) once we have verified the required BMO
conditions. As in previous examples, we have that

T
(
e2πiη1·( · ), e2πiη2·( · )

)
(x) = a(η1, η2) e2πix·(η1+η2),

which is in L∞ and thus in BMO uniformly in η1, η2. The same calculation is valid
for the two transposes of T , since their corresponding multipliers also satisfy (28).
The weak type results follow from Theorem 1. �

5. Orthogonality properties for bilinear multiplier
operators

In view of Plancherel’s theorem, the space L2 turns into a heaven of orthogonality
since Fourier multiplier operators turn into multiplication operators. There is no
analogous phenomenon in the bilinear setting, but there is a range of indices for which
bilinear multiplier operators exhibit properties analogous to those of linear multiplier
operators on L2. The situation where 2 ≤ p1, p2, p

′ <∞, 1/p1 + 1/p2 = 1/p is called
the local L2 case. There is a noteworthy orthogonality lemma for bilinear operators
in the local L2 case. The one-dimensional version of the result below appeared in
[18].

Theorem 8. Suppose that Tj, j ∈ Z, are bilinear operators whose symbols mj(ξ1, ξ2)
are supported in sets Aj ×Bj, where {Aj}j is a family of pairwise disjoint rectangles
on Rn and {Bj}j is also a family of pairwise disjoint rectangles on Rn. Assume,
furthermore, that {Aj + Bj}j is a family of pairwise disjoint rectangles on Rn and
that for some indices p1, p2, p in the local L2 case one has that the bilinear operators

Tmj(f, g)(x) =

∫
Rn

∫
Rn

mj(ξ, η) f̂(ξ) ĝ(η) e2πix·(ξ+η)dξ dη

with symbols mj are uniformly bounded, that is,

sup
j∈Z

∥∥Tmj∥∥Lp1×Lp2→Lp ≤ C <∞

whenever p1, p2, p are indices in the local L2 case, i.e., 2 ≤ p1, p2, p
′ <∞. Then there

is a finite constant Cp1,p2,n such that

(31)

∥∥∥∥∑
j∈Z

Tmj

∥∥∥∥
Lp1×Lp2→Lp

≤ Cp1,p2,nC,

that is, the sum of the Tmj is also a bounded operator in the local L2 case.

Proof. The key element of the proof of this result is the nth-dimensional version of
Rubio de Francia’s [36] Littlewood–Paley inequality for arbitrary disjoint intervals.

This says that, if Rj is a family of disjoint rectangles in Rn and if ∆jf = (f̂χRj)
∨,

then there is a constant cp,n such that for 2 ≤ p < ∞ and all functions f ∈ Lp(Rn)
one has

(32)

∥∥∥∥(∑
j∈Z

|∆jf |2
)1/2∥∥∥∥

Lp(Rn)

≤ cp,n
∥∥f∥∥

Lp(Rn)
.
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This result was proved by Journé [26], but easier proofs of it were later provided by
Soria [38] in dimension 2 and Sato [37] in higher dimensions.

We will prove (31) by duality. We denote by p′ = p/(p − 1) the dual index of p.
We introduce Littlewood–Paley operators

∆1
jf = (f̂ χAj)

∨

∆2
jg = (ĝ χAj)

∨

∆3
jh = (ĥ χAj+Bj)

∨.

An easy calculation shows that

(33) ̂Tmj(f, g)(ξ) =

∫
Rn

mj(η, ξ − η) f̂(η) ĝ(ξ − η) dη;

thus the Fourier transform of Tmj(f, g) is supported in the set Aj +Bj. Then we have

〈Tmj(f, g), h〉 = 〈Tmj(∆1
jf,∆

2
jg),∆3

jh〉
in view of the hypotheses on the mj’s. Consequently,∣∣∣∣〈 ∑

j

Tmj(f, g), h

〉∣∣∣∣ =

∣∣∣∣∑
j

〈Tmj(∆1
jf,∆

2
jg),∆3

jh〉
∣∣∣∣

≤
∫

Rn

(∑
j

|Tmj(∆1
jf,∆

2
jg)|2

)1/2(∑
j

|∆3
j |2
)1/2

dx

≤
∥∥∥∥(∑

j

|Tmj(∆1
jf,∆

2
jg)|2

)1/2∥∥∥∥
Lp

∥∥∥∥(∑
j

|∆3
jh|2

)1/2∥∥∥∥
Lp′

≤
∥∥∥∥(∑

j

|Tmj(∆1
jf,∆

2
jg)|2

)1/2∥∥∥∥
Lp
cp′,n

∥∥h∥∥
Lp′
,

where the last inequality follows from (32) since p′ ≥ 2. It suffices to estimate the
square function above. Since p/2 ≤ 1, we have the first inequality below:∥∥∥∥(∑

