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Abstract

We present a short historical overview of the Miklhin-Hörmander and
Marcinkiewicz multiplier theorems. We discuss different versions of them
and provide comparisons. We also present a recent improvement of the
Marcinkiewicz multiplier theorem in the two-dimensional case.

1 Fourier multipliers, the Mikhlin multiplier the-
orem, and Hörmander’s extension

The Fourier transform of an integrable function f on Rn is defined by f̂(ξ) =∫
Rn f(x)e−2πix·ξdx and its inverse Fourier transform by f∨(x) = f̂(−x) =∫
Rn f(ξ)e2πix·ξdξ. Schwartz functions are infinitely differentiable functions with

rapid decay at infinity. The Fourier transform is an injective map from the
Schwartz class onto itself, whose inverse is the inverse Fourier transform.

Multiplying Schwartz functions by a fixed bounded function yields L1 func-
tions, on which the inverse Fourier transform is well defined. For a fixed bounded
function σ on Rn, we consider the operator acting for Schwartz functions f on
Rn via the well-defined action

Tσ(f)(x) = (f̂σ)∨ (x) =

∫
Rn

f̂(ξ)σ(ξ)e2πix·ξdξ.

Such operators are called multiplier operators to be distinguished from multi-
plication operators as they multiply the frequency (the Fourier transform) of a
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function, instead of the function itself. A long-standing problem in harmonic
analysis is to find optimal conditions on σ such that Tσ is a bounded operator
on Lp(Rn) for a given p in (1,∞). If this is the case, then σ is called an Lp

Fourier multiplier.
We begin by providing a short historical account of this topic. Let us denote

by ∂k differentiation in the k the variable on Rn. Mikhlin’s theorem [19] states
that if a function σ defined on Rn\{0} has the property that for all multi indices
α = (α1, . . . , αn) ∈ (Z+ ∪{0})n with |α| = α1 + · · ·+αn ≤ n there is a constant
Cα <∞ such that

|ξ||α|
∣∣∣∂α1

1 · · · ∂αn
n σ(ξ)

∣∣∣ ≤ Cα, (1.1)

then σ is an Lp(Rn) Fourier multiplier. Actually, in the original formulation of
Mikhin’s theorem [19] it was assumed that at most one derivative falls per each
variable, i.e., each αj in (1.1) is either 0 or 1. We know nowadays that we can
replace the condition αj ∈ {0, 1} for all j in (1.1) simply by |α| ≤ [n2 ]+1; see for
instance Stein’s book [26, Page 96]. This formulation in Stein’s book is more or
less the classical version of Mikhlin’s theorem known today. The fact that the
total number of differentiations can taken to be essentially “half the dimension”
first appeared in Hörmander’s [16] work.

Precisely, Hörmander [16] provided an improvement of Mikhlin’s theorem by
replacing condition (1.1) by

sup
k∈Z

2−kn+2k|α|
∫
2k<|ξ|<2k+1

|∂ασ(ξ)|2dξ <∞, (1.2)

where ∂α = ∂α1
1 · · · ∂αn

n . To compare conditions (1.1) and (1.2), we note that
(1.1) requires the function Mα(ξ) = |∂ασ(ξ)||ξ||α| be bounded on Rn \ {0} for
all α with |α| ≤ [n/2] + 1, while (1.2) relaxes this assumption to the require-
ment that the L2 averages of Mα over the dyadic annuli {2k < |ξ| < 2k+1}
are uniformly bounded. Additionally, it is useful to observe that Hörmander’s
condition (1.2) can be rewritten in the form

sup
k∈Z

∥∂α[σ(2k·)]∥L2(A) <∞, (1.3)

where A = {ξ ∈ Rn : 1 < |ξ| < 2} denotes the unit annulus in Rn.
To obtain a sharper version of the Hörmander multiplier theorem, we intro-

duce derivatives of fractional order. Let ∆ =
∑n
j=1 ∂

2
j be the Laplacian on Rn.

We denote by (I−∆)s/2 the operator given by multiplication by (1+4π2|ξ|2)s/2

on the Fourier transform; this operator corresponds to a “combined derivative”
of all orders from 0 up to and including the fractional number s. A variant of
Hörmander’s result involving fractional derivatives can be formulated as follows:
Let s > 0 and let Ψ be a Schwartz function whose Fourier transform is sup-
ported in the annulus {ξ : 1/2 < |ξ| < 2} and which satisfies

∑
j∈Z Ψ̂(2−jξ) = 1

for all ξ ̸= 0. If for some 1 ≤ r ≤ 2 and s > n/r, σ satisfies

sup
k∈Z

∥∥(I − ∆)s/2
[
Ψ̂σ(2k·)

]∥∥
Lr(Rn)

<∞, (1.4)
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then Tσ admits a bounded extension from Lp(Rn) to itself for all 1 < p <∞. We
would like to point out that in the special case when s is a positive integer and
r = 2, the present version of the Hörmander multiplier theorem is equivalent to
the one expressed in terms of (1.2) (equivalently (1.3)), as one can verify using
the classical equivalence of Sobolev norms∥∥(I − ∆)s/2f

∥∥
L2 ≈

∑
|α|≤s

∥∥∂αf∥L2 .

It is natural to ask whether condition (1.4) still implies that σ is an Lp

Fourier multiplier for some p ∈ (1,∞) if s ≤ n
r . As no derivatives are required

of σ in order for it to be an L2 Fourier multiplier, one expects that the closer p is
to 2, the fewer derivatives are needed in condition (1.4). Calderón and Torchin-
sky [1, Theorem 4.7] first addressed this point by showing, via an interpolation
argument, that Tσ is bounded from Lp(Rn) to itself whenever condition (1.4)
holds for all p satisfying

∣∣ 1
p − 1

2

∣∣ < s
n and

∣∣ 1
p − 1

2

∣∣ = 1
r ; in other words bound-

edness holds when
∣∣ 1
p − 1

2

∣∣ < s
n and rs > n. Counterexamples were provided

by Grafakos, He, Honźık, and Nguyen [10] indicating that unboundedness holds
when

∣∣ 1
p − 1

2

∣∣ > s
n . Moreover, Slav́ıková [24] obtained an example indicating

that Lp(Rn) boundedness may fail on the line segments | 1p − 1
2 | = s

n . Prior to

this, positive endpoint results on Lp and on H1 involving Besov spaces were
given by Seeger [21], [22], [23].

