THE HORMANDER MULTIPLIER THEOREM FOR
MULTILINEAR OPERATORS

LOUKAS GRAFAKOS AND ZENGYAN SI

ABSTRACT. In this paper, we provide a version of the Mihlin-Hérmander
multiplier theorem for multilinear operators in the case where the target
space is L? for p < 1. This extends a recent result of Tomita [15] who
proved an analogous result for p > 1.

1. INTRODUCTION

Let .#(R?) be the Schwartz space of all rapidly decreasing smooth func-
tions on R?, for some d € Z*. We define the Fourier transform .# and the
inverse Fourier transform .# ! of a function f € .#(R?) by

~

FOEO = = [ (@) da
and
FUNO = 1O = [ @y do

The Mihlin multiplier [14] theorem says that if a function o defined on
R4\ {0} has at least [d/2] + 1 continuous derivatives that satisfy

(1) 0% ()] < Calg ™
for all |a| <[d/2] + 1 ([t] is the integer part of ), then the operator

L)) = [ Feo©eS e = 770 F()@),
initially defined for Schwartz functions, admits a bounded extension on
LP(RY) for all 1 < p < oo.
An improved version of Mikhlin’s theorem was proved by Hormander.
To describe this version, we introduce some notation: the Laplacian on R%
is Ag = 2?21 82g/6x?, i.e., the sum of the second partials of g in every

variable. We define the operator (I — A)/2(g) = Z~Y(w,.Z(g)), where
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wy (&) = (14 4n2|¢[2)7/2 for v > 0. Let L7 (R%) be the L"-based Sobolev
space with norm

(2) s = I =AY 2 f] 1oy

where 1 < r < co. We also let .71 (R?) be the set of all Schwartz functions
U on R%, whose Fourier transform is supported in an annulus of the form
{&: a1 < |§] < 2}, is nonvanishing in a smaller annulus {£ : ¢} < [§| < &)}
(for some choice of constants 0 < ¢; < ¢} < ¢y < ¢2 < 00), and satisfies

(3) > W(277¢) = constant, ¢ € R4\ {0}.

JEZ

It is worth observing that a necessary condition on the constants ¢, ¢}, such
that there exists some function in .#; (R%) whose Fourier transform is non-
vanishing in the annulus {£ : ¢} < [¢] < )}, is that 2¢) < ¢,. In this case,
we define ¥ in .7 (R%) to be the inverse Fourier transform of

n(&)
> ez n(274)’

where 7 is a function in .#(R¢) whose Fourier transform is supported in
{€: 1 < |€] < c2} and is nonvanishing in {£: ¢} < [§| <}

Hormander’s version (see [9]) of Mikhlin’s theorem is the following: Sup-
pose that o is a bounded function on R? that satisfies

(4) sup [ ¥() 7(2%(-)) || 1 (rey < o0
keZ

for some 1 < r < 2, some v > d/r, and some ¥ € .7 (R%). Then o is a
Fourier multiplier on IP, 1 < p < 00, i.e., the operator T, admits a bounded
extension on LP(R?). We note that condition (4) is weaker than (1) and
becomes least restrictive when r = 2; we also note that if condition (4) holds
for some ¥ in .71 (R?), then it holds for all' ¥ in .#4(R?). Condition (3)
can be avoided if the constants c1, ¢z, ¢}, ¢} are chosen suitably. However, it
appears naturally in many situations and allows one to prove the equivalence
of (4) between one and all functions in .#; (RY). Thus, it provides us with
flexibility in the choice of ¥ in (4) and it becomes very useful for the purposes
of this article.