j

|Tmj(∆1
jf,∆

2
jg)|2

)1/2
∥∥∥∥p
Lp
≤
∫

Rn

∑
j

|Tmj(∆1
jf,∆

2
jg)|p dx

=
∑
j

‖Tmj(∆1
jf,∆

2
jg)‖pLp

≤ Cp
∑
j

‖∆1
jf‖

p
Lp1‖∆

2
jg‖

p
Lp2

≤ Cp
(∑

j

‖∆1
jf‖

p1
Lp1

)p/p1(∑
j

‖∆2
jg‖

p2
Lp2

)p/p2
≤ Cp

∥∥∥(∑
j

|∆1
jf |2

)1/2∥∥∥p
Lp1

∥∥∥(∑
j

|∆2
jg|2
)1/2∥∥∥p

Lp2

≤ (Ccp1,ncp2,n)p‖f‖pLp1‖g‖
p
Lp2 ,
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where we used successively the uniform boundedness of the Tmj ’s, Hölder’s inequality,
and (32). The required conclusion follows with Cp1,p2,n = cp1,ncp2,ncp′,n. (Recall that
1/p = 1/p1 + 1/p2; thus the dependence of the constant on p is expressed via that of
p1 and p2.) �

This result was used in [18] in proving that the characteristic function of the
unit disc is a bounded bilinear multiplier in the local L2 case. It also has other
applications; below we use this result to provide another proof of the Coifman–
Meyer multiplier theorem (Theorem 7) for bilinear operators. In view of the bilinear
Calderón–Zygmund theorem, it suffices to prove boundedness at a single point; we
pick this point to be Lp1 × Lp2 → L2, where 1/p1 + 1/p2 = 1/2 and we only prove it
for a piece of the operator, as the remaining pieces are handled by duality.

We have the following:

Theorem 9. Suppose that m(ξ, η) is a function on Rn ×Rn that satisfies

(34) |∂αξ ∂βηm(ξ, η)| ≤ Cα,β(|ξ|+ |η|)−|α|−|β|

for multiindices |α|, |β| ≤ 2n+ 1. Then the multiplier operator

Tm(f1, f2)(x) =

∫
Rn

∫
Rn

f̂1(ξ1) f̂2(ξ2)m(ξ1, ξ2) e2πix·(ξ1+ξ2) dξ1 dξ2

maps Lp1 × Lp2 to Lp, where 1/p1 + 1/p2 = 1/p and 1 < p1, p2, p <∞.

Proof. We begin by making the observation that T ∗1m is a bilinear multiplier operator
with symbol

m∗1(ξ, η) = m(−ξ − η, η)

and T ∗2m is a bilinear multiplier operator with symbol

m∗2(ξ, η) = m(ξ,−ξ − η).

Both of these symbols satisfy condition (34) for all multiindices |α|, |β| ≤ n + 2 (for
some other constants). Moreover, if m(ξ, η) is supported near the diagonal |ξ| ≈ |η|,
then m∗1(ξ, η) is supported near the axis |ξ| . |η| and m∗2(ξ, η) is supported near
the axis |η| . |ξ|. We introduce a smooth partition of unity on the sphere S2n−1

such that 1 = φ0 + φ1 + φ2 + φ3, where φ0(ξ, η) is supported in a neighborhood of
the diagonal |ξ| ≈ |η| ≈ |ξ + η|, φ1 is supported in a set of the form |ξ| . |η|, φ2

is supported in a set of the form |η| . |ξ|, and φ3 is supported in a set of the form
|ξ| ≈ |η| ≈ |ξ− η|. We extend the functions φj so that they be homogeneous on R2n.
We split the multiplier m as

m = mφ0 +mφ1 +mφ2 +mφ3 =: m0 +m1 +m2 +m3

and we say that m0 is supported in the “good” direction, while m1,m2,m3 are sup-
ported in the remaining three “bad” directions. We observe that the three bad
directions are “preserved” by duality. By this we mean that T ∗1m3

is an operator with
symbol with the same properties as m1 and T ∗2m3

is an operator with symbol with the
same properties as m2.
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We introduce a function ψ supported in the annulus 1/4 < |(ξ, η)| < 1− 10−1 such
that ∑

j∈Z

ψ(2−j(ξ, η)) = 1

for all (ξ, η) 6= 0. Then we write mj
r(ξ, η) = mr(ξ, η)ψ(2−j(ξ, η)) and consider the op-

erators Tmjr with symbols mj
r. A simple observation is that, for all r ∈ {0, 1, 2, 3} and

all j ∈ Z, the symbols mr, m
j
r, and m0

r satisfy (34) with constants C ′α,β independent
of j and explicitly related to the constants Cα,β appearing in (34).

We first show that for all r ∈ {0, 1, 2, 3} the operator Tmjr maps Lp1 × Lp2 to L2

when 1/p1 + 1/p2 = 1/2 uniformly in j. In fact, it suffices to take j = 0, noting that
a dilation argument reduces the general case to that of j = 0, since mj

r satisfy (34)
uniformly in j. Let us fix two Schwartz functions f1 and f2 on Rn. We have

(35)
∥∥Tm0

r
(f1, f2)

∥∥2

L2 =

∫
Rn

∣∣∣∣ ∫
Rn

f̂1(ξ1) f̂2(ξ − ξ1)m0
r(ξ1, ξ − ξ1) dξ1

∣∣∣∣2 dξ
in view of (33). Since m0

r is supported in [−1, 1]2n, we expand it in Fourier series as
follows:

