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Abstract. In this paper, we provide a version of the Mihlin-Hörmander
multiplier theorem for multilinear operators in the case where the target
space is Lp for p ≤ 1. This extends a recent result of Tomita [15] who
proved an analogous result for p > 1.

1. Introduction

Let S (Rd) be the Schwartz space of all rapidly decreasing smooth func-
tions on Rd, for some d ∈ Z+. We define the Fourier transform F and the
inverse Fourier transform F−1 of a function f ∈ S (Rd) by

F (f)(ξ) = f̂(ξ) =
∫
Rd

e−2πix·ξf(x) dx

and

F−1(f)(ξ) = f∨(ξ) =
∫
Rd

e2πix·ξf(x) dx

The Mihlin multiplier [14] theorem says that if a function σ defined on
Rd\{0} has at least [d/2] + 1 continuous derivatives that satisfy

(1) |∂ασ(ξ)| ≤ Cα|ξ|−|α|

for all |α| ≤ [d/2] + 1 ([t] is the integer part of t), then the operator

Tσ(f)(x) =
∫
Rd

f̂(ξ)σ(ξ)e2πix·ξ dξ = F−1(σF (f))(x) ,

initially defined for Schwartz functions, admits a bounded extension on
Lp(Rd) for all 1 < p <∞.

An improved version of Mikhlin’s theorem was proved by Hörmander.
To describe this version, we introduce some notation: the Laplacian on Rd

is ∆g =
∑d

j=1 ∂
2g/∂x2

j , i.e., the sum of the second partials of g in every
variable. We define the operator (I − ∆)γ/2(g) = F−1(wγF (g)), where
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wγ(ξ) = (1 + 4π2|ξ|2)γ/2 for γ > 0. Let Lrγ(Rd) be the Lr-based Sobolev
space with norm

(2) ‖f‖Lrγ = ‖(I −∆)γ/2f‖Lr(Rd),

where 1 ≤ r < ∞. We also let S1(Rd) be the set of all Schwartz functions
Ψ on Rd, whose Fourier transform is supported in an annulus of the form
{ξ : c1 < |ξ| < c2}, is nonvanishing in a smaller annulus {ξ : c′1 ≤ |ξ| ≤ c′2}
(for some choice of constants 0 < c1 < c′1 < c′2 < c2 <∞), and satisfies

(3)
∑
j∈Z

Ψ̂(2−jξ) = constant, ξ ∈ Rd \ {0}.

It is worth observing that a necessary condition on the constants c′1, c
′
2 such

that there exists some function in S1(Rd) whose Fourier transform is non-
vanishing in the annulus {ξ : c′1 ≤ |ξ| ≤ c′2}, is that 2c′1 ≤ c′2. In this case,
we define Ψ in S1(Rd) to be the inverse Fourier transform of

η̂(ξ)∑
`∈Z η̂(2−`ξ)

,

where η is a function in S (Rd) whose Fourier transform is supported in
{ξ : c1 < |ξ| < c2} and is nonvanishing in {ξ : c′1 ≤ |ξ| ≤ c′2}.

Hörmander’s version (see [9]) of Mikhlin’s theorem is the following: Sup-
pose that σ is a bounded function on Rd that satisfies

(4) sup
k∈Z
‖Ψ̂(·)σ(2k(·))‖Lrγ(Rd) <∞

for some 1 ≤ r ≤ 2, some γ > d/r, and some Ψ ∈ S1(Rd). Then σ is a
Fourier multiplier on Lp, 1 < p <∞, i.e., the operator Tσ admits a bounded
extension on Lp(Rd). We note that condition (4) is weaker than (1) and
becomes least restrictive when r = 2; we also note that if condition (4) holds
for some Ψ in S1(Rd), then it holds for all 1 Ψ in S1(Rd). Condition (3)
can be avoided if the constants c1, c2, c

′
1, c
′
2 are chosen suitably. However, it

appears naturally in many situations and allows one to prove the equivalence
of (4) between one and all functions in S1(Rd). Thus, it provides us with
flexibility in the choice of Ψ in (4) and it becomes very useful for the purposes
of this article.