In this article, we provide a version of the Hérmander multiplier theorem
in the case of multilinear operators. The study of such operators originated
in the work of Coifman and Meyer [2], [3], [4] and was later revived by the
groundbreaking work of Lacey and Thiele’s on the bilinear Hilbert transform
[12], [13]. The multilinear Fourier multiplier operator T, associated with a

1See Lemma 2.3.
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symbol o is defined by
Tcr(flv s fm)(l‘)

:/( . 627ri$'(£1+~~-+§m)0'(£1,...7§m)ﬁ(€1)-..fm(gm)dél...dgm

for fie SR"),i=1,---,m.
Coifman and Meyer [4] proved that if o is a function on (R™)™\ {0} that
satisfies

(5) |3?11 U ag;no.(fla cee >£m)| < Coc(|§1| + -+ |§m|)—(|o¢1|+~~-+|o¢m‘)

away from the origin for all sufficiently large multiindices «;, then T, is
bounded from the product LP*(R"™) x --- x LPm(R™) to LP(R™) for all 1 <
Ply--esPm, P < 00 satisfying p% + e+ Ii = 1%. Their proof is based on
the idea of writing the Fourier multiplier ¢ as a rapidly convergent sum of
products of functions of the variables ;. The multiplier theorem of Coifman
and Meyer was extended to indices p < 1 (and larger than 1/m by Grafakos
and Torres [8] and Kenig and Stein [11] (when m = 2). The approach
in these papers is based on a multiple Calderén-Zygmund decomposition
which yields weak type estimates for T, when at least one index p; = 1; in
particular, this approach gives a weak type L' x---x L1 — LY/™: egtimate
which yields the result for the remaining indices with p < 1, via multilinear
interpolation.

It seems that in the proof of Coifman and Meyer [4], the number of
derivatives required of o is at least 2mn; see Yabuta [16]. On the other
hand, by using the m-linear T'1 theorem Grafakos and Torres [8], it follows
that mn + 1 derivatives of ¢ are sufficient to imply the boundedness of T,.
However, even this number of derivatives is too big from the viewpoint of
the linear case. Exploiting the idea of the proof of the Hormander multiplier
theorem in [5], Tomita [15] proved the following result in the m-linear case:

Theorem A. [15] Let o € L=°((R™)™). Let ¥ be a Schwartz function whose
Fourier transform is supported in the set {£ € (R™")™ :1/2 < |¢| < 2} and
satisfies

(6) W) =1

JEZ
for all € € (R™)™\{0}. Suppose that for some s > mn/2, the function
o€ L®((R™)™) satisfies

sup ||o® \T’”Lg < 00.

keZ
where for k € Z, o* is defined as
(7) O-k(glw"afm) :U(zkfla'-kagm)-

Then Ty is bounded from LP*(R™) x --- x LPm(R™) to LP(R"™), where 1 <
D1,P25 -+ Pm,P < OO and 1/pl + -+ 1/pm = ]./p
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In this work we extend Theorem A to the case where the target space is
LP for p < 1. The following is our main result:

Theorem 1.1. Let 1 < r < 2. Suppose that o is a function on (R™)™ and
W is a function in 1 ((R™)™) that satisfies for some v > ™%

8 sup PRI mymy = K < 00,
(8) keZH Lz (Rym)

where o* is defined in (7). Then there is a number § = 6(mn,~y,r) satisfying
0 < 6 < r —1, such that the m-linear operator T,, associated with the
multiplier o, is bounded from LPL(R™) x - - - x LPm(R™) to LP(R"), whenever
r—0<pj<ooforallj=1,...,m, and p is given by
(9) 1:i+...+i.

p b1 Pm
Corollary 1.1. Assume that r = 2 in Theorem 1.1. Then T, is bounded
from LP*(R™) x --- x LPm(R™) to LP(R™), whenever 1 < pi1,...,pm,p < 0o,
and exactly one of the numbers p1,...,pm,p s equal to infinity.