(36) m0
r(ξ1, ξ2) =

∑
k,l∈Zn

ck,l e
2πik·ξ1 e2πil·ξ2 ζ(ξ1) ζ(ξ2),

where ζ is a smooth function supported in the annulus 1/8 < |ξ| < 1 and is equal to
1 on the support of ψ. Here ck,l are the Fourier coefficients of the expansion given by

ck,l =

∫
A

∫
A

m0
0(t1, t2) e−2πik·t1 e−2πil·t2 dt1 dt2,

where A is the n-dimensional annulus 1/4 < |ξ| < 1. To obtain estimates for ck,l,
we integrate by parts with respect to the differential operators (I −∆t1)

L(I −∆t2)
L,

where ∆t1 is the Laplacian with respect to the variable t1 and L = [n/2] + 1. One
obtains

ck,l =

∫
A

∫
A

{
(I −∆t1)

L(I −∆t2)
Lm0

0(t1, t2)
}
e−2πik·t1 e−2πil·t2 dt1 dt2

(1 + 4π2|k|2)L(1 + 4π2|k|2)L
.

Condition (34) implies that the integrand above is uniformly bounded in k, l. Con-
sequently we have the estimate

|ck,l| ≤
Cn
∑
|α|,|β|≤LCα,β

(1 + 4π2|k|2)L(1 + 4π2|k|2)L

and, since 2L > n, we deduce that∑
k,l∈Zn

ck,l < C ′n
∑

|α|,|β|≤L

Cα,β <∞.

Using this fact and (35) and (36), we obtain∥∥Tm0
r
(f1, f2)

∥∥2

L2 ≤
∫

Rn

∑
k,l∈Zn

ck,l

∣∣∣∣ ∫
Rn

f̂1(ξ1) f̂2(ξ − ξ1) ζk(ξ1) ζl(ξ − ξ1) dξ1

∣∣∣∣2dξ,
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where ζk(t) = ζ(t)e2πik·t and ζl(t) = ζ(t)e2πil·t. Let Sζk be the linear multiplier

operator Sζkf =
(
f̂ ζk

)∨
. Clearly the last expression above is equal to∑

k,l∈Zn
ck,l

∫
Rn

∣∣Ŝζkf1 ∗ Ŝζlf2

∣∣2 dξ =
∑
k,l∈Zn

ck,l

∫
Rn

∣∣Sζkf1(x)Sζlf2(x)
∣∣2 dx.

By Hölder’s inequality, this expression is certainly bounded by∑
k,l∈Zn

ck,l
∥∥Sζkf1

∥∥2

Lp1

∥∥Sζlf2

∥∥2

Lp2

and the latter is clearly at most a constant multiple of ‖f1‖2
Lp1‖f2‖2

Lp2 .
Now we turn to the sum over j ∈ Z for each family {mj

r}j. As we pointed out
earlier, we have that, for each r, Tmjr maps Lp1 ×Lp2 → L2, where 1/p1 + 1/p2 = 1/2

uniformly in j. As a consequence of (34), it follows that the kernel K(x) of each Tmjr
and each Tmr satisfies

|K(x1, x2)|+ |(x1, x2)| |∇K(x1, x2)| ≤ C|(x1, x2)|−2n

uniformly in j, thus it is of class 2-CZK(A, 1). By Theorem 1, it follows that Tmjr
maps L1 × L1 → L1/2,∞. It follows from Theorem 2 that Tmjr maps Lp1 × Lp2 → Lp,

where 1/p1 + 1/p2 = 1/p and 2 ≤ p1, p2, p
′ ≤ ∞. Thus each Tmjr is bounded on the

closure of the local L2 triangle. We may apply Theorem 8 to obtain boundedness of
the part of the operator corresponding to the good part of the symbol m0, i.e.,

m0(ξ, η) =
∑
j∈Z

mj
0(ξ, η),

since the supports of the projections of the mj
0’s are pairwise disjoint (if they are split

up in families of 10 elements indexed by numbers mod 10).
Unfortunately, we may not use orthogonality in the entire local L2 triangle to obtain

the same conclusion for the bad directions corresponding to the symbols mj
1, mj

2, and
mj

3. We note, however, that orthogonality can be used to obtain boundedness of Tm3

from that of each Tmj3
at the point L2 × L2 → L1. This is in view of the observation

that Tmj3
(f1, f2) = Tmj3

(∆jf1,∆jf2) and of the next simple argument:∥∥Tm3(f1, f2)
∥∥
L1 ≤

∑
j

∥∥Tmj3(∆jf1,∆jf2)
∥∥
L1

≤ C
∑
j

∥∥Tmj3(∆jf1,∆jf2)
∥∥
L1

≤ C ′
∑
j

∥∥∆jf1

∥∥
L2

∥∥∆jf2

∥∥
L2

≤ C ′
(∑

j

∥∥∆jf1

∥∥2

L2

) 1
2
(∑

j

∥∥∆kjf2

∥∥2

L2

) 1
2

≤ C ′′ ‖f1‖L2‖f2‖L2 .
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Here ∆j is a Littlewood–Paley operator with Fourier transform localization near
2j. Duality (or a similar orthogonality argument) implies boundedness of Tm1 from
L∞ × L2 to L2 and analogously boundedness of Tm2 from L2 × L∞ to L2. Bilinear
complex interpolation between this estimate and the estimate L1 × L1 → L1/2,∞