We note that boundedness from Lp to Lp may indeed hold on the critical
line; for instance the multiplier ma,b(ξ) = ψ(ξ)|(ξ)|−bei|ξ|a on Rn, where a > 0,
a ̸= 1, b > 0, and ψ is a smooth function on Rn which vanishes in a neighborhood
of the origin and is equal to 1 in a neighborhood of infinity, satisfies (1.4) with
s = b/a and any r > n/s. The range of p’s for which Tma,b

is a bounded

operator on Lp(Rn) can be completely described by the equation | 1p −
1
2 | ≤

b/a
n

(see Hirschman [15, comments after Theorem 3c], Wainger [29, Part II], and
Miyachi [20, Theorem 3]).

Recently, Grafakos and Slav́ıková [13], provided a version of the Hörmander
multiplier theorem in [12] in which condition (1.4) (for 1 ≤ r ≤ 2 and rs > n)
is replaced by the weaker assumption

sup
k∈Z

∥∥∥(I − ∆)
s
2 [Ψ̂σ(2k·)]

∥∥∥
L

n
s

,1(Rn)
<∞, (1.5)

proving that (1.5) implies boundneness for Tσ from Lp to itself for | 1p −
1
2 | <

s
n .

Here L
n
s ,1 is the Lorentz space with indices n/s and 1 defined in terms of the

norm

∥f∥Lq,1(Rn) =

∫ ∞

0

f∗(r)r
1
q
dr

r
, 0 < q <∞,

where f∗ is the nonincreasing rearrangement of the function f , namely, the
unique nonincreasing left-continuous function on (0,∞) that is equimeasurable
with f and is given explicitly by

f∗(t) = inf
{
r ≥ 0 : |{y ∈ Rn : |f(y)| > r}| < t

}
.
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The Lorentz space L
n
s ,1(Rn) is known to be, at least for integer values of s,

locally the largest rearrangement-invariant function space such that membership
of (I − ∆)

s
2 f to this space forces f to be bounded, see [27, 5]. So in this sense,

condition (1.5) is optimal for the Hörmander multiplier theorem.

2 The Marcinkiewicz multiplier theorem

The Marcinkiewicz multiplier theorem predates that of Mikhlin’s theorem and
was first formulated in the context of Fourier series. Although for one-dimensional
Fourier series, it is essentially equivalent to Mikhlin’s theorem, Marcinkiewicz’s
multiplier theorem presents differences in two and higher dimensions. We con-
sider the double Fourier series transformation

f(x, y) =

∞∑
m,n=1

Am,n(x, y) 7→
∞∑

m,n=1

λm,nAm,n(x, y), (2.1)

where

Am,n(x, y) = am,n cos(mx) cos(ny) + bm,n cos(mx) sin(ny)

+ cm,n sin(mx) cos(ny) + dm,n sin(mx) sin(ny)

and am,n, bm,n, cm,n, and dm,n are the Fourier coefficients of the periodic func-
tion f on [−π, π)2. Marcinkiewicz’s theorem [18] states that if

Kα,β =

2α+1−2∑
µ=2α

2β+1−2∑
ν=2β

∣∣λµ+1,ν − λµ,ν − λµ+1,ν+1 + λµ,ν+1

∣∣
+

2α+1−2∑
µ=2α

∣∣λµ+1,2β+1 − λµ,2β+1

∣∣
+

2β+1−2∑
ν=2β

∣∣λ2α,ν+1 − λ2α,ν
∣∣

+
∣∣λ2α+1−1, λ2β+1−1

∣∣
satisfies

sup{Kα,β : α, β = 0, 1, 2, . . . } = K <∞,

then the transformation in (2.1) is bounded from Lp([−π, π)2) to itself, when 1 <
p < ∞. As pointed out by Marcinkiewicz himself, there are natural extensions
of this result for Fourier series to higher dimensions.

The condition about the finiteness of Kα,β concerns the summability of the
discrete first partial derivatives and of the discrete mixed derivative of the mul-
tiplier sequence λm,n over dyadic intervals ([2α, 2α+1] ∩ Z) × ([2β , 2β+1] ∩ Z),
and can be recasted in the non periodic setting as well. Here is the for-
mulation of the Marcinkiewicz multiplier theorem on Euclidean spaces: Let
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Ij = (−2j+1,−2j ] ∪ [2j , 2j+1) for j ∈ Z. Let σ be a bounded function on
Rn such that for all α = (α1, . . . , αn) with 0 ≤ α1, . . . , αn ≤ 1 the deriva-
tives ∂ασ are continuous up to the boundary of any rectangle Ij1 × · · · × Ijn
on Rn. Assume that there is a constant K < ∞ such that for all partitions
{s1, . . . , sk} ∪ {r1, . . . , rℓ} = {1, 2, . . . , n} with n = k + ℓ and all ξji ∈ Iji we
have

sup
ξr1∈Ijr1

· · · sup
ξrℓ∈Ijrℓ

∫
Ijs1

· · ·
∫
Ijsk

∣∣(∂s1 · · · ∂skσ)(ξ1, . . . , ξn)
∣∣ dξsk · · · dξs1 ≤ K (2.2)

for all (j1, . . . , jn) ∈ Zn. Then σ is an Lp Fourier multiplier on Rn for 1 < p <∞,
and there is a constant Cp,n <∞ such that

∥Tσ∥Lp→Lp ≤ Cp,n
(
K + ∥σ∥L∞

)
. (2.3)

This result constitutes the classical version of the Marcinkiewicz multiplier the-
orem and its proof can be found in harmonic analysis textbooks, such as in
Stein’s book [26, Page 109].

Although condition (2.2) is a bit hard to verify, it is a straightforward con-
sequence of the seemingly easier property∣∣∣∂α1

1 · · · ∂αn
n σ(ξ)

∣∣∣ ≤ Cα|ξ1|−α1 · · · |ξn|−αn , (2.4)

whenever all αj ∈ {0, 1} and ξj ̸= 0 for all j for which αj = 1.
While (1.1) is often a consequence of the property that a smooth function σ

on Rn \ {0} is homogeneous of degree zero, i.e.,

σ(λξ) = σ(ξ), for all ξ ∈ Rn and all λ > 0, (2.5)

condition (2.4) follows from a mixed (or anisotropic) homogeneity property

σ(λk1ξ1, . . . , λ
knξn) = σ(ξ1, . . . , ξn), for all ξ ∈ Rn and all λ > 0, (2.6)

for some fixed positive reals k1, . . . , kn. Indeed, (2.5) yields

∂α[σ(ξ)] = ∂α[σ(λξ)] = λ|α|∂ασ(λξ)

and so taking λ = |ξ|−1 yields (1.1) with Cα the maximum of ∂ασ on Sn−1.
Analogously, under hypothesis (2.6), we obtain

∂α[σ(ξ)] = ∂α[σ(λk1ξ1, . . . , λ
knξn)] = λα1k1+···+αnkn∂ασ(λk1ξ1, . . . , λ

knξn),

and picking the unique λ > 0 such that (λk1ξ1, . . . , λ
knξn) ∈ Sn−1 for a given ξ

with all ξj ̸= 0, we deduce (2.4) with Cα = ∥∂ασ∥L∞(Sn−1), as λkjαj ≤ |ξj |−αj .