In this article, we provide a version of the Hörmander multiplier theorem
in the case of multilinear operators. The study of such operators originated
in the work of Coifman and Meyer [2], [3], [4] and was later revived by the
groundbreaking work of Lacey and Thiele’s on the bilinear Hilbert transform
[12], [13]. The multilinear Fourier multiplier operator Tσ associated with a

1See Lemma 2.3.
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symbol σ is defined by
Tσ(f1, . . . , fm)(x)

=
∫

(Rn)m
e2πix·(ξ1+···+ξm)σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) dξ1 · · · dξm

for fi ∈ S (Rn), i = 1, · · · ,m.
Coifman and Meyer [4] proved that if σ is a function on (Rn)m \ {0} that

satisfies

(5) |∂α1
ξ1
· · · ∂αmξm σ(ξ1, . . . , ξm)| ≤ Cα(|ξ1|+ · · ·+ |ξm|)−(|α1|+···+|αm|)

away from the origin for all sufficiently large multiindices αj , then Tσ is
bounded from the product Lp1(Rn)× · · · × Lpm(Rn) to Lp(Rn) for all 1 <
p1, . . . , pm, p < ∞ satisfying 1

p1
+ · · · + 1

pm
= 1

p . Their proof is based on
the idea of writing the Fourier multiplier σ as a rapidly convergent sum of
products of functions of the variables ξj . The multiplier theorem of Coifman
and Meyer was extended to indices p < 1 (and larger than 1/m by Grafakos
and Torres [8] and Kenig and Stein [11] (when m = 2). The approach
in these papers is based on a multiple Calderón-Zygmund decomposition
which yields weak type estimates for Tσ when at least one index pj = 1; in
particular, this approach gives a weak type L1×· · ·×L1 → L1/m,∞ estimate
which yields the result for the remaining indices with p ≤ 1, via multilinear
interpolation.

It seems that in the proof of Coifman and Meyer [4], the number of
derivatives required of σ is at least 2mn; see Yabuta [16]. On the other
hand, by using the m-linear T1 theorem Grafakos and Torres [8], it follows
that mn+ 1 derivatives of σ are sufficient to imply the boundedness of Tσ.
However, even this number of derivatives is too big from the viewpoint of
the linear case. Exploiting the idea of the proof of the Hörmander multiplier
theorem in [5], Tomita [15] proved the following result in the m-linear case:

Theorem A. [15] Let σ ∈ L∞((Rn)m). Let Ψ be a Schwartz function whose
Fourier transform is supported in the set {~ξ ∈ (Rn)m : 1/2 ≤ |~ξ | ≤ 2} and
satisfies

(6)
∑
j∈Z

Ψ̂(~ξ/2j) = 1

for all ~ξ ∈ (Rn)m\{0}. Suppose that for some s > mn/2, the function
σ ∈ L∞((Rn)m) satisfies

sup
k∈Z
‖σk Ψ̂‖L2

s
<∞.

where for k ∈ Z, σk is defined as

(7) σk(ξ1, . . . , ξm) = σ(2kξ1, . . . , 2kξm) .

Then Tσ is bounded from Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn), where 1 <
p1, p2, . . . , pm, p <∞ and 1/p1 + · · ·+ 1/pm = 1/p.
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In this work we extend Theorem A to the case where the target space is
Lp for p ≤ 1. The following is our main result:

Theorem 1.1. Let 1 < r ≤ 2. Suppose that σ is a function on (Rn)m and
Ψ is a function in S1((Rn)m) that satisfies for some γ > mn

r

(8) sup
k∈Z
‖σk Ψ̂‖Lrγ((Rn)m) = K <∞,

where σk is defined in (7). Then there is a number δ = δ(mn, γ, r) satisfying
0 < δ ≤ r − 1, such that the m-linear operator Tσ, associated with the
multiplier σ, is bounded from Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn), whenever
r − δ < pj <∞ for all j = 1, . . . ,m, and p is given by

(9)
1
p

=
1
p1

+ · · ·+ 1
pm

.

Corollary 1.1. Assume that r = 2 in Theorem 1.1. Then Tσ is bounded
from Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn), whenever 1 < p1, . . . , pm, p

′ ≤ ∞,
and exactly one of the numbers p1, . . . , pm, p

′ is equal to infinity.

2. Preliminaries

We begin this section by proving Corollary 1.1 assuming Theorem 1.1.