gives that Tm2 maps L3/2 × L3 to the Lorentz space L1,4/3 (thus to weak L1,∞).
But we will need to work with a point near (2/3, 1/3, 1) that still lies on the line
that joins (1/2, 0, 1/2) to (1, 1, 2) and has third coordinate strictly smaller than 1,
i.e., the target space is Ls,∞ for some s > 1, which is a dual space. Since Tm2 is
bounded at this point, it follows by duality that Tm3 is bounded from Lp,1 × Lq,1 to
Lr,∞ for some point (1/p, 1/q, 1/r) near the point (2/3, 0, 2/3) with q < ∞. Using
Theorem 2 we obtain strong boundedness of Tm3 in the open triangle with vertices
(1, 1, 2), (1/2, 1/2, 1), and (2/3, 0, 2/3). In particular, it follows that Tm3 is bounded
from Lp × Lq to Lr for some point (1/p, 1/q, 1/r) near the point (3/4, 1/4, 1). The
preceding argument with (3/4, 4, 1) in place of (1/2, 1/2, 1) yields boundedness of Tm3

in yet a bigger region closer to the point (1, 0, 1). Continuing this process indefinitely
yields boundedness for Tm3 in the open quadrangle with corners (1, 1, 2), (1, 0, 1),
(2/3, 0, 2/3), and (1/2, 1/2, 1).

A similar argument (involving the other adjoint) yields boundedness of Tm3 in
the open quadrangle with corners (1, 1, 2), (0, 1, 1), (0, 2/3, 2/3), and (1/2, 1/2, 1).
Further interpolation provides boundedness of Tm3 in the pentagon with vertices
(1, 1, 2), (0, 2/3, 2/3), (2/3, 0, 2/3), (1, 1, 0), and (0, 1, 1), that is, Tm3 is bounded
from Lp×Lq to Lr whenever r < 3/2. (Recall that we always have 1/p+ 1/q = 1/r.)

Duality implies boundedness of Tm2 from Lp×Lq to Lr whenever q > 3 and that of
Tm1 from Lp×Lq to Lr whenever p > 3. Further interpolation with the point (1, 1, 2)
yields boundedness of Tm1 and Tm2 in two open (convex) quadrilaterals Q1 and Q2

such that Q1 ∩Q2 has a nontrivial intersection with the region Q3 described by the
condition r < 3/2. The intersection Q1 ∩ Q2 ∩ Q3 contains the point (2/5, 2/5, 4/5)
and thus Tm1 , Tm2 , and Tm3 are all bounded from L5/2×L5/2 → L5/4. We previously
showed that Tm0 is bounded in the entire local L2 triangle, thus Tm is also bounded
from L5/2 × L5/2 → L5/4. Theorem 4 applies and yields boundedness of Tm in the
entire region Lp × Lq → Lr with 1 < p, q <∞ and 1/2 < r <∞. �

We end this section by noting that the Marcinkiewicz multiplier theorem does not
hold for bilinear operators; see [16].

6. The bilinear Hilbert transform and the method of
rotations

It is also natural to ask whether Theorem 6 is true under less stringent conditions
on the function Ω; for instance, instead of assuming that Ω is a Lipschitz function
on the sphere, can one assume that it is in some Lq for q > 1? It is a classical
result obtained by Calderón and Zygmund [4] using the method of rotations that
homogeneous linear singular integrals with odd kernels are always Lp bounded for
1 < p < ∞. We indicate what happens if the method of rotations is used in the
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multilinear setting. Let Ω be an odd integrable function on S2n−1. Let

TΩ(f1, f2)(x) =

∫∫
R2n

Ω((y1, y2)/|(y1, y2)|)
|(y1, y2)|2n

f1(x− y1) f2(x− y2) dy1 dy2.

Using polar coordinates in R2n, we express

TΩ(f1, f2)(x) =

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

0

f1(x− tθ1) f2(x− tθ2)
dt

t

}
d(θ1, θ2).

Replacing (θ1, θ2) by −(θ1, θ2), changing variables, and using that Ω is odd, we obtain

TΩ(f1, f2)(x) =

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

0

f1(x+ tθ1) f2(x+ tθ2)
dt

t

}
d(θ1, θ2),

and averaging these identities we deduce that

TΩ(f1, f2)(x) =
1

2

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

−∞
f1(x− tθ1) f2(x− tθ2)

dt

t

}
d(θ1, θ2).

The method of rotations gives rise to the operator inside the curly brackets above
and one would like to know that this operator is bounded from a product of two
Lebesgue spaces into another Lebesgue space (and preferably) uniformly bounded in
θ1, θ2. Motivated by this calculation, for vectors u, v ∈ Rn we introduce the family
of operators

Hu,v(f1, f2)(x) = p.v.

∫ +∞

−∞
f1(x− tu) f2(x− tv)

dt

t
.

We call this operator the directional bilinear Hilbert transform (in the direction indi-
cated by the vector (u, v) in R2n). In the special case n = 1, we use the notation

Hα,β(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt) g(x− βt) dt

t

for the bilinear Hilbert transform defined for functions f , g on the line and for x, α, β ∈
R.