Example 2.1. For i, j ∈ {1, . . . , n}, the smooth function

σ1(ξ1, . . . , ξn) =
ξiξj

ξ21 + ξ22 + · · · + ξ2n
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on Rn \ {0} satisfies (1.1) while, for fixed mk ∈ 2nZ+, the smooth function

σ2(ξ1, . . . , ξn) =
(ξm1

1 ξm2
2 · · · ξmn

n )1/n

ξm1
1 + ξm2

2 + · · · + ξmn
n

,

also defined on Rn \ {0}, satisfies (2.4).

Just as in the case of Hörmander’s extension of Mikhlin’s theorem fractional
differentiation provided optimal results, one may wonder if something analo-
gous is possible in the case of Marcinkiewicz’s theorem. To avoid cumbersome
notation, for complex numbers sj with nonnegative real part, we define the
differential operator (acting on functions on Rn)

Γ(s1, . . . , sn) := (I − ∂21)s1/2 · · · (I − ∂2n)sn/2

given by multiplication by (1 + 4π2ξ21)s1/2 · · · (1 + 4π2ξ2n)sn/2 on the Fourier
transform side. We also define the anisotropic dilation of a function f by

Dk1,...,knf(x1, . . . , xn) = f(2k1x1, . . . , 2
knxn)

where k1, . . . , kn are integers. Finally, we define the tensor product of functions
fk on the line by

(f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) = f1(x1) . . . fn(xn), xj ∈ R.

This is a function on Rn.
There is a version of the Marcinkiewicz multiplier theorem analogous to the

version of the Hörmander multiplier theorem related to condition (1.4): Let
ψ be a Schwartz function on the line whose Fourier transform is supported in
[−2,−1/2] ∪ [1/2, 2] and which satisfies

∑
j∈Z ψ̂(2−jξ) = 1 for all ξ ̸= 0. If

sup
j1,...,jn∈Z

∥∥∥∥∥∥Γ(s1, . . . , sn)
[
(ψ̂ ⊗ · · · ⊗ ψ̂︸ ︷︷ ︸

n times

)Dj1,...,jnσ
]∥∥∥∥∥∥
Lr(Rn)

<∞, (2.7)

where 1 ≤ r < ∞, si > 0, min(s1, . . . , sn) > 1/r, then Tσ maps Lp(Rn) to
Lp(Rn) when | 1p −

1
2 | < min(s1, . . . , sn).

A proof of this result can be found in Grafakos and Slav́ıková [12]. Earlier
versions were given by Carbery [2], who considered the case in which the multi-
plier lies in a product-type L2-based Sobolev space, and Carbery and Seeger [3,
Remark after Prop. 6.1], who considered the case s1 = · · · = sn > | 1p −

1
2 | = 1

r .

The positive direction of Carbery and Seeger’s result in the range | 1p − 1
2 | <

1
r

also appeared in [4, Condition (1.4)]; notice that the range is expressed in terms
of the integrability of the multiplier and not in terms of its smoothness. Another
extension of the Marcinkiewicz multiplier theorem to general Banach spaces was
obtained by Hytönen [17].

We have recently obtained a two-dimensional version of the Marcinkiewicz
multiplier theorem analogous to the version of Hörmander’s theorem associated
with condition (1.5) in [13]. This provides a condition weaker than (2.7), hence
a stronger theorem.
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Theorem 2.2. Let 0 < s1 < s2 < 1. Let ψ be a Schwartz function on
real line whose Fourier transform is supported in 1/2 < |ξ| < 2 and satisfies∑
j∈Z ψ̂

(
2−jξ

)
= 1 for all ξ ∈ R \ {0}. If a bounded function σ on R2 satisfies

sup
j1,j2∈Z

∥∥∥Γ (s1, s2)
[
(ψ̂ ⊗ ψ̂)Dj1,j2σ

]∥∥∥
L

1
s1

,1
(R2)

<∞, (2.8)

then Tσ extends to a bounded operator from Lp(R2) to itself for all 1 < p < ∞
satisfying ∣∣∣∣1p − 1

2

∣∣∣∣ < s1.

Moreover, unboundedness may fail on the line | 1p −
1
2 | = s1.

An example contained in [24], taken in dimension n = 1, yields a function σ1
on the line satisfying supj∈Z ∥(I−∂2)s1/2[ψ̂σ1(2j ·)]∥L1/s1 <∞ for some s1 < 1/2

but Tσ1
is unbounded on Lp(R) when | 1p − 1

2 | = s1. In two dimensions we set

σ(ξ1, ξ2) = σ1(ξ1)ψ(ξ2), to obtain unboundedness on the line | 1p −
1
2 | = s1.

3 Comparison of the Mikhlin-Hörmander and
Marcinkiewicz theorems

In order to properly assess the differences between the Mikhlin-Hörmander and
Marcinkiewicz theorems, we focus attention on pairs of analogous versions. In
the list below we provide comparisons for each such pair.

1. Let σ be a function defined on Rn except the hyperplanes on which one
coordinate vanishes. Then assumption∣∣∣∂α1

1 · · · ∂αn
n σ(ξ)

∣∣∣ ≤ Cα|ξ|−|α|, (3.1)

assumed for all αj ∈ {0, 1} is weaker than∣∣∣∂α1
1 · · · ∂αn

n σ(ξ)
∣∣∣ ≤ Cα|ξ1|−α1 · · · |ξn|−αn , (3.2)

assumed for all αj ∈ {0, 1}. Thus (2.2) is also weaker than (3.1). Thus
the Marcinkiewicz theorem provides a stronger result in this case.

2. Condition (3.2) assumed for all αj ∈ {0, 1} does not relate to condition
(3.1) assumed for all |α| ≤ [n2 ] + 1. This because the former condition
requires σ to have one derivative per variable (total n derivatives), the
latter only requires a “total” number of [n2 ] + 1 derivatives. Thus the
Marcinkiewicz theorem and Mikhlin’s theorems do not compare in this
case.
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3. For any 1 < r < ∞, condition (1.4) assumed for rs > n is stronger than
(2.7) assumed for rmin(s1, . . . , sn) > 1 when s = s1 + · · · + sn. This is a
consequence of the inequality

sup
j1,...,jn∈Z

∥∥∥Γ(s1, . . . , sn)
[
(ψ̂ ⊗ · · · ⊗ ψ̂)Dj1,...,jnσ

]∥∥∥
Lr

≤ C sup
j∈Z

∥∥∥(I − ∆)
s
2

[
σ(2j ·)Φ̂

]∥∥∥
Lr
,

(3.3)

where 1 < r < ∞, 0 < 1/r < s1 ≤ s2 ≤ · · · ≤ sn, and s = s1 + · · · + sn,
proved at the end of this section, (see also [12]). Thus the Marcinkiewicz
theorem provides a stronger result in this case as well.