Proof. We first prove that condition (8) is invariant under the adjoints, that
is, it is also valid for the symbols of the dual operators. Indeed, the symbol
of the kth dual operator is

σ∗k(ξ1, . . . , ξm) = σ(ξ1, . . . , ξk−1,−(ξ1 + · · ·+ ξm), ξk+1, . . . , ξm) ,

with the obvious modification if k = 1 or k = m. This is equal to σ(Ak~ξ ),
where ~ξ is the column vector (ξ1, . . . , ξm) and Ak is a modified m×m identity
matrix whose kth row has been replaced by the row (−1, . . . ,−1). Notice
that A−1

k = Ak. Condition (8) for σ∗k is

(10) sup
j∈Z

∫
(Rn)m

∣∣[σ(2jAk~ξ )Ψ̂(~ξ )] (̂~y )
∣∣2wγ(~y ) d~y <∞ ,

where the hat denotes Fourier transform in the ~ξ variable. We note that
the function Ψk whose Fourier transform is the function ~ξ → Ψ̂(Ak~ξ ) lies in
S1((Rn)m), since it satisfies (3).

By a change of variables inside the Fourier transform, (10) transforms to

(11) sup
j∈Z

∫
(Rn)m

∣∣[σ(2j~ξ )Ψ̂k(ξ )] (̂Atk~y )
∣∣2wγ(~y ) d~y <∞ ,

where Atk is the transpose of Ak. But (Atk)
−1 = Atk and |Atk~y | ≈ |~y |, thus

wγ(Atk~y ) ≈ wγ(~y ). Therefore by another change of variables, condition (11)
is equivalent to

(12) sup
j∈Z

∫
(Rn)m

∣∣[σ(2j~ξ )Ψ̂k(ξ )] (̂~y )
∣∣2wγ(~y ) d~y <∞ ,
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which is valid in view of Lemma 2.3. Thus condition (8) for σ∗k holds.
We now have that (8) holds for σ∗k for all Ψ in S1((Rn)m). Theorem

1.1 implies that T ∗kσ , the kth adjoint of Tσ, is bounded from the product
Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn) whenever 2 < pj <∞. Multilinear inter-
polation ([7], [1]) yields that Tσ is bounded from Lp1(Rn)× · · · × Lpm(Rn)
to Lp(Rn) for all indices pj satisfying 1 < p1, . . . , pm, p < ∞, i.e., in the
interior of the “Banach case”. Thus boundedness holds in this case.

Theorem 1.1 also gives that Tσ is bounded from Lp1(Rn)×· · ·×Lpm(Rn)
to Lp(Rn) for indices pj satisfying 2 − δ < pj < ∞, for some δ > 0. In
particular, Tσ is bounded from Lq1(Rn)× · · · × Lqm(Rn) to Lq(Rn), where
q1 = · · · = qm = 2 − δ/2 and q = (2 − δ/2)/m < 1. Interpolating with the
interior of the Banach case, yields boundedness from Lp1(Rn)×· · ·×Lpm(Rn)
to L1(Rn), whenever 1 < pj <∞ and 1/p1 + · · ·+ 1/pm = 1. Duality allows
one (but not all) of the indices pj to be equal to 1. �

Remark 2.1. It is unclear to us at this time, if the result of Corollary 1.1
can be improved so that more than one index pj be equal to infinity.

Definition 2.1. The Hardy-Littlewood maximal operator M is defined by

M(f)(x) = sup
r>0

1
vnrn

∫
|x−y|≤r

|f(y)|dy,

where f is a locally integrable function on Rn and vn is the volume of the
unit ball on Rn. It is well known that M is bounded on Lp(Rn) for all
1 < p <∞.

A fundamental property of the Hardy-Littlewood maximal operator is the
following. For any ε > 0 there exists a constant Cε > 0 such that

sup
r>0

∫
Rn

rn |f(y)|
(1 + r|x− y|)n+ε

dy ≤ CεM(f)(x)

for all locally integrable functions f ∈ Rn and all x ∈ Rn.
Recall that for s ∈ R, ws denotes the weight

ws(x) = (1 + 4π2|x|2)s/2 .

Definition 2.2. For 1 ≤ p < ∞, the weighted Lebesgue space Lp(ws) is
defined as the set of all measurable functions f on Rd such that

‖f‖Lp(ws) =
(∫

Rd

|f(x)|pws(x) dx
)1/p

<∞.
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We note that for 1 < r ≤ 2 one has

‖ĝ ‖Lr′ (ws) =
(∫

Rd

|ĝ |r′ws dξ
) 1
r′

=
(∫

Rd

|ĝ ws/r′ |r
′
dξ

) 1
r′

=
(∫

Rd

∣∣[(I −∆)
s

2r′ g
]̂∣∣r′ dξ) 1

r′

≤
(∫

Rd

∣∣(I −∆)
s

2r′ g
∣∣r dx) 1

r

= ‖g ‖Lr
s/r′

,

(13)

via the Hausdorff-Young inequality.