We mention results concerning boundedness of these operators. The operator Hα,β

was first shown to be bounded by Lacey and Thiele [28], [29] in the range

(37) 1 < p, q ≤ ∞, 2/3 < r <∞, 1/p+ 1/q = 1/r.

Uniform Lr bounds (in α, β) for Hα,β were obtained by Grafakos and Li [17] in the
local L2 case (i.e., the case when 2 < p, q, r′ < ∞) and extended by Li [32] in the
hexagonal region

(38) 1 < p, q, r <∞,
∣∣∣1
p
− 1

q

∣∣∣ < 1

2
,

∣∣∣1
p
− 1

r′

∣∣∣ < 1

2
,

∣∣∣1
q
− 1

r′

∣∣∣ < 1

2
.

The bilinear Hilbert transforms first appeared in an attempt of Calderón to show
that the first commutator

C1(f ;A)(x) = p.v.

∫
R

(
A(x)− A(y)

x− y

)
f(y)

x− y
dy
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is L2 bounded. In fact, in the mid 1960’s Calderón observed that the commutator
f 7→ C1(f ;A) can be written as the average

C1(f ;A)(x) =

∫ 1

0

H1,α(f, A′)(x) dα,

and the boundedness of C1(f ;A) can therefore be reduced to the uniform (in α)
boundedness of H1,α. Likewise, the uniform boundedness of the Hα,β can be used to
show that TΩ is bounded from Lp1(R)×Lp2(R) to Lp(R) when Ω is an odd function
on the sphere S1.

We use a similar idea to obtain new bounds for a higher dimensional commutator
introduced by Christ and Journé [5]. The n-dimensional commutator is defined as

(39) C(n)
1 (f, a)(x) = p.v.

∫
Rn

K(x− y)

∫ 1

0

f(y) a((1− t)x+ ty) dt dy,

where K(x) is a Calderón–Zygmund kernel in dimension n, and f , a are functions

on Rn. Christ and Journé [5] proved that C(n)
1 is bounded from Lp(Rn) × L∞(Rn)

to Lp(Rn) for 1 < p < ∞. Here we discuss some off-diagonal bounds Lp × Lq → Lr

whenever 1/p+ 1/q = 1/r and 1 < p, q, r <∞.

As the operator C(n)
1 (f, a) is n-dimensional, we will need to “transfer” Hα,β in

higher dimensions. To achieve this we use rotations. We have the following lemma:

Lemma 1. Suppose that K is a kernel in R2n (which may be a distribution) and let
TK be the bilinear singular integral operator associated with K,

TK(f, g)(x) =

∫∫
K(x− y, x− z) f(y) g(z) dy dz.

Assume that TK is bounded from Lp(Rn)× Lq(Rn) → Lr(Rn) with norm ‖T‖ when
1/p + 1/q = 1/r. Let M be a n × n invertible matrix. Define a 2n × 2n invertible
matrix

M̃ =

(
M O
O M

)
,

where O is the zero n × n matrix. Then the operator TK◦fM is also bounded from
Lp(Rn)× Lq(Rn)→ Lr(Rn) with norm at most ‖T‖.

Proof. To prove the lemma we note that

TK◦fM(f, g)(x) = TK(f ◦M−1, g ◦M−1)(Mx),

from which it follows that∥∥TK◦fM(f, g)
∥∥
Lr

= (detM)−1/r
∥∥TK(f ◦M−1, g ◦M−1)

∥∥
Lr

≤ (detM)−1/r‖T‖ ‖f ◦M−1‖Lp‖g ◦M−1‖Lq

= ‖T‖ (detM)−1/r‖T‖ ‖f‖Lp(detM)1/p‖g‖Lq(detM)1/p

= ‖T‖ ‖f‖Lp‖g‖Lq .
�
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We apply Lemma 1 to the bilinear Hilbert transform. Let e1 = (1, 0, . . . , 0) be the
standard coordinate vector on Rn. We begin with the observation that the operator
Hαe1, βe1(f, g) defined for functions f, g on Rn is bounded from Lp(Rn) × Lq(Rn)
to Lr(Rn) for the same range of indices as the bilinear Hilbert transform. Indeed,
the operator Hαe1, βe1 can be viewed as the classical one-dimensional bilinear Hilbert
transform in the coordinate x1 followed by the identity operator in the remaining
coordinates x2, . . . , xn, where x = (x1, . . . , xn). By Lemma 1, for an invertible n× n
matrix M and x ∈ Rn we have

Hαe1, βe1(f ◦M−1, g ◦M−1)(Mx) = p.v.

∫ +∞

−∞
f(x− αtM−1e1) g(x− βtM−1e1)

dt

t

maps Lp(Rn)×Lq(Rn)→ Lr(Rn) with norm the same as the one-dimensional bilinear
Hilbert transform Hα,β whenever the indices p, q, r satisfy (37). If M is a rotation
(i.e., an orthogonal matrix), then M−1e1 can be any unit vector in Sn−1. We conclude
that the family of operators

Hαθ, βθ(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt θ) g(x− βt θ) dt

t
, x ∈ Rn,

is bounded from Lp(Rn)×Lq(Rn) to Lr(Rn) with a bound independent of θ ∈ Sn−1

whenever the indices p, q, r satisfy (37). This bound is also independent of α, β
whenever the indices p, q, r satisfy (38).