2. PRELIMINARIES
We begin this section by proving Corollary 1.1 assuming Theorem 1.1.

Proof. We first prove that condition (8) is invariant under the adjoints, that
is, it is also valid for the symbols of the dual operators. Indeed, the symbol
of the kth dual operator is

J*k(é—l) cee afm) - 0(517 cee 7€k—15 7(61 + - +£m)a£k‘+17 cee aém)a

with the obvious modification if £ = 1 or £k = m. This is equal to a(AkE),

where 5 is the column vector (&1, ..., &y, ) and Ay, is a modified m xm identity
matrix whose kth row has been replaced by the row (—1,...,—1). Notice
that A, ' = Ag. Condition (8) for o** is
AT PN~ 2 oy g
10 s [l AETEN ) () <
JE nym

where the hat denotes Fourier transform in the é’ variable. We note that
the function ¥ whose Fourier transform is the function 5 — \T/(Akg ) lies in
Z1((R™)™), since it satisfies (3).

By a change of variables inside the Fourier transform, (10) transforms to

i N T, ~ |2 N\ 7o

) s [ (0@ T A () d < o,
JeZ (Rn)m

where Al is the transpose of Ag. But (A})~! = Al and |ALy| ~ |7], thus

w~(ALY) = wy (). Therefore by another change of variables, condition (11)
is equivalent to

(12) sup / [0 T(€)) (@) 20y () dif < o0,
JjE€Z J(R™)™
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which is valid in view of Lemma 2.3. Thus condition (8) for ¢** holds.

We now have that (8) holds for o** for all ¥ in .#;((R")™). Theorem
1.1 implies that 7%, the kth adjoint of T, is bounded from the product
LPr(R™)x---x LP™(R") to LP(R") whenever 2 < p; < oo. Multilinear inter-
polation ([7], [1]) yields that T, is bounded from LP*(R"™) x --- x LPm(R")
to LP(R"™) for all indices p; satisfying 1 < pi1,...,pm,p < 00, ie., in the
interior of the “Banach case”. Thus boundedness holds in this case.

Theorem 1.1 also gives that T, is bounded from LP*(R") x --- x LPm(R™)
to LP(R") for indices p; satisfying 2 — § < p; < oo, for some § > 0. In
particular, T, is bounded from L% (R") x --- x L% (R") to LY(R"™), where
G1=:"=¢n=2-—0/2and ¢ =(2—0/2)/m < 1. Interpolating with the
interior of the Banach case, yields boundedness from LP*(R"™)x---x LPm(R"™)
to LY(R"), whenever 1 < p; < oo and 1/p; +- -+ 1/pm, = 1. Duality allows
one (but not all) of the indices p; to be equal to 1. O

Remark 2.1. It is unclear to us at this time, if the result of Corollary 1.1
can be improved so that more than one index p; be equal to infinity.

Definition 2.1. The Hardy-Littlewood mazximal operator M is defined by

1
M) =swp o [ i

where f is a locally integrable function on R™ and v, is the volume of the
unit ball on R™. It is well known that M is bounded on LP(R™) for all
1 <p<oo.

A fundamental property of the Hardy-Littlewood maximal operator is the
following. For any € > 0 there exists a constant C; > 0 such that

£ ()]
sup /R N dy < C. M(f)(x)

>0 1+ 7|z —y|)nte

for all locally integrable functions f € R™ and all x € R™.
Recall that for s € R, ws denotes the weight

ws(x) = (1 + 4n°|z[?)*/2.

Definition 2.2. For 1 < p < oo, the weighted Lebesgue space LP(ws) is
defined as the set of all measurable functions f on R such that

1/p
sy = ([ @pwae) <o
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We note that for 1 < r < 2 one has

1
T

9l = [, 57w 6)
_ (/ Gws|” d§> :
Rd
(13) e N\
= I — Az d
([, 1= a5 )

1
s(/'KI—Aw?ﬂ%m)r
Rd

=gz, -
via the Hausdorff-Young inequality.