Lemma 2.1. Let 1 ≤ p < q < ∞. Then for every s ≥ 0 there exists a
constant C = C(p, q, s, d) > 0 such that for all functions g supported in a
ball of a fixed finite radius in Rd we have

‖g‖Lps(Rd) ≤ C ‖g‖Lqs(Rd) .

Proof. Since g is supported in a ball of finite fixed radius, then g = g ϕ for
some compactly supported smooth function ϕ that is equal to one on the
support of g. Pick r such that

1/p = 1/q + 1/r .

The Kato-Ponce rule [10] gives the estimate

‖g‖Lps(Rd) =
∥∥(I −∆)s/2(g ϕ)

∥∥
Lp

≤ C
[∥∥(I −∆)s/2g

∥∥
Lq
‖ϕ‖Lr + ‖g‖Lq

∥∥(I −∆)s/2ϕ
∥∥
Lr

]
= Cϕ

[∥∥(I −∆)s/2g
∥∥
Lq

+ ‖g‖Lq
]
.

Now the Bessel potential operator Js = (I −∆)−s/2 is bounded from Lq to
itself for all s > 0. This implies that

‖g‖Lq ≤ C ′
∥∥(I −∆)s/2g

∥∥
Lq

Combining this estimate with the one previously obtained, we deduce that

‖g‖Lps(Rd) ≤ 2CϕC ′
∥∥(I −∆)s/2g

∥∥
Lq(Rd)

= C ‖g‖Lqs(Rd) .

�

Lemma 2.2. Suppose that s ≥ 0 and 1 < r < ∞. Assume that ϕ lies in
S (Rd). Then there is a constant cϕ such that for all g ∈ Lrs(Rd) we have

‖g ϕ‖Lrs ≤ cϕ ‖g‖Lrs .
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Proof. We write

(I −∆)s/2(g ϕ) =
∫
Rd

ϕ̂(τ)(I −∆)s/2(g e2πiτ ·(·)) dτ .

It will suffice to show that the Lr norm of (I−∆)s/2(g e2πiτ ·(·)) is controlled
by CM (1 + |τ |)M times the Lr norm of (I −∆)s/2g, for some M > 0. This
statement is equivalent to showing that the function(

1 + |ξ − τ |2

1 + |ξ|2

) s
2

is an Lr Fourier multiplier with norm at most a multiple of (1 + |τ |)M . But
this is an easy consequence of the Mihlin multiplier theorem. �

Lemma 2.3. Let 1 < r ≤ 2. If condition (4) holds for some function in
S1(Rd), then it holds for all functions Ψ in S1(Rd).

Proof. Suppose that condition (4) holds for some function Ψ in S1(Rd). Let
Θ be another function in S1(Rd). Then using (3) we write

(14) Θ̂(ξ) =
1

const

∑
j∈Z

Ψ̂(2−jξ)Θ̂(ξ) .

Since Θ̂ and Ψ̂ are supported in fixed annuli, only a finite number of terms
in the previous sum is nonzero, that is, there is a constant c0 such that
Ψ̂(2−jξ)Θ̂(ξ) = 0 for all ξ whenever |j| > c0. Since Θ̂ is a smooth function
with compact support, it follows from (14) and Lemma 2.2 that

sup
k∈Z
‖Θ̂(·)σ(2k(·))‖Lrγ(Rd) ≤

1
const

∑
|j|≤c0

sup
k∈Z
‖Ψ̂(2−j(·))Θ̂(·)σ(2k(·))‖Lrγ(Rd)

≤ CΘ

const

∑
|j|≤c0

sup
k∈Z
‖Ψ̂(2−j(·))σ(2k(·))‖Lrγ(Rd)

≤ CΘ

const

∑
|j|≤c0

sup
k∈Z
‖Ψ̂(·)σ(2k+j(·))‖Lrγ(Rd)

≤ CΘ

const
(2c0 + 1) sup

k′∈Z
‖Ψ̂(·)σ(2k

′
(·))‖Lrγ(Rd)

< ∞ .