4. The expressions in (2.7) and (2.8) do not compare. Thus, the Lorentz
versions of the Hörmander’s and Marcinkiewicz’s theorem do not compare.

To prove (3.3), we first fix some notation. Let ψ be a Schwartz function on
the line whose Fourier transform is supported in the set {ξ : 1

2 ≤ |ξ| ≤ 2} and

which satisfies
∑
k∈Z ψ̂(2kξ) = 1 for every ξ ̸= 0. Also, let Φ be a Schwartz

function on Rn having analogous properties.
We begin by noting that if k ∈ Z, 1 < r <∞ and s > 1/r, then∥∥(−∂2)

s
2

[
f(2k·)ψ̂

]∥∥
Lr(R) ≤ C

∥∥(I − ∂2)
s
2 f
∥∥
Lr(R). (3.4)

To prove this inequality we will make use of the following form of the Kato-
Ponce inequality [14, Theorem 1]∥∥(−∂2)

s
2 (fg)

∥∥
Lr ≤ C

∥∥(−∂2)
s
2 f
∥∥
Lr

∥∥g∥∥
L∞ + C

∥∥f∥∥
L∞

∥∥(−∂2)
s
2 g
∥∥
Lr .

to obtain the estimate∥∥(−∂2)
s
2

[
f(2k·)ψ̂

]∥∥
Lr(R)

≤ C
(∥∥(−∂2)

s
2

[
f(2k·)

]∥∥
Lr(R)

∥∥ψ̂∥∥
L∞(R) +

∥∥f(2k·)
∥∥
L∞(R)

∥∥(−∂2)
s
2 ψ̂
∥∥
Lr(R)

)
≤ C

(∥∥(−∂2)
s
2

[
f(2k·)

]∥∥
Lr(R) +

∥∥(I − ∂2)
s
2 f
∥∥
Lr(R)

)
= C

(
2k(s−

1
r )
∥∥(−∂2)

s
2 f
∥∥
Lr(R) +

∥∥(I − ∂2)
s
2 f
∥∥
Lr(R)

)
≤ C

(
2k(s−

1
r ) + 1

)∥∥(I − ∂2)
s
2 f
∥∥
Lr(R),

having used the one-dimensional Sobolev embedding theorem as rs > 1.
We now return to the proof of (3.3). Set F (ξ) =

∑n
a=−n Φ̂(2aξ), ξ ∈ Rn.

Then F (ξ) = 1 for any ξ satisfying 1
2n ≤ |ξ| ≤ 2n. Therefore, if j1, . . . , jn

are integers and j := max{j1, . . . , jn}, then F (2j1−jξ1, . . . , 2
jn−jξn) = 1 on

{(ξ1, . . . , ξn) : 1
2 ≤ |ξ1| ≤ 2, . . . , 12 ≤ |ξn| ≤ 2}. Consequently,

n∏
ℓ=1

ψ̂(ξℓ) = F (2j1−jξ1, . . . , 2
jn−jξn)

n∏
ℓ=1

ψ̂(ξℓ).
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In view of this identity we can write∥∥∥∥∥
n∏
ρ=1

(I − ∂2ρ)
sρ
2

[(
Dj1,...,jnσ

)(
ψ̂ ⊗ · · · ⊗ ψ̂

)]∥∥∥∥∥
Lr

=

∥∥∥∥∥
n∏
ρ=1

(I − ∂2ρ)
sρ
2

[(
Dj1,...,jnσ

)(
ψ̂ ⊗ · · · ⊗ ψ̂

)(
Dj1−j,...,jn−jF

)]∥∥∥∥∥
Lr

≤ C

n∑
a=−n

∑
{i1,...,ik}⊆{1,...,n}∥∥∥∥∥

k∏
τ=1

(−∂2iτ )
siτ
2

[(
ψ̂ ⊗ · · · ⊗ ψ̂

)(
Dj1,...,jnσ

)(
Dj1−j+a,...,jn−j+aΦ̂

)]∥∥∥∥∥
Lr

.

Using (3.4) in the variables i1, . . . , ik and the Sobolev embedding in the remain-
ing variables, we estimate the corresponding term in the last expression by a
constant multiple of[ n∏

ρ=1

(
1 + 2(jiρ−j+a)(siρ−

1
r )
)] ∥∥∥∥(I − ∂21)

s1
2 · · · (I − ∂2n)

sn
2

[
σ(2j−a·)Φ̂

]∥∥∥∥
Lr

≤ C
(
1 + 2nmaxℓ=1,...,n(sℓ− 1

r )
)n ∥∥∥∥(I − ∆)

s1+···+sn
2

[
σ(2j−a·)Φ̂

]∥∥∥∥
Lr

≤ C sup
m∈Z

∥∥∥∥(I − ∆)
s
2

[
σ(2m·)Φ̂

]∥∥∥∥
Lr

.

This implies (3.3).

4 A key lemma

In this section we prove a key lemma needed in the proof of Theorem 2.2. We
denote the strong maximal operator by M. This is defined at a point as the
supremum of the averages of a function over all rectangles with sides parallel
to the axes containing the given point x. It is a well known fact that M is
bounded on Lp for all p > 1 but fails to be of weak type (1, 1).

In the next section we prove the main theorem when n = 2 and s1 > 1/2.

Lemma 4.1. Let 0 < 1/q < s1 < s2 < 1. Then there is a constant C depending
on these parameters such that for all measurable functions f on R2, all for all
x = (x1, x2) ∈ Rn, and all j1, j2 ∈ Z we have∥∥∥∥f(x1 + 2−j1y1, x2 + 2−j2y2)

(1 + |y1|)s1(1 + |y2|)s2

∥∥∥∥
L

1
s1

,∞
(dy1dy2)

≤ CM(|f |q)(x)
1
q . (4.1)

Proof. By a translation and a dilation we may assume that j1 = j2 = 0 and
x = (x1, x2) = 0. So we only need to prove that∥∥∥∥ g(y1, y2)

(1 + |y1|)s1(1 + |y2|)s2

∥∥∥∥
L

1
s1

,∞
(R2,dy1dy2)

≤ CM(|g|q)(0)
1
q . (4.2)
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Obviously we may assume that M(|g|q)(0) = 1. For j1, j2 ∈ Z+ ∪ {0} define
the following rectangles that tile R2

Rj1,j2 =

{
y = (y1, y2) ∈ R2 :

{
2ji < |yi| ≤ 2ji+1 if ji ≥ 1

|yi| ≤ 1 if ji = 0,
i = 1, 2.