Lemma 2.1. Let 1 < p < q < co. Then for every s > 0 there exists a
constant C' = C(p,q,s,d) > 0 such that for all functions g supported in a
ball of a fized finite radius in R we have

91z ey < CllgllLema) -

Proof. Since g is supported in a ball of finite fixed radius, then g = g ¢ for
some compactly supported smooth function ¢ that is equal to one on the
support of g. Pick r such that

1/p=1/q+1/r.
The Kato-Ponce rule [10] gives the estimate
9]l Lz ray = |1 — A2 (g )| 1
< C[||(T = AYg| Nl + gl (T — A)*¢]
= Co (1T = 8)*g]| y + llgll 2] -

Now the Bessel potential operator J; = (I — A)~*/2 is bounded from L to
itself for all s > 0. This implies that

lgllze < C'[|(Z = A)*?g]|

]

Combining this estimate with the one previously obtained, we deduce that
HQHL‘;(Rd) <2C, C/H(I - A)S/QQHL«;(Rd) =C HQHLg(Rd) .
O

Lemma 2.2. Suppose that s > 0 and 1 < r < co. Assume that ¢ lies in
S (R%). Then there is a constant c, such that for all g € L(RY) we have

lg el <collgllzr
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Proof. We write

(1= 8)g¢) = [ BT = AF (e ar.
It will suffice to show that the L™ norm of (I — A)*/2(ge*™™()) is controlled

by Ca (1 + |7))M times the L™ norm of (I — A)*/2g, for some M > 0. This
statement is equivalent to showing that the function

<1+|g—7|2>5
L+ (€

is an L" Fourier multiplier with norm at most a multiple of (1 + |7|). But
this is an easy consequence of the Mihlin multiplier theorem. (I

Lemma 2.3. Let 1 < r < 2. If condition (4) holds for some function in
F1(RY), then it holds for all functions ¥ in 71 (RY).

Proof. Suppose that condition (4) holds for some function ¥ in .#; (R9). Let
O be another function in .3 (R?). Then using (3) we write

~

(14 66 = — > HIB().
JEZ

CcO

Since © and U are supported in fixed annuli, only a finite number of terms
in the previous sum is nonzero, that is, there is a constant ¢y such that
(I\/(Q*jf)@(f) = 0 for all £ whenever |j| > ¢o. Since © is a smooth function
with compact support, it follows from (14) and Lemma 2.2 that

sup [B() 12 (D5 <o 3 5p [T (NOC) 7250 g

< CO S up [F2()) (25 s e
JlI<

Ce U k+j
oot 2 S g
S = k!
< (200 + 1) sup [ V() o2 ()]s may
< 0.

O
Finally, we will need the following classical result of Fefferman and Stein

Lemma B [6]. Let 1 < p,q < co. Then there exist positive finite constants
C(p,q) such that

{Z o}, e < Co 0| { S 10}
keZ keZ

for all sequences { fi}rez of locally integrable functions on R™.

LP(R")
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Lemma 2.4. Let Ay be the Littlewood-Paley operator given by Ak(g)~(§) =
GEW(27%¢), k € Z, where V is a Schwartz function whose Fourier trans-
form is supported in the annulus {& : 27° < |€| < 2P}, for some b € ZT and

satisfies Y ez W ( —k¢) = cq, for some constant cy. Let 0 < p < co. Then
there is a constant ¢ = c(n, p,co, V), such that for LP functions f we have

17 < | (3 1unE) ]

keZ

e’

Proof. Let ® be a Schwartz function with integral one. Then the following
quantity provides a characterization of the HP norm:

1Fllee ~ || sup |f @4 |[ ., -
t>0

It follows that for f in HP N L?, which is a dense subclass of HP, one has
the estimate

|f] < sup [f x P,
>0
since the family {®;};~¢ is an approximate identity. Thus

[fllze < ellfllmw

whenever f is a function in HP.
Keeping this observation in mind we can write:

[fllze < el fllze

<[(S1ai?) "]

JEZ

(S s

JEZ kEZ
(S1aune)”|
keZ

in view of the fact that A;Ap = 0 unless [j — k| < b. O

Lp

Lp

</

Lp

3. THE PROOF OF THE MAIN RESULT

In this section we discuss the proof of the main theorem.