It remains to express the higher dimensional commutator C(n)
1 in terms of the

operators Hαθ, βθ. Here we make the assumption that K is an odd homogeneous
singular integral operator on Rn, such as a Riesz transform. For a fixed x ∈ Rn we
apply polar coordinates centered at x by writing y = x − rθ. Then we can express
the higher dimensional commutator in (39) as

(40)

∫
Sn−1

∫ ∞
0

K(θ)

rn

∫ 1

0

f(x− rθ) a(x− trθ) dt rn−1 dr dθ.

Changing variables from θ → −θ, r → −r, and using that K(θ) is odd, we write this
expression as

(41)

∫
Sn−1

∫ 0

−∞
K(θ)

∫ 1

0

f(x− rθ) a(x− trθ) dt dr
r
dθ.

Averaging the (40) and (40) we arrive at the identity

C(n)
1 (f, a)(x) =

1

2

∫
Sn−1

K(θ)

∫ 1

0

Hθ, tθ(f, a)(x) dt dθ.

This identity implies boundedness of C(n)
1 from Lp(Rn)×Lq(Rn) to Lr(Rn) whenever

the indices p, q, r satisfy (38). Interpolation with the known Lp × L∞ → Lp bounds
yield the following:

Theorem 10. Let K be an odd homogeneous singular integral on Rn. Then the

n-dimensional commutator C(n)
1 associated with K maps Lp(Rn)×Lq(Rn) to Lr(Rn)

whenever 1/p+ 1/q = 1/r and (1/p, 1/q, 1/r) lies in the open convex hull of the pen-
tagon with vertices (0, 1/2, 1/2), (0, 0, 0), (1, 0, 1), (1/2, 1/2, 1), and (1/6, 4/6, 5/6).
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7. Counterexample for the higher dimensional bilinear ball
multiplier

In this section we address the question whether the bilinear multiplier operator
with symbol the characteristic function of the unit ball B in R2n,

(42) TχB(f, g)(x) =

∫
Rn

∫
Rn

f̂(ξ) ĝ(η)χ|ξ|2+|η|2<1 e
2πix·(ξ+η) dξ dη,

is a bounded bilinear operator from Lp(Rn)× Lq(Rn) to Lr(Rn) for some indices p,
q, r related as in Hölder’s inequality. We adapt Fefferman’s counterexample [13] for
the ball multiplier on Lp, p 6= 2 to the bilinear setting for indices outside the local
L2 case. We consider this problem only in dimension 2, since it can be extended to
higher dimensions via a bilinear adaptation of de Leeuw’s theorem [30], proved in
[11]. The results in this section can be found in [11].

For a rectangle R in R2, let R′ be the union of the two copies of R adjacent to R
in the direction of its longest side. Hence, R ∪ R′ is a rectangle three times as long
as R with the same center. Key to this argument is the following geometric lemma
whose proof can be found in [14] or [42].

Lemma 2. Let δ > 0 be given. Then there exists a measurable subset E of R2 and
a finite collection of rectangles Rj in R2 such that:

(1) The Rj are pairwise disjoint.
(2) We have 1/2 ≤ |E| ≤ 3/2.
(3) We have |E| ≤ δ

∑
j |Rj|.

(4) For all j we have |R′j ∩ E| ≥ 1
12
|Rj|.

Let δ > 0 and let E and Rj be as in Lemma 2. The proof of Lemma 2 implies that
there are 2k rectangles Rj of dimension 2−k × 3 log(k + 2). Here, k is chosen so that
k+ 2 ≥ e1/δ. Let vj be the unit vector in R2 parallel to the longest side of Rj and in
the direction of the set E indicated by the longest side of Rj.

Lemma 3. Let R be a rectangle in R2 and let v be a unit vector in R2 parallel to the
longest side of R. Let R′ be as above. Consider the half space Hv of R4 defined by

Hv = {(ξ, η) ∈ R2 ×R2 : (ξ + η) · v ≥ 0}.
Then the following estimate is valid for all x ∈ R2:

(43)

∣∣∣∣ ∫
R2

∫
R2

χHv(ξ, η) χ̂R(ξ) χ̂R(η) e2πix·(ξ+η) dξ dη

∣∣∣∣ ≥ 1

10
χR′(x).