}
For a > 0 and j1, j2 nonnegative integers we have the estimate

|{ y ∈ Rj1,j2 : |g(y)| > a }| ≤ 1

aq

∫
Rj1,j2

|g(y)|qdy ≤ 2j1+j2+4

aq
,

as M(|g|q)(0) = 1. Using |Rj1,j2 | ≤ 2j1+j2+4 we obtain

|{ y ∈ Rj1,j2 : |g(y)| > a }| ≤ 2j1+j2+4 min
(
1, a−q

)
,

hence for all j1, j2 ≥ 0 we deduce∣∣∣∣{y ∈ Rj1,j2 :
|g(y)|

(1 + |y1|)s1(1 + |y2|)s2
> a

}∣∣∣∣ ≤ 2j1+j2+4 min

(
1,

1

(a2j1s1+j2s2)q

)
.

Let us write g = g0 + g1, where g0 = gχR0,0 . It will suffice to obtain (4.2)
for each one of g0 and g1. We begin with g0. We have∥∥∥∥ g0(y)

(1 + |y1|)s1(1 + |y2|)s2

∥∥∥∥
L

1
s1

,∞

= sup
a>0

a

∣∣∣∣{y ∈ R0,0 :
g(y)

(1 + |y1|)s1(1 + |y2|)s2
> a

}∣∣∣∣s1
≤ sup

a>0
a|{y ∈ R0,0 : |g(y)| > a}|s1

= ∥g∥L1/s1,∞(R0,0)

≤ C ∥g∥Lq(R0,0)

≤ C ′M(|g|q)(0)
1
q

= C ′,

as Lq(R0,0) embeds in L1/s1,∞(R0,0) when q > 1/s1. This proves (4.2) for g0 in
place of g. Now for g1 we argue as follows:

∣∣∣∣{y ∈ R2 :
|g1(y)|

(1 + |y1|)s1(1 + |y2|)s2
> a

}∣∣∣∣
≤

∞∑
j1,j2=0
j1+j2>0

∣∣∣∣{y ∈ Rj1,j2 :
|g(y)|

(1 + |y1|)s1(1 + |y2|)s2
> a

}∣∣∣∣
≤

∞∑
j1,j2=0
j1+j2>0

2j1+j2+4 min

(
1,

1

aq(2j1s1+j2s2)q

)
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≤ 16
∑

j1,j2≥0
j1+j2>0

2j1s1+j2s2< 1
a

2j1+j2 + 16
∑

j1,j2≥0
j1+j2>0

2j1s1+j2s2≥ 1
a

2j1+j2
1

aq2qj1s1+qj2s2

= 16 (I + II).

Notice that I is zero if a > 1. So, in estimating I we may assume that a ≤ 1.
We have

I ≤
∑

j1,j2≥0
2j1s1+j2s2< 1

a

2j1+j2 ≤
∑
j1≥0

2j1<a
− 1

s1

2j1
∑
j2≥0

2j2<a
− 1

s2 2
− j1s1

s2

2j2

≤ c
∑
j1≥0

2j1<a
− 1

s1

2j1a−
1
s2 2−

j1s1
s2

= c
∑
j1≥0

2j1<a
− 1

s1

2j1(1−
s1
s2

)a−
1
s2

≤ c′a−
1
s1

(1− s1
s2

)a−
1
s2

= c′a−
1
s1 .

For term II we note that if a > 1, then all indices j1, j2 in Z+ ∪ {0} appear
in the sum. In this case we obtain

II ≤ χa>1

aq

∑
j1≥0

2j1(1−qs1)
∑
j2≥0

2j2(1−qs2) = C
χa>1

aq
≤ C

χa>1

a1/s1
,

since q > 1
s1

. We may therefore assume that a ≤ 1 in below. We have

II ≤
∑

j1,j2≥0
j1+j2>0

2j1s1+j2s2> 1
a

2j1+j2
1

aq2qj1s1+qj2s2

≤ 1

aq

∑
j1≥0

2j1<a
− 1

s1

2j1(1−qs1)
∑
j2≥0

2j2>a
− 1

s2 2
−j1

s1
s2

2j2(1−qs2)

+
1

aq

∑
j1≥0

2j1≥a
− 1

s1

2j1(1−qs1)
∑
j2≥0

2j2(1−qs2)

≤ 1

aq

∑
j1≥0

2j1<a
− 1

s1

2j1(1−qs1)
(
C a−

1
s2

+q2j1(qs1−
s1
s2

))+
1

aq

∑
2j1≥a

− 1
s1

2j1(1−qs1)C

≤ c a−
1
s1 .
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These estimates provide the required conclusion for g1, hence (4.2) holds for
both g0 and g1, thus it holds for g.

5 The proof of Theorem 2.2 when s1 > 1/2.

We begin by considering the simplest case where s1 > 1/2. We will need the
following well known lemma, whose proof is omitted as it can be obtained via
the off-diagonal Marcinkiewicz interpolation theorem [7, 28] using the classical

Hausdorff-Young inequality ∥f̂∥
Lp′

i
≤ ∥f∥Lpi with 1 < p1 < p < p2 < 2, i = 1, 2.

Lemma 5.1. The Hausdorff-Young inequality holds for Lorentz spaces Lp,1,
precisely we have ∥f̂∥Lp′,1(R2) ≤ Cp∥f∥Lp,1(R2) when 1 < p < 2.

Next we present the proof of Theorem 2.2 when n = 2 and s1 > 1/2.

Proof. Let ψ be the Schwartz function in the statement of the theorem. Define
a Schwartz function θ on R by setting

θ̂(ξ) = ψ̂(ξ/2) + ψ̂(ξ) + ψ̂(2ξ). (5.1)

Then θ̂ is supported in the annulus 1/4 < |ξ| < 4 and θ̂ = 1 on the support

of ψ̂. We define Schwartz functions Ψ and Θ by setting Ψ̂(ξ1, ξ2) = ψ̂(ξ1)ψ̂(ξ2)

and Θ̂(ξ1, ξ2) = θ̂(ξ1)θ̂(ξ2). For j ∈ Z we define the Littlewood-Paley operators
in each variable (associated with the bump ψ) by

∆ψ,1
j (f)(x) =

∫
R
f (x1 − y, x2) 2jψ

(
2jy
)
dy

∆ψ,2
j (f)(x) =

∫
R
f (x1, x2 − y) 2jψ

(
2jy
)
dy,

and analogously we define ∆θ,1
j and ∆θ,2

j with θ in place of ψ. Also, for k1, k2
in Z, recall Dk1,k2f(x1, x2) = f(2k1x1, 2

k2x2) the anisotropic dilation of f asso-
ciated with the parameters 2k1 and 2k2 .