Proof. For each j = 1,...,m, we let R; be the set of points ({1,...,&n)
n (R™)™ such that |§;| = max{|&],...,|&m|}. For j =1,...,m, we intro-
duce nonnegative smooth functions ¢; on [0,00)™~! that are supported in

[0, 13]™~! such that

X al TGl el
1‘Z¢(|@\ e
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for all (&1,...,&n) # 0, with the understanding that the variable with the
hat is missing. These functions introduce a partition of unity of (R™)"\ {0}
subordinate to a conical neighborhood of the region R;.

Each region R; can be written as the union of sets

Rjp={(1, - &m) € Rj: |&] > & forall s # j}

over k=1,...,m. We need to work with a finer partition of unity, subordi-
nate to each R, ;. To achieve this, for each j, we introduce smooth functions

¢;r on [0,00)™ 2 supported in [0, %é]m 2 such that

B ol Tal  JGl Jéal
L= Z%’ AU ISR )
k#]

for all (&1,...,&y) in the support of ¢; with & # 0.
We now have obtained the following partition of unity of (R™)™ \ {0}:

ZZ@ BIOTIR

=1 k=1
k#j

where the dots indicate the variables of each function.
We now introduce a nonnegative smooth bump ) supported in the interval

[(10m)~!,2] and equal to 1 on the interval [(5m)~!, 1], and we decompose
the identity on (R™)™ \ {0} as follows

1= [®n+Tjk]
=
where
B4 (Ers. . Em) = bi(.. ) dinl. ..)(1 - w(‘é’;"))
and

Ui ) = 65 ) ().

This partition of unity induces the following decomposition of o:

ZZ U‘I)]k—i-a\lfjk]

=1 k=
k#J
We will prove the required assertion for each piece of this decomposition,
i.e., for the multipliers o ®; and o ¥, for each pair (j,k) in the previous
sum. In view of the symmetry of the decomposition, it suffices to consider
the case of a fized pair (j, k) in the previous sum. To simplify notation,
we fix the pair (m,m — 1), thus, for the rest of the proof we fix j = m
and £ = m — 1 and we prove boundedness for the m-linear operators whose
symbols are o1 = 0 @y, ;-1 and 02 = 0 ¥, ;1. These correspond to the
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m-linear operators Ti,, and Ty,, respectively. The important thing to keep
in mind is that oq is supported in the set where

max([&§1], ... [Em—2|) < % |€m—1] < % : ﬁ |Eml
and o9 is supported in the set where
max(|&1, ..., [Em—2]) < If [Em—1]

and

1 |&m—al
Om = Tem] = 2-

m
We first consider Ty, (f1, ..., fm), where f; are fixed Schwartz functions.
We fix a Schwartz radial function n whose Fourier transform is supported
in the annulus 1 — 5= < |¢| < 2 and satisfies

doneTe =1,  ¢eR™M{0}.

JEZ

Associated with 7 we define the Littlewood-Paley operator A;(f) = f*ny-;,
where n;(z) = t "n(t~tx) for t > 0. We decompose the function f,, as
> jez Aj(fm) and we note that the spectrum (i.e. the Fourier transform) of
To,(f1s-- - fm—=1,Q,(fm)) is contained in the set

{6 el < FE 3+ {&m1 1 [&matl < FE3H{Em: 527 <6l < 2:27}
This algebraic sum of these sets is contained in the annulus
{zeR": -2/ <|z| <827},