Proof. We introduce an orthogonal matrix O of R2 such that O(v) = (1, 0). Setting
ξ = (ξ1, ξ2), η = (η1, η2), we write the expression on the left in (43) as∣∣∣∣∣

∫∫
O−1(ξ+η)·v≥0

χ̂R(O−1ξ) χ̂R(O−1η) e2πix·O−1(ξ+η) dξ dη

∣∣∣∣∣
=

∣∣∣∣∣
∫∫

ξ1+η1≥0

χ̂O[R](ξ) χ̂O[R](η) e2πiOx·(ξ+η) dξ dη

∣∣∣∣∣.
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Now the rectangleO[R] has sides parallel to the axes, sayO[R] = I1×I2. Assume that
|I1| > |I2|, i.e., its longest side is horizontal. Let H be the classical Hilbert transform
on the line. Setting Ox = (y1, y2), we can write the last displayed expression as∣∣∣∣χI2(y2)2

∫
ξ1∈R

χ̂I1(ξ1) e2πiy1ξ1

∫
η1≥−ξ1

χ̂I1(η1) e2πiy1η1 dη1 dξ1

∣∣∣∣
= χI2(y2)

∣∣∣∣ ∫
ξ1∈R

χ̂I1(ξ1)
1

2
(I + iH)

[
χI1( · ) e2πiξ1( · )](y1) dξ1

∣∣∣∣
= χI2(y2)

∣∣∣∣12(I + iH)χI1(y1)

∣∣∣∣ =

∣∣∣∣[χξ1≥0 χ̂I1×I2(ξ1, ξ2)
]∨

(y1, y2)

∣∣∣∣.
Using the result from [14, Proposition 10.1.2] or [42, estimate (33), page 453], we
deduce that the preceding expression is at least

1

10
χ(I1×I2)′(y1, y2) =

1

10
χ(O[R])′(Ox) =

1

10
χR′(x).

This proves the required conclusion. �

Lemma 4. Let v1, v2, . . . , vj, . . . be a sequence of unit vectors in R2. Define a se-
quence of half-spaces Hvj in R4 as in Lemma 3. Let B, B1, B2 be the following sets
in R4:

B = {(ξ, η) ∈ R2 ×R2 : |ξ|2 + |η|2 ≤ 1}

B∗1 = {(ξ, η) ∈ R2 ×R2 : |ξ + η|2 + |η|2 ≤ 1}

B∗2 = {(ξ, η) ∈ R2 ×R2 : |ξ|2 + |ξ + η|2 ≤ 1}.
Assume that one of TχB , TχB∗1 , TχB∗2 is bounded from Lp(R2) × Lq(R2) to Lr(R2)
and has norm C = C(p, q, r). Then the vector-valued inequality∥∥∥∥∥

(∑
j

∣∣TχHvj (fj, gj)
∣∣2)1/2∥∥∥∥∥

Lr(R2)

≤ C

∥∥∥∥∥
(∑

j

∣∣fj∣∣2)1/2∥∥∥∥∥
Lp(R2)

∥∥∥∥∥
(∑

j

∣∣gj∣∣2)1/2∥∥∥∥∥
Lq(R2)

holds for all functions fj and gj.

Proof. Assume that TχB is bounded from Lp(R2)×Lq(R2) to Lr(R2) for some indices
p, q, r > 0. Set ξ = (ξ1, ξ2) and η = (η1, η2) ∈ R2. For ρ > 0 we define sets

Bρ = {(ξ, η) ∈ R2 ×R2 : |ξ|2 + |η|2 ≤ 2ρ2}

Bj,ρ = {(ξ, η) ∈ R2 ×R2 : |ξ − ρvj|2 + |η − ρvj|2 ≤ 2ρ2}.
Note that bilinear multiplier norms are translation and dilation invariant; conse-
quently, we have

(44) ‖TχBj,ρ‖Lp×Lq→Lr = ‖TχBρ‖Lp×Lq→Lr = ‖TχB‖Lp×Lq→Lr = C.
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Moreover, in view of the bilinear version of a theorem of Marcinkiewicz and Zyg-
mund ([19, §9]), we have the following vector-valued extension of our boundedness
assumption on TχBρ :∥∥∥∥∥

(∑
j

∣∣TχBρ (fj, gj)
∣∣2)1/2∥∥∥∥∥

Lr

≤ C

∥∥∥∥∥
(∑

j

∣∣fj∣∣2)1/2∥∥∥∥∥
Lp

∥∥∥∥∥
(∑

j

∣∣gj∣∣2)1/2∥∥∥∥∥
Lq

.

Since χBj,ρ → χHvj pointwise as ρ→∞ for x ∈ R2, we deduce that

lim
ρ→∞

TχBj,ρ (f, g)(x) = TχHvj
(f, g)(x)

for suitable functions f and g. By Fatou’s lemma we conclude that

(45)

∥∥∥∥∥
(∑

j

∣∣TχHvj (fj, gj)
∣∣2)1/2∥∥∥∥∥

Lr

≤ lim inf
ρ→∞

∥∥∥∥∥
(∑

j

∣∣TχBj,ρ (fj, gj)
∣∣2)1/2∥∥∥∥∥

Lr

.

Now, observe the following identity:

(46) TχBj,ρ (f, g)(x) = e4πiρvj ·x TχBρ (e−2πiρvj ·( · )f, e−2πiρvj ·( · )g)(x).