Since θ̂ = 1 on the support of ψ̂, D−j1,−j2Θ̂ equals 1 on the support of

D−j1,−j2Ψ̂. So for any j1, j2 ∈ Z we write:

∆ψ,1
j1

∆ψ,2
j2
Tσ(f) (x1, x2)

=

∫
R

∫
R
f̂(ξ1, ξ2)Ψ̂

(
2−j1ξ1, 2

−j2ξ2
)
σ(ξ1, ξ2)e2πi(x1ξ1+x2ξ2)dξ1dξ2

=

∫
R

∫
R

(∆θ,1
j1

∆θ,2
j2
f)̂(ξ1, ξ2)Ψ̂

(
2−j1ξ1, 2

−j2ξ2
)
σ(ξ1, ξ2)e2πi(x1ξ1+x2ξ2)dξ1dξ2

=

∫
R

∫
R

2j1+j2(∆θ,1
j1

∆θ,2
j2
f)̂ (2j1ξ′1, 2

j2ξ′2)

Ψ̂ (ξ′1, ξ
′
2)σ(2j1ξ′1, 2

j2ξ′2)e2πi(2
j1x1ξ

′
1+2j2x2ξ

′
2)dξ′1dξ

′
2
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=

∫
R

∫
R

(∆θ,1
j1

∆θ,2
j2
f)(2−j1y′1, 2

−j2y′2)[Ψ̂Dj1,j2σ]̂ (y′1 − 2j1x1, y
′
2 − 2j2x2)dy′1dy

′
2

=

∫
R

∫
R

(∆θ,1
j1

∆θ,2
j2
f)(2−j1y1 + x1, 2

−j2y2 + x2)[Ψ̂Dj1,j2σ]̂ (y1, y2)dy1dy2

=

∫
R

∫
R

(
∆θ,1
j1

∆θ,2
j2
f
)
(2−j1y1 + x1, 2

−j2y2 + x2)

(1 + |y1|)s1(1 + |y2|)s2

(1 + |y1|)s1(1 + |y2|)s2 [Ψ̂Dj1,j2σ]̂ (y1, y2)dy1dy2.

Using Hölder’s inequality for Lorentz spaces, we obtain that the last displayed
expression is bounded by the product of norms∥∥∥∥∥

(
∆θ,1
j1

∆θ,2
j2
f
)
(2−j1y1 + x1, 2

−j2y2 + x2)

(1 + |y1|)s1(1 + |y2|)s2

∥∥∥∥∥
L

1
s1

,∞
(R2,dy1dy2)

·
∥∥∥(1 + |y1|)s1(1 + |y2|)s2 [Ψ̂Dj1,j2σ]̂(y1, y2)

∥∥∥
L

( 1
s1

)′,1
(R2,dy1dy2)

.

For second factor, in view of Hausdorff-Young’s inequality for Lorentz spaces
(Lemma 5.1), we write∥∥∥(1 + |y1|)s1(1 + |y2|)s2 [Ψ̂Dj1,j2σ] ̂ (y1, y2)

∥∥∥
L

( 1
s1

)′,1
(R2,dy1dy2)

≤ C
∥∥∥(1 + 4π2|y1|2)

s1
2 (1 + 4π2|y2|2)

s2
2 [Ψ̂Dj1,j2σ] ̂ (y1, y2)

∥∥∥
L

( 1
s1

)′,1
(R2,dy1dy2)

≤ C
∥∥∥Γ (s1, s2) [Ψ̂Dj1,j2σ]

∥∥∥
L

1
s1

,1
(R2)

≤ CK. (5.2)

Pick a q such that 1
s1
< q < 2. Then by Lemma 4.1, for fixed x1, x2, we have∥∥∥∥∥

(
∆θ,1
j1

∆θ,2
j2
f
)
(2−j1y1 + x1, 2

−j2y2 + x2)

(1 + |y1|)s1(1 + |y2|)s2

∥∥∥∥∥
L

1
s1

,∞
(R2,dy1dy2)

≤ CM
(
|∆θ,1

j1
∆θ,2
j2
f |q
)
(x1, x2)

1
q .

(5.3)

Combining estimates (5.2) and (5.3), for (x1, x2) ∈ R2, we obtain that

|∆ψ,1
j1

∆ψ,2
j2
Tσ(f) (x1, x2)| ≤ CKM

(
|∆θ,1

j1
∆θ,2
j2
f |q
)
(x1, x2)

1
q .

We may assume that p ≥ 2 as the case 1 < p < 2 follows by duality. By the lower
inequality in the product-type Littlewood-Paley theorem and the Fefferman-
Stein [6] inequality applied to Lp/q(ℓ2/q) (the indices satisfy 1 < 2/q ≤ p/q <∞)
we write:

∥Tσ(f)∥Lp(R2) ≤ C

∥∥∥∥( ∑
j1,j2∈Z

∣∣∣∆ψ,1
j1

∆ψ,2
j2
Tσ(f)

∣∣∣2) 1
2
∥∥∥∥
Lp(R2)
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≤ CK

∥∥∥∥( ∑
j1,j2∈Z

(
M(|∆θ,1

j1
∆θ,2
j2
f |q)

) 2
q

) 1
2
∥∥∥∥
Lp(R2)

≤ CK

∥∥∥∥( ∑
j1,j2∈Z

(
M(|∆θ,1

j1
∆θ,2
j2
f |q)

) 2
q

) q
2
∥∥∥∥ 1

q

L
p
q (R2)

≤ C ′K

∥∥∥∥( ∑
j1,j2∈Z

|∆θ,1
j1

∆θ,2
j2
f |q·

2
q

) q
2
∥∥∥∥ 1

q

L
p
q (R2)

≤ C ′′K

∥∥∥∥( ∑
j1,j2∈Z

|∆θ,1
j1

∆θ,2
j2
f |2
) 1

2
∥∥∥∥
Lp(R2)

≤ C ′′′K ∥f∥Lp(R2) .

The last line use the upper inequality in the product-type Littlewood-Paley
theorem. This completes the proof of Theorem 2.2 in the case s1 > 1/2.

6 Interpolation

Let us denote by C∞
0 the space of smooth functions with compact support.

We state an interpolation result that will be needed to complete the proof of
Theorem 2.2.