We now introduce another bump that is equal to 1 on the annulus

{z € R": 5 < |z2| < £} and vanishes in the complement of the larger

annulus {z € R" : £ < [z] < $2}. We call Zj the Littlewood-Paley
operators associated with this bump and we note that
z]'(zq’fl'l (flv SRR A](fm))) = TUl(f17 SRR A](fm))
Finally, we define an operator S; by setting
Sj(9) = g% Ca-s
where ¢ is a smooth function whose Fourier transform is equal to 1 on the

ball |z| < 3/5m and vanishes outside the double of this ball. Using this
notation, we may write

Tzn(fla cee afmflafm) = ZTal (fla .. -,fmflaAj(fm))
= ZTal (Sj(fl)’ AR Sj(fmfl)a A](fm))
= ZAJ (Tzn(Sj(fl)a cee 7Sj(fm—1)u A](fm))) .

Since the Fourier transforms of Ej(Tgl(Sj(fl),...,Sj(fm,l),Aj(fm)))
have bounded overlap, Lemma 2.4 yields that
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Ty (s vt Fand 20 < O [ 32 To (S50, 25 (Fn)s A5 () [

p

Obviously, we have

Ty (Si(f1)s - -+ S (fn—1)s Aj(fm)) ()

m— 1

:/(R 2t tem) o (6] g H A (f) (Em) dEy -+ d

n)m

A simple calculation yields that the support of the integrand in the previous
integral is contained in the annulus

{€ tm) e ®Y™: F27 < (. 6m) < 327}

so one may introduce in the previous integral the factor (I\I(Q_j £1,...,279¢),
where ¥ is a radial function in .#;((R™)™) whose Fourier transform is sup-
ported in some annulus and is equal to 1 on the annulus

{(zl,...,zm) €®RM™: L <21, 2m)| < %}

Inserting this factor and taking the inverse Fourier transform, we obtain
that

o1 (S5(f1)5 -5 85 (fmn—1), A (fm)) ()

is equal to
m—1

/(Rn)m 2mnj(0{ \/I\I)V(Zj(x—yl), o2 (z—ym)) H Si(f) (i) Aj () (ym) 47,
i=1

where di = dy; . . . dym, the check indicates the inverse Fourier transform in
all variables, and

U{(élué?? e 7€m) = Ul(2j§15 .. 72J£m) .

We pick a p such that 1 < p < r < 2 and v > mn/p. This is possible
since v > mn/r; for instance

mn n 1 ( mn)
= — _—\r — —
P T 1000 ~
is a good choice if this number is bigger than 1; otherwise we set p = 1—;’"

We define § = r — p. We now have:
‘Tal(Sj(fl)v"'7Sj(fm—1)ﬂAj(fm))(x)’

S/(R”)Z;LU,Y(2]'($ - y1)7 N .,2j(.%' B ym)) ‘(U{ (I\/)\/(2j($ - yl)v s 72j($ - ym))‘

y 2985 (f1) (1) -+ - S (fn—1) Wm—1) 2 (f) ()| dij
wy (2 (z — 1), 20 (2 — ym))
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1
7

o dg':| P

< [/(Rn)m} (wy (a{ \T/)V)(Qi(;g 1) 2 (T — ym)

mnj 1S (f1) W) -+ S5 (Fn1) Um—1) A () ) P2\ ”
e </(R”)m Wap (27 (= 41)5- -+ 29 (2 — ym)) dy)

1

o

= / Wap (Y15 - Y| (0] ©) (g1, ym) P dF
(Rr)m
" / 29185 (1) (1) -+ S (Fne1) Wm—1) D (frn) (Ym)|* di ’
@ (L4 2w — g |)eme (L4 2w — y|)70/m

m—1 i 1

= 2185 (fi) (i) [” ’
J \Y J .
SH(UI \Il) HLP,(w’YP/) 1_11 (/1{" (1+2]|x_y1’)'ﬂ7/m dyl

27 A (fim) (Ym) | ’
g </R” (1 + 2]z — gyl )70/ dym)

m—1
<UL ) ™ TT (MME) @) > MUA(F) ) ()7
i=1

=

where we used that

27" h(y)|
/Rn (14 27|z — y|)e/m dy < c M(h)(z),

a consequence of the fact that yp/m > n.
We now have the sequence of inequalities:

] 9y < llod Bllzz < O llod Bllas < €'l By < C K

justified by the result in the calculation (13) for the first, Lemma 2.1 together
with the facts that 1 < p < r and o7 is supported in a ball of a fixed radius
for the second inequality, Lemma 2.2 for the third, and the hypothesis of
Theorem 1.1 for the last inequality.