�

Finally, we will need the following classical result of Fefferman and Stein

Lemma B [6]. Let 1 < p, q < ∞. Then there exist positive finite constants
C(p, q) such that∥∥∥{∑

k∈Z
|M(fk)|q

}1/q∥∥∥
Lp(Rn)

≤ C(p, q)
∥∥∥{∑

k∈Z
|fk|q

}1/q∥∥∥
Lp(Rn)

for all sequences {fk}k∈Z of locally integrable functions on Rn.
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Lemma 2.4. Let ∆k be the Littlewood-Paley operator given by ∆k(g) (̂ξ) =
ĝ(ξ)Ψ̂(2−kξ), k ∈ Z, where Ψ is a Schwartz function whose Fourier trans-
form is supported in the annulus {ξ : 2−b < |ξ| < 2b}, for some b ∈ Z+ and
satisfies

∑
k∈Z Ψ̂(2−kξ) = c0, for some constant c0. Let 0 < p < ∞. Then

there is a constant c = c(n, p, c0,Ψ), such that for Lp functions f we have

‖f‖Lp ≤ c
∥∥∥(∑

k∈Z
|∆k(f)|2

)1/2∥∥∥
Lp
.

Proof. Let Φ be a Schwartz function with integral one. Then the following
quantity provides a characterization of the Hp norm:

‖f‖Hp ≈
∥∥ sup
t>0
|f ∗ Φt|

∥∥
Lp
.

It follows that for f in Hp ∩ L2, which is a dense subclass of Hp, one has
the estimate

|f | ≤ sup
t>0
|f ∗ Φt| ,

since the family {Φt}t>0 is an approximate identity. Thus

‖f‖Lp ≤ c ‖f‖Hp

whenever f is a function in Hp.
Keeping this observation in mind we can write:

‖f‖Lp ≤ c ‖f‖Hp

≤
∥∥∥(∑

j∈Z
|∆j(f)|2

)1/2∥∥∥
Lp

= c
∥∥∥(∑

j∈Z

∣∣∣∆j

(∑
k∈Z

∆k(f)
)∣∣∣2)1/2∥∥∥

Lp

≤ c′
∥∥∥(∑

k∈Z
|∆k(f)|2

)1/2∥∥∥
Lp

in view of the fact that ∆j∆k = 0 unless |j − k| ≤ b. �

3. The proof of the main result

In this section we discuss the proof of the main theorem.

Proof. For each j = 1, . . . ,m, we let Rj be the set of points (ξ1, . . . , ξm)
in (Rn)m such that |ξj | = max{|ξ1|, . . . , |ξm|}. For j = 1, . . . ,m, we intro-
duce nonnegative smooth functions φj on [0,∞)m−1 that are supported in
[0, 11

10 ]m−1 such that

1 =
m∑
j=1

φj

( |ξ1|
|ξj |

, . . . ,
|̂ξj |
|ξj |

, . . . ,
|ξm|
|ξj |

)
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for all (ξ1, . . . , ξm) 6= 0, with the understanding that the variable with the
hat is missing. These functions introduce a partition of unity of (Rn)m \{0}
subordinate to a conical neighborhood of the region Rj .

Each region Rj can be written as the union of sets

Rj,k =
{

(ξ1, . . . , ξm) ∈ Rj : |ξk| ≥ |ξs| for all s 6= j
}

over k = 1, . . . ,m. We need to work with a finer partition of unity, subordi-
nate to each Rj,k. To achieve this, for each j, we introduce smooth functions
φj,k on [0,∞)m−2 supported in [0, 11

10 ]m−2 such that

1 =
m∑
k=1
k 6=j

φj,k

( |ξ1|
|ξk|

, . . . ,
|̂ξk|
|ξk|

, . . . ,
|̂ξj |
|ξk|

, . . . ,
|ξm|
|ξk|

)
for all (ξ1, . . . , ξm) in the support of φj with ξk 6= 0.

We now have obtained the following partition of unity of (Rn)m \ {0}:

1 =
m∑
j=1

m∑
k=1
k 6=j

φj(. . . )φj,k(. . . ) ,

where the dots indicate the variables of each function.
We now introduce a nonnegative smooth bump ψ supported in the interval

[(10m)−1, 2] and equal to 1 on the interval [(5m)−1, 12
10 ], and we decompose

the identity on (Rn)m \ {0} as follows

1 =
m∑
j=1

m∑
k=1
k 6=j

[
Φj,k + Ψj,k

]
,

where

Φj,k(ξ1, . . . , ξm) = φj(. . . )φj,k(. . . )
(

1− ψ
( |ξk|
|ξj |

))
and

Ψj,k(ξ1, . . . , ξm) = φj(. . . )φj,k(. . . )ψ
( |ξk|
|ξj |

)
.