Proposition 6.1. Suppose that 1 < p0, p1 < ∞, 0 < s01, s
0
2, s

1
1, s

1
2 < ∞ and

sk1 < sk2 for k = 0, 1. Let Ψ be a Schwartz function whose Fourier transform
is supported in the square [1/2, 2]2 in R2. Suppose that for all f ∈ C∞

0 (R2) we
have

∥Tσ(f)∥Lp0 (R2) ≤ C0 sup
j1,j2∈Z

∥∥∥Γ
(
s01, s

0
2

)
[Ψ̂Dj1,j2σ]

∥∥∥
L

1
s01

,1

(R2)

∥f∥Lp0 (R2)

and

∥Tσ(f)∥Lp1 (R2) ≤ C1 sup
j1,j2∈Z

∥∥∥Γ
(
s11, s

1
2

)
[Ψ̂Dj1,j2σ]

∥∥∥
L

1
s11

,1

(R2)

∥f∥Lp1 (Rn) .

Then for all f ∈ C∞
0 (R2) we have

∥Tσ(f)∥Lp(R2) ≤ C∗ sup
j1,j2∈Z

∥∥∥Γ (s1, s2) [Ψ̂Dj1,j2σ]
∥∥∥
L

1
s1

,1
(R2)

∥f∥Lp(R2) ,

where C∗ = Cp0,p1,s01,s02,s11,s12,θ C
1−θ
0 Cθ1 , 0 < θ < 1, and

1

p
=

1 − θ

p0
+

θ

p1
, s1 = (1 − θ)s01 + θs11, s2 = (1 − θ)s02 + θs12.

The proof of this proposition is modeled after the proof of Theorem 3.1 in
[13] and is omitted. Assuming the validity of Proposition 6.1, we conclude the
proof of Theorem 2.2 by considering the case where s1 ≤ 1

2 .
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Proof of Theorem 2.2. Let us fix 0 < s1 ≤ 1
2 . The idea of the proof is to

interpolate between the points p0 = 2 and p1 = 1 + ε using Proposition 6.1. By
duality we may consider only p ∈ (1, 2). Let ψ be as in Theorem 2.2. When
p = 2, by Plancherel’s theorem, for 0 < s01 < s02 <∞, we write

∥Tσ(f)∥L2(R2)

=

(∫∫
R2

∣∣∣∣ ∑
j1,j2∈Z

ψ̂(2−j1ξ1)ψ̂(2−j2ξ2)σ(ξ1, ξ2)f̂(ξ1, ξ2)

∣∣∣∣2dξ1dξ2) 1
2

≤ C sup
j1,j2∈Z

∥∥∥(ψ̂ ⊗ ψ̂ )D−j1,−j2σ
∥∥∥
L∞(R2)

∥f∥L2(R2)

= C sup
j1,j2∈Z

∥∥∥Γ
(
−s01,−s02

)
Γ
(
s01, s

0
2

) [
(ψ̂ ⊗ ψ̂)D−j1,−j2σ

]∥∥∥
L∞(R2)

∥f∥L2(R2)

≤ C sup
j1,j2∈Z

∥∥∥Γ
(
s01, s

0
2

) [
(ψ̂ ⊗ ψ̂ )D−j1,−j2σ

]∥∥∥
L

1
s01

,1

(R2)

∥f∥L2(R2) .

The first inequality is justified from the fact that the double sum has at most
9 terms while the second inequality is a consequence of Lemma 6.2, stated and
proved at the end of this section. This inequality holds for any s01 < s02 small
positive numbers. Now given p ∈ (1, 2) with 1

p − 1
2 = | 1p − 1

2 | < s1, there exists

a τ ∈ (0, 1) such that
1

p
− 1

2
< τs1. (6.1)

Set p1 = 2
τ+1 , s11 = 1

2 + ϵ1 < s12 = 1
2 + ϵ2, ϵ2 > ϵ1 > 0 to be specified later. Since

p1 > 1 and 1
2 < s11 < s12 < 1, Proposition 6.1 gives

∥Tσ(f)∥Lp1 (R2) ≤ C sup
j1,js∈Z

∥∥∥Γ
(
s11, s

1
2

)
[(ψ̂ ⊗ ψ̂ )Dj1,j2σ]

∥∥∥
L

1
s11

,1

(R2)

∥f∥Lp1 (R2) .

Set p0 = 2 and pick θ such that

1

p
=

1 − θ

2
+

θ

p1
.

In our case θ = 2
τ

(
1
p −

1
2

)
∈ (0, 1) by (6.1). Now pick s01, s

0
2 such that

s1 = (1 − θ)s01 + θs11, s2 = (1 − θ)s02 + θs12.

Picking 0 < ϵ1 < ϵ2 small enough, we notice that the numbers s01, s
0
2 satisfy

0 < s01 < s02 and s01 < s1, s02 < s2. Applying Proposition 6.1 yields the desired
result.

We end this section with the lemma promised earlier.

Lemma 6.2. For 0 < s1 < s2 < 1 we have

∥Γ (−s1,−s2) f∥L∞(R2) ≤ Cs1,s2 ∥f∥
L

1
s1

,1
(R2)

. (6.2)
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Proof of Lemma 6.2. Recall that for 0 < s < 1 the one-dimensional kernel Gs
of (I − ∂2)−s/2 (called the Bessel potential) satisfies

0 < Gs(x) ≤ Cs

{
e−

|x|
2 if |x| > 2

|x|−1+s if |x| ≤ 2

(see [8, 26]). It follows that Gs lies in L(1/s)′,∞(R). By Hölder’s inequality for
Lorentz spaces we have

|Γ (−s1,−s2) f(x)| ≤ C ∥Gs1 ⊗Gs2∥
L

( 1
s1

)′,∞
(R2)

∥f∥
L

1
s1

,1
(R2)

.

It will suffice to show that

sup
λ>0

λ
∣∣{(y1, y2) ∈ R2 : Gs1(y1)Gs2(y2) > λ}

∣∣1−s1 ≤ C ′
s1,s2 <∞.

To prove this we write∣∣{(y1, y2) ∈ R2 : Gs1(y1)Gs2(y2) > λ}
∣∣

=

∫
y2∈R

∣∣∣∣{y1 ∈ R : Gs1(y1) >
λ

Gs2(y2)

}∣∣∣∣ dy2
≤ C

λ
1

1−s1

∫
y2∈R

Gs2(y2)
1

1−s1 dy2

=
C ′

λ
1

1−s1

,

since Gs2(y) ≤ Cs2 |y|−1+s2 for |y| ≤ 2 and has exponential decay at infinity.