Thus we have obtained the estimate:

|T01(Sj(f1)7 RS Sj(fm—l)7 Aj(fm))|

m—1
< CK ] (MMF)))? (MD;(F)l)5 -
i=1

We now square the previous expression, we sum over j € Z and we take
square roots. Since r —d = p, the hypothesis p; > r — ¢ implies p; > p , and

thus each term (M(M(fl)p))% is bounded on LPi(R™). We obtain
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| Tos (frs e Fonmts fin) | o ey

< CKH{Z|Tal(5j(f1)7-'-’Sj(fm—l)’Aj(fme}; LP(R")
J

< C’KH{Z:/\/I(IAJ‘(J%)!’))’Q’}é me(Rn)nﬁ:H (M(M(fi)p))% e ey
J =

< C//KH{ZM(Aj(fm”p)i}g ipm/p(Rn)Thl‘fi”L”i(R")
§ =1

and this is bounded by
" KT Ifilleei @
=1

in view of Lemma B with ¢ = 2/p and the Littlewood-Paley theorem.
Next we deal with o3. Using the notation introduced earlier, we write

Toy(frs- oo fnets fm) = D Ty (frs s frne1 85 (fn) -
JEZ
The key observation in this case is that
TO’2(f17 ] fm—17 A](fm)) = T0'2 (Sé(.fi)v R 7S‘;(fm—2)7 A;'(fm—l)7 A](fm))
for some other Littlewood-Paley operator A;- which is given on the Fourier

transform by multiplication with a bump (:)(2_j €), where O is equal to one

on the annulus {{ € R" : % - 70— < || < 4} and vanishes on a larger
annulus. Also, S} is given by convolution with ¢)_;, where ¢’ is a smooth

function whose Fourier transform is equal to 1 on the ball |z| < % and

vanishes outside the double of this ball.
As in the previous case, one has that in the support of the integral

TUz (Sj/(fl)7 R S}'(fm—Q)a A;‘(fm—l)a A](fm))(x)

o — — —

m—2
:/(Rn)ejﬂir~(§1+-‘~+§m)02(5) H S]/(ft)(gt) A;‘(fm—lem—l)Aj(fm)(fm) dé
t=1
we have that '
&+ + [em| = 2,

thus one may insert in the integrand the factor @(2-J‘§1, ..., 277&,), for
some ¥ in .7 ((R™)™) that is equal to one on a sufficiently wide annulus.
A calculation similar to the one in the case for o; yields the estimate

|T02 (Sé(fl)a AR S;‘(fmf2)a A;(fmfl)v A](fm))|

=
=

m—2
<CK [T MWM(£)P)r (MAAS(Fm-1)IP) > (MA;(£n)]?))
i=1
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Summing over j and taking L” norms yields
HTU2 <f17 SRR fm—la fm)”Lp(Rn)

m—2 1 1
<o K| TT MMEPDE S M A) Fn0)I?))F (M )P
=1

goKHnﬁ(M(M(ﬁ)”))i{ [T S maimi )
=1

: Lr
JEZ

LP(R™
i=m—1;€Z (R*)

where the last step follows by the Cauchy-Schwarz inequality and we omitted
the prime from the term with i = m — 1 for matters of simplicity. Applying
Holder’s inequality and using that p < 2 and Lemma B we obtain the
conclusion that the expression above is bounded by

C" K || fillermry - - 1 fnll Lom (m7y -

This concludes the proof of the theorem. O
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