This partition of unity induces the following decomposition of σ:

σ =
m∑
j=1

m∑
k=1
k 6=j

[
σΦj,k + σΨj,k

]
.

We will prove the required assertion for each piece of this decomposition,
i.e., for the multipliers σΦj,k and σΨj,k for each pair (j, k) in the previous
sum. In view of the symmetry of the decomposition, it suffices to consider
the case of a fixed pair (j, k) in the previous sum. To simplify notation,
we fix the pair (m,m − 1), thus, for the rest of the proof we fix j = m
and k = m− 1 and we prove boundedness for the m-linear operators whose
symbols are σ1 = σΦm,m−1 and σ2 = σΨm,m−1. These correspond to the
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m-linear operators Tσ1 and Tσ2 , respectively. The important thing to keep
in mind is that σ1 is supported in the set where

max(|ξ1|, . . . , |ξm−2|) ≤ 11
10 |ξm−1| ≤ 11

10 ·
1

5m |ξm|
and σ2 is supported in the set where

max(|ξ1|, . . . , |ξm−2|) ≤ 11
10 |ξm−1|

and
1

10m ≤
|ξm−1|
|ξm| ≤ 2 .

We first consider Tσ1(f1, . . . , fm), where fj are fixed Schwartz functions.
We fix a Schwartz radial function η whose Fourier transform is supported
in the annulus 1− 1

25 ≤ |ξ| ≤ 2 and satisfies∑
j∈Z

η̂(2−jξ) = 1, ξ ∈ Rn\{0}.

Associated with η we define the Littlewood-Paley operator ∆j(f) = f ∗η2−j ,
where ηt(x) = t−nη(t−1x) for t > 0. We decompose the function fm as∑

j∈Z ∆j(fm) and we note that the spectrum (i.e. the Fourier transform) of
Tσ1(f1, . . . , fm−1,∆j(fm)) is contained in the set{
ξ1 : |ξ1| ≤ 3·2j

5m

}
+· · ·+

{
ξm−1 : |ξm−1| ≤ 3·2j

5m

}
+
{
ξm : 24

25 ·2
j ≤ |ξm| ≤ 2·2j

}
This algebraic sum of these sets is contained in the annulus

{z ∈ Rn : 9
25 · 2

j ≤ |z| ≤ 65
25 · 2

j} .
We now introduce another bump that is equal to 1 on the annulus
{z ∈ Rn : 9

25 ≤ |z| ≤
65
25} and vanishes in the complement of the larger

annulus {z ∈ Rn : 8
25 < |z| < 66

25}. We call ∆̃j the Littlewood-Paley
operators associated with this bump and we note that

∆̃j(Tσ1(f1, . . . ,∆j(fm))) = Tσ1(f1, . . . ,∆j(fm)).

Finally, we define an operator Sj by setting

Sj(g) = g ∗ ζ2−j ,

where ζ is a smooth function whose Fourier transform is equal to 1 on the
ball |z| < 3/5m and vanishes outside the double of this ball. Using this
notation, we may write

Tσ1(f1, . . . , fm−1, fm) =
∑
j

Tσ1

(
f1, . . . , fm−1,∆j(fm)

)
=
∑
j

Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)
=
∑
j

∆̃j

(
Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))

)
.

Since the Fourier transforms of ∆̃j

(
Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))

)
have bounded overlap, Lemma 2.4 yields that
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‖Tσ1(f1, . . . , fm−1, fm)‖Lp ≤ C
∥∥∥[∑

j

∣∣Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)∣∣2] 1
2
∥∥∥
Lp

Obviously, we have

Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)
(x)

=
∫

(Rn)m
e2πix·(ξ1+···+ξm)σ1(ξ1, . . . , ξm)

m−1∏
k=1

Ŝj(fk)(ξk) ∆̂j(fm)(ξm) dξ1 · · · dξm .