Using (45) and(46), we obtain∥∥∥∥∥
(∑

j

∣∣TχHj (fj, gj)∣∣2
)1/2∥∥∥∥∥

Lr

≤ lim inf
ρ→∞

∥∥∥∥∥
(∑

j

∣∣e4πiρvj ·( · ) TχBρ (e−2πiρvj ·( · )fj, e
−2πiρvj ·( · )gj)

∣∣2)1/2∥∥∥∥∥
Lr

≤ lim inf
ρ→∞

∥∥TχBρ∥∥Lp×Lq→Lr
∥∥∥∥∥
(∑

j

∣∣e−2πiρvj ·( · )fj
∣∣2)1/2∥∥∥∥∥

Lp∥∥∥∥∥
(∑

j

∣∣e−2πiρvj ·( · )gj
∣∣2)1/2∥∥∥∥∥

Lq

= C

∥∥∥∥∥
(∑

j

∣∣fj∣∣2)1/2∥∥∥∥∥
Lp

∥∥∥∥∥
(∑

j

∣∣gj∣∣2)1/2∥∥∥∥∥
Lq

,

where in the last step we used (44).
The proof of the analogous statements for TB∗1 and TB∗2 is as follows. We introduce

sets

B∗1ρ = {(ξ, η) ∈ R2 ×R2 : |ξ + η|2 + |η|2 ≤ ρ2}

B∗1j,ρ = {(ξ, η) ∈ R2 ×R2 : |ξ − ρvj + η|2 + |η|2 ≤ ρ2}

B∗2ρ = {(ξ, η) ∈ R2 ×R2 : |ξ|2 + |ξ + η|2 ≤ ρ2}
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B∗2j,ρ = {(ξ, η) ∈ R2 ×R2 : |ξ|2 + |ξ + η − ρvj|2 ≤ ρ2}

and we note that the characteristic functions of B∗1j,ρ and B∗2j,ρ converge to the char-
acteristic function of Hvj as ρ→∞. Using the identities

Tχ
B∗1
j,ρ

(f, g)(x) = e2πiρvj ·x Tχ
B∗1ρ

(e−2πiρvj ·( · )f, g)(x),

Tχ
B∗2
j,ρ

(f, g)(x) = e2πiρvj ·x Tχ
B∗2ρ

(f, e−2πiρvj ·( · )g)(x),

we obtain the same conclusion assuming boundedness of the bilinear operators TχB∗1
and TχB∗2 from Lp(R2)× Lq(R2) to Lr(R2). �

The following is the main result of this section.

Theorem 11. Fix indices p, q, r satisfying 0 < p, q, r, <∞ and 1/p+ 1/q = 1/r in
the non-local L2 region, i.e., in the region where one of p, q, or r′ is less than 2. Let
B be the unit ball in R4. Then the operator in (42) (with n = 2) is not bounded from
Lp(R2)× Lq(R2) to Lr(R2).

Proof. First fix p, q, r satisfying p−1 + q−1 = r−1 < 1/2 with r > 2. To obtain a
contradiction, we assume that the operator in (42) (with n = 2) is bounded from
Lp(R2)× Lq(R2) to Lr(R2) with norm C.

Suppose that δ > 0 is given. Let E and Rj be as in Lemma 2. Let vj be the unit
vector parallel to the longest side of Rj and pointing in the direction of the set E
indicated by the longest side of Rj. We have∑

j

∫
E

∣∣THvj (χRj , χRj)(x)
∣∣2dx

≤ |E|
r−2
r

∥∥∥∥∥
(∑

j

∣∣THvj (χRj , χRj)|2
)1/2∥∥∥∥∥

2

Lr

≤ C |E|
r−2
r

∥∥∥∥∥
(∑

j

∣∣χRj ∣∣2
)1/2∥∥∥∥∥

2

Lp

∥∥∥∥∥
(∑

j

∣∣χRj ∣∣2
)1/2∥∥∥∥∥

2

Lq

= C |E|
r−2
r

(∑
j

|Rj|

)2/r

≤ C δ
r−2
r

∑
j

∣∣Rj

∣∣,
where we used Hölder’s inequality with r > 2, Lemma 4, the disjointness of the
rectangles Rj, and Lemma 2, respectively, in the preceding sequence of estimates.

We also have a reverse inequality:∑
j

∫
E

∣∣THvj (χRj , χRj)(x)
∣∣2dx ≥∑

j

∫
E

(
1
10
χR′j(x)

)2

dx
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= 1
100

∑
j

∣∣E ∩R′j∣∣
≥ 1

1200

∑
j

∣∣Rj

∣∣,
where we used Lemma 3 and Lemma 2.

Combining the upper and lower estimates for
∑

j

∫
E

∣∣THvj (χRj , χRj)(x)
∣∣2dx, we

obtain the inequality
1

1200

∑
j

|Rj| ≤ C δ
r−2
r

∑
j

|Rj|,

and therefore
1

1200
≤ C δ

r−2
r

for any δ > 0. This is a contradiction since we are assuming that r > 2.
The lack of boundedness of the ball multiplier operator (42) in the remaining non-

local L2 regions (p > 2, q < 2, r < 2) and (p < 2, q > 2, r < 2) follows by duality,
while in the region (1 ≤ p, q <∞, 1

2
< r ≤ 1) it is obvious. �
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[24] L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd edition, Springer,

Berlin Heidelberg New York, 1990.
[25] S. Janson, On interpolation of multilinear operators, in: Function Spaces and Applications

(Lund, 1986), Lecture Notes in Math. 1302, Springer, Berlin Heidelberg New York, 1988.
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