7 Final remarks

We indicate why hypothesis (2.8) is indeed weaker than (2.7). Picking a smooth

and compactly function Θ̂ that equals 1 on the support of ψ̂⊗ ψ̂, matters reduce
to showing the inequality∥∥Γ(s1, s2)[Θ̂g]

∥∥
Lq,1 ≤ Cq,r

∥∥Γ(s1, s2)g
∥∥
Lr , (7.1)

whenever s1, s2 > 0 and 1 < q < r < ∞. Note that (7.1) is quite easy if all sj
are even integers as Lr(K) embeds in Lq,1(K) when K is has compact support.
For other values of sj we write (7.1) in the equivalent form∥∥∥Γ(s1, s2)

[
Θ̂ Γ(−s1,−s2)g

]∥∥∥
Lq,1

≤ Cq,r
∥∥g∥∥

Lr . (7.2)

We obtain (7.2) via complex interpolation. Let N be an even integer larger than
max(s1, s2). We will need the following lemma.
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Lemma 7.1. Let 1 < p <∞. Then for any t1, t2 ∈ R we have

∥Γ (it1, it2) f∥Lp,1(Rn) ≤ C(p)(1 + |t1|)(1 + |t2|) ∥f∥Lp,1(R2) . (7.3)

Proof. We pick p0 and p1 such that p0 < p < p1. Then (7.3) holds with Lp0 and
Lp1 in place of Lp,1 in view of the classical version of the Marcinkiewicz multi-
plier theorem. We then appeal to the off-diagonal version of the Marcinkiewicz
interpolation theorem ([7, 28]) to conclude the proof.

We now replace s1 and s2 by complex numbers z1, z2, respectively, whose
real parts lie in [0, N ]. Using Lemma 7.1 we obtain the validity of (7.2) when
Re z1 = 0 or Re z2 = 0. Moreover, in view of the embedding of Lr(K) into
Lq,1(K) (when K is has compact support) and of Lemma 7.1, (7.2) also holds
Re z1 = N or Re z2 = N . and then we deduce (7.2) by an twofold application of
the interpolation theorem for analytic families of operators [25]. We note that in
view of Lemma 7.1, the initial interpolating estimates have at most polynomial
growth in the imaginary part of zj . This makes the interpolation theorem for
analytic families ([25]) applicable.

We end by providing an example showing that there exist functions that
satisfy condition (2.8) but not (2.7).

Example 7.2. ([13]) Let β < 0, let ϕ be a smooth function supported in
[1/2, 2] ∪ [−2,−1/2], let ak ∈ (1/2, 2) ∪ (−2,−1/2), k ∈ Z, and let s be a
positive integer. Then the function

σ(ξ) =
∑
k∈Z

ϕ(2−kξ)

(
log

4e

|2−kξ − ak|

)β
(7.4)

does not satisfy (2.7) for any r > 1, it satisfies (2.8), and hence it is an Lp

Fourier multiplier on the line for any p ∈ (1,∞).

Let Ψ̂ be a smooth function supported in [1/2, 2] ∪ [−2,−1/2]. We fix a
positive integer s and observe that for any j ∈ Z,

∥(I − ∂2)
s
2 [Ψ̂σ(2j ·)]∥

L
1
s
,1(R)

≤

∥∥∥∥∥(I − ∂2)
s
2

[
Ψ̂ϕ

(
log

4e

| · −aj |

)β]∥∥∥∥∥
L

1
s
,1(R)

+

∥∥∥∥∥(I − ∂2)
s
2

[
Ψ̂ϕ(2(·))

(
log

4e

|2(·) − aj−1|

)β]∥∥∥∥∥
L

1
s
,1(R)

+

∥∥∥∥∥∥(I − ∂2)
s
2

Ψ̂ϕ
( ·

2

)(
log

4e

| (·)2 − aj+1|

)β∥∥∥∥∥∥
L

1
s
,1(R)

.

In what follows, let us deal with the first term only, since the last two terms can
be estimated in a similar way.
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For j ∈ Z we define the function

fj(ξ) = Ψ̂(ξ)ϕ(ξ)

(
log

4e

|ξ − aj |

)β
.

Each |fj | is bounded by a constant independent of j and compactly supported
in a set of measure at most 3, hence

sup
j

∥fj∥
L

1
s
,1(R)

≤ C <∞. (7.5)

An easy computation shows that for all m ∈ Z+ we have∣∣∣∣ dmdξm fj(ξ)
∣∣∣∣ ≤ Cm

(
log

4e

|ξ − aj |

)β−1 χ[1/2,2]∪[−2,−1/2](ξ)

|ξ − aj |m
(7.6)

and in fact, ∣∣∣∣ dmdξm fj(ξ)
∣∣∣∣ ≈ (log

4e

|ξ − aj |

)β−1
1

|ξ − aj |m

for ξ near aj . This observation shows that f
(s)
j does not belong to Lr for any

r > 1/s. This implies that (2.7) fails for any r > 1.
We now turn to the validity of (2.8). Since the support of fj has measure

at most 3, (7.6) implies that for m ≤ s we have

(
f
(m)
j

)∗
(t) ≤ Cmχ(0,3)(t)

(
log

8e

t

)β−1
1

(t/2)m
,

where the constant C is independent of j. Then for m ≤ s we have

(
f
(m)
j

)∗
(t) ≤ C ′

mχ(0,3)(t)

(
log

8e

t

)β−1
1

ts
.

Consequently,

sup
1≤m≤s

∥∥∥∥ dmdxm fj
∥∥∥∥
L

1
s
,1(R)

≤ C

∫ 3

0

[(
log

8e

t

)β−1
1

ts

]
t

1
1/s

dt

t
<∞, (7.7)

since β < 0. It remains to observe that

∥(I − ∂2)
s
2 fj∥

L
1
s
,1(R)

≈
s∑

m=0

∥∥∥∥ dmdxm fj
∥∥∥∥
L

1
s
,1(R)

.

This can be proved in exactly the same way as for Lebesgue spaces, see, e.g.,
[26, Theorem 3, Chapter 5]. Therefore, using (7.5) and (7.7) we deduce that

sup
j∈Z

∥(I − ∆)
s
2 [Ψ̂σ(2j ·)]∥

L
1
s
,1(R)

<∞
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for any positive integer s. Thus condition (2.8) holds and Theorem 2.2 now
yields that σ is an Lp Fourier multiplier for any p ∈ (1,∞).

After this paper was written, the nth dimensional case of Theorem 2.2 was
obtained in [9] and the case where some sj may coincide was completed in [11].

I would like to express my gratitude to Eli Stein for his support and en-
couragement throughout the many years I have known him. His pioneering role
in the development of the subject, his significant mathematical contributions,
and the great legacy he left will be dearly remembered by many generations of
harmonic analysts.
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