A simple calculation yields that the support of the integrand in the previous
integral is contained in the annulus{

(ξ1, . . . , ξm) ∈ (Rn)m : 7
10 · 2

j < |(ξ1, . . . , ξm)| < 21
10 · 2

j
}
,

so one may introduce in the previous integral the factor Ψ̂(2−jξ1, . . . , 2−jξm),
where Ψ is a radial function in S1((Rn)m) whose Fourier transform is sup-
ported in some annulus and is equal to 1 on the annulus{

(z1, . . . , zm) ∈ (Rn)m : 7
10 ≤ |(z1, . . . , zm)| ≤ 21

10

}
.

Inserting this factor and taking the inverse Fourier transform, we obtain
that

Tσ1

(
Sj(f1), . . . , Sj(fm−1),∆j(fm)

)
(x)

is equal to∫
(Rn)m

2mnj(σj1 Ψ̂)∨(2j(x−y1), . . . , 2j(x−ym))
m−1∏
i=1

Sj(fi)(yi) ∆j(fm)(ym) d~y,

where d~y = dy1 . . . dym, the check indicates the inverse Fourier transform in
all variables, and

σj1(ξ1, ξ2, . . . , ξm) = σ1(2jξ1, . . . , 2jξm) .

We pick a ρ such that 1 < ρ < r ≤ 2 and γ > mn/ρ. This is possible
since γ > mn/r; for instance

ρ =
mn

γ
+

1
1000

(r − mn

γ
)

is a good choice if this number is bigger than 1; otherwise we set ρ = 1+r
2 .

We define δ = r − ρ . We now have:

|Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))(x)|

≤
∫

(Rn)m
wγ
(
2j(x− y1), . . . , 2j(x− ym)

)
|(σj1 Ψ̂)∨(2j(x− y1), . . . , 2j(x− ym))|

× 2mnj |Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)∆j(fm)(ym)|
wγ
(
2j(x− y1), . . . , 2j(x− ym)

) d~y
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≤
[ ∫

(Rn)m

∣∣(wγ (σj1 Ψ̂)∨
)
(2j(x− y1), . . . , 2j(x− ym))

∣∣ρ′d~y] 1
ρ′

× 2mnj
(∫

(Rn)m

|Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)∆j(fm)(ym)|ρ

wγρ
(
2j(x− y1), . . . , 2j(x− ym)

) d~y

) 1
ρ

≤C

(∫
(Rn)m

wγρ′(y1, . . . , ym)|(σj1 Ψ̂)∨(y1, . . . , ym)|ρ′d~y

) 1
ρ′

×

(∫
(Rn)m

2mnj |Sj(f1)(y1) · · ·Sj(fm−1)(ym−1)∆j(fm)(ym)|ρ

(1 + 2j |x− y1|)γρ/m · · · (1 + 2j |x− ym|)γρ/m
d~y

) 1
ρ

≤‖(σj1 Ψ̂)∨‖Lρ′ (wγρ′ )
m−1∏
i=1

(∫
Rn

2jn|Sj(fi)(yi)|ρ

(1 + 2j |x− yi|)γρ/m
dyi

) 1
ρ

×
(∫

Rn

2jn|∆j(fm)(ym)|ρ

(1 + 2j |x− ym|)γρ/m
dym

) 1
ρ

≤‖(σj1 Ψ̂)∨‖Lρ′ (wγρ′ )c
m/ρ

m−1∏
i=1

(M(M(fi)ρ)(x))
1
ρ (M(|∆j(fm)|ρ)(x))

1
ρ ,

where we used that∫
Rn

2jn|h(y)|
(1 + 2j |x− y|)γρ/m

dy ≤ cM(h)(x) ,

a consequence of the fact that γρ/m > n.
We now have the sequence of inequalities:

‖(σj1 Ψ̂)∨‖Lρ′ (wγρ′ ) ≤ ‖σ
j
1 Ψ̂‖Lργ ≤ C

′′ ‖σj1 Ψ̂‖Lrγ ≤ C
′ ‖σj Ψ̂‖Lrγ < CK ,

justified by the result in the calculation (13) for the first, Lemma 2.1 together
with the facts that 1 < ρ < r and σj1 is supported in a ball of a fixed radius
for the second inequality, Lemma 2.2 for the third, and the hypothesis of
Theorem 1.1 for the last inequality.

Thus we have obtained the estimate:

|Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))|

≤ C K
m−1∏
i=1

(
M(M(fi)ρ)

) 1
ρ (M(|∆j(fm)|ρ))

1
ρ .

We now square the previous expression, we sum over j ∈ Z and we take
square roots. Since r− δ = ρ, the hypothesis pj > r− δ implies pj > ρ , and

thus each term (M(M(fi)ρ))
1
ρ is bounded on Lpj (Rn). We obtain
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∥∥Tσ1(f1, . . . , fm−1, fm)
∥∥
Lp(Rn)

≤ C K
∥∥∥{∑

j

|Tσ1(Sj(f1), . . . , Sj(fm−1),∆j(fm))|2
} 1

2
∥∥∥
Lp(Rn)

≤ C ′K
∥∥∥{∑

j

M(|∆j(fm)|ρ)
2
ρ

} 1
2
∥∥∥
Lpm (Rn)

m−1∏
i=1

∥∥ (M(M(fi)ρ
)) 1

ρ
∥∥
Lpi (Rn)

≤ C ′′K
∥∥∥{∑

j

M(|∆j(fm)|ρ)
2
ρ

} ρ
2
∥∥∥ 1
ρ

Lpm/ρ(Rn)

m−1∏
i=1

‖fi‖Lpi (Rn)

and this is bounded by

C ′′K
m∏
i=1

‖fi‖Lpi (Rn)

in view of Lemma B with q = 2/ρ and the Littlewood-Paley theorem.
Next we deal with σ2. Using the notation introduced earlier, we write

Tσ2(f1, . . . , fm−1, fm) =
∑
j∈Z

Tσ2(f1, . . . , fm−1,∆j(fm)) .

The key observation in this case is that

Tσ2(f1, . . . , fm−1,∆j(fm)) = Tσ2

(
S′j(f1), . . . , S′j(fm−2),∆′j(fm−1),∆j(fm)

)
for some other Littlewood-Paley operator ∆′j which is given on the Fourier
transform by multiplication with a bump Θ̂(2−jξ), where Θ̂ is equal to one
on the annulus {ξ ∈ Rn : 24

25 ·
1

10m ≤ |ξ| ≤ 4} and vanishes on a larger
annulus. Also, S′j is given by convolution with ζ ′

2−j , where ζ ′ is a smooth
function whose Fourier transform is equal to 1 on the ball |z| < 22

10 and
vanishes outside the double of this ball.

As in the previous case, one has that in the support of the integral

Tσ2

(
S′j(f1), . . . , S′j(fm−2),∆′j(fm−1),∆j(fm)

)
(x)

=
∫

(Rn)m
e2πix·(ξ1+···+ξm)σ2(~ξ )

m−2∏
t=1

Ŝ′j(ft)(ξt) ̂∆′j(fm−1)(ξm−1)∆̂j(fm)(ξm) d~ξ

we have that
|ξ1|+ · · ·+ |ξm| ≈ 2j ,

thus one may insert in the integrand the factor Ψ̂(2−jξ1, . . . , 2−jξm), for
some Ψ in S1((Rn)m) that is equal to one on a sufficiently wide annulus.

A calculation similar to the one in the case for σ1 yields the estimate

|Tσ2(S′j(f1), . . . , S′j(fm−2),∆′j(fm−1),∆j(fm))|

≤C K
m−2∏
i=1

(M(M(fi)ρ))
1
ρ
(
M(|∆′j(fm−1)|ρ)

) 1
ρ (M(|∆j(fm)|ρ))

1
ρ .
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Summing over j and taking Lp norms yields

‖Tσ2(f1, . . . , fm−1, fm)‖Lp(Rn)

≤C K
∥∥∥m−2∏
i=1

(M(M(fi)ρ))
1
ρ

∑
j∈Z

(
M
(
|∆′j(fm−1)|ρ

)) 1
ρ (M (|∆j(fm)|ρ))

1
ρ

∥∥∥
Lp

≤C K
∥∥∥m−2∏
i=1

(M(M(fi)ρ))
1
ρ

{ m∏
i=m−1

∑
j∈Z
|M (|∆j(fi)|ρ)|

2
ρ

} 1
2
∥∥∥
Lp(Rn)

where the last step follows by the Cauchy-Schwarz inequality and we omitted
the prime from the term with i = m− 1 for matters of simplicity. Applying
Hölder’s inequality and using that ρ < 2 and Lemma B we obtain the
conclusion that the expression above is bounded by

C ′K ‖f1‖Lp1 (Rn) · · · ‖fm‖Lpm (Rn) .

This concludes the proof of the theorem. �
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