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Abstract
We establish a sharp Olsen type inequality

m
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for multilinear fractional integrals Z,,(f )(x) = (Rnf)m (\xfylh--l-ﬂxfyml)m"*“ dy, © € R"™,
0 < o < mn, where L4, L], Lf;)jf, j=1,...,m, are Morrey space with indices satisfying

certain homogeneity conditions. This inequality is sharp because it gives necessary and
sufficient condition on weights function V' for which the inequality

IZa(frse s fodll oy < CH 1451

”J

holds.

Morrey spaces play an important role in relation to regularity problems of solutions
of partial differential equations. They describe the integrability more precisely than
Lebesgue spaces.

We also derive a characterization of the trace inequality

HB (f1, f2) ||L‘1(du) = CH HfJ

j=1

pJ (Rn)v

in terms of a Borel measure ,u, where B, is the bilinear fractional integral operator given
by the formula B, (f1, f2)(z f fl(wmnf?a(m Dat, 0<a<n,

Some of our results are new even in the linear case, i.e. when m = 1.

1 Introduction

Let 0 < a < n. The fractional integral operator
x) = &dy, r € R,
[z — gyl
]Rn
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plays a fundamental role in Harmonic Analysis; it also finds applications in PDEs, such as
in the theory of Sobolev embeddings, for instance see Maz’ya [22].
A variant of this operator is the bilinear fractional integral operator

t) —t
f17f2 fl x—l_‘tnf%)x )dta 0<Oé<7’l,

introduced in [6]. The complete Lebesgue space boundedness properties of this operator
were independently obtained by Kenig and Stein [13] and Grafakos and Kalton [7]. These
say that B, maps LP*(R") x LP?(R") to L(R") exactly when 1 = L + 172 -2

A very natural intermediate operator between (1o, f1)(Zas fgls and Baitas ( fi, f2) is

g _ fl(yl)"'fm(ym) 5 n
() (@) = / g e, x € B

(Rn)m

(expressed in its multilinear form) where 0 < a < nm, fi= (fiyeeosfm)s U= (Y15 YUm),
dy = dyy - - - dym. The introduction of this operator is also motivated by its corresponding
well-known (fractional) maximal analogue

(JF) SUPHW/M yi)ldyi, 0 < a<mn,

where |@| denotes the volume of the cube @ in R™ with sides parallel to the coordinate
axes. When a = 0, the multisublinear Hardy—Littlewood maximal operator Mg appears
naturally in connection with the multilinear Calderén—Zygmund theory; on this see the work
of Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzalez [21].

In this article we study the behavior of the operator Z, on Morrey spaces (Theorem 3.1).
As a consequence, we establish a sharp Olsen type inequality for these spaces. Using the
definition of these spaces given in (5), the Olsen inequality is the following estimate:

m
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B
where 1 < g <7 < o0, 1 <p;j <35 <00, j=1,...,mp<qg<ool0<ac<c?i
1 1_1 1 _a_ 1

> - = & — 7. Here and throughout the paper we assume the following relationship
on the precedlng indices:

g g sl ®

In the linear case (m = 1), inequalities of type (1) play an important role in the study
of perturbed Schrédinger equation; see Olsen [27]. We refer to [31] and [32] for subsequent
improvements of Olsen’s original inequality and applications.

Estimate (1) is crucial in obtaining a complete characterization of weight functions V'
such that the estimate (trace inequality) below is valid:
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As a consequence of our work, we show that if 1 < p < ¢ < o0, % — % = % — %, O<a<i,

then (3) holds for all f; € Lf;’j ,7=1,...,m, if and only if the Adams’ type condition

1
Viapa = sup ( [Viahis) 1055 <o (@
QeQ
Q
is satisfied. Here Q denotes the class of all cubes in R™ with sides parallel to the coordinate
axis.

In the linear case (when m = 1 and Z,, = I,,), the aforementioned characterization goes
back to Adams [1] on Lebesgue spaces, i.e., when p = s and ¢ = r. This result was later
extended to the multilinear setting by Kokilashvili, Mastyto and Meskhi [14] for Lebesgue
spaces (¢ =7, p; = 8;, © = 1,...,m). In the linear case it was also extended by Eridani,
Kokilashvili and Meskhi [5] to the more general setting of quasi-metric measure spaces.

We end this introductory section by recalling a few historical facts concerning Morrey
spaces and multilinear fractional operators.

Morrey spaces were introduced in 1938 by C. Morrey in relation to regularity problems
of solutions of partial differential equations.

Weighted Morrey spaces first appeared in Komori and Shirai [18] in 2009. In that paper,
the authors studied the boundedness of singular integral operators in those spaces. In the
definition of weighted Morrey space introduced in [18], the weighted norm |xgfl|Lrw)
is divided by W (B)*, where W is weight function. For weighted results regarding linear
fractional integrals I, and corresponding fractional maximal operators M, in Morrey spaces
we refer to the papers: [30], [25], [28], [26]. The unweighted and weighted problems for
multilinear fractional integrals in Morrey spaces were studied in [10], [11], [12], [16], [8] (see
also the references cited in [16]). In particular, in [10] and [11] Olsen’s type inequalities for
multilinear fractional integrals have been derived.

For the multilinear fractional operators Z, and M, Moen [23] obtained one-weight
criteria, as well as “power bump” conditions for the two—weight inequalities. Various type
of one and two—weight multilinear problems for these operators in Lebesgue spaces were also
studied in [4], [9], [14], [15], [16], [17], [19], [20], [24], [29], [33], et. al.

Notation: the relation A ~ B between two variable quantities A and B indicates the
two-sided estimate: %A < B < cA, for some positive constant c.

2 Background, Preliminaries, and Known Results

Let 1 < g <r < oo and let du be a Borel measure on R™. We denote by Li(du) the Morrey
space of all measurable functions f on R" such that

1 1/q
1o = sup ( / f(m)!"du(m)> < oo, (5)
ace Qi+ \)

In this definition cubes can be replaced by balls and the supremum will then be over all
balls B in R™. This yields a norm equivalent to || - [[14(qu)- If V' is a locally integrable a.e.
positive function on R”, i.e. a weight on R", then we denote L#(du) by L (V).

The following equivalent form of Morrey space norm appears in the literature

= ! W) 6
ooy = s (m Q/ @)V (@) :c) | (6)
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Note that || - || a(yy coincides with || - || q.5/a(1) given in (6) when A =1 —1
The weak weighted Morrey space WLL(V) is defined as the space of all measurable
functions f such that

1/q
Iz = 5up i snp / V(:c)dm) < 0.
{zeQ:| f(z|>A}

Obviously, one has WLEV) — Li(V).

If V is a constant function, then we denote Li(V) and WLL(V) by L and W L] respec-
tively. In the case ¢ = r we have weighted Lebesgue spaces L(V') and W L4(V'), respectively.

Two boundedness results for fractional integral operator on Morrey spaces are known:

Proposition A. (Spanne, unpubllshed) Let 0 <a<n, 1 <py<sp<oo,1<qgy<

ro < oo. Suppose that 1 — % = po — qlo = 2. Then I, is bounded from L% to L?g

Proposition B. (Adams [B]) Let 0 < a < m, 1 < pp < 50 <00, 1 <qp<ry < o0.

Suppose that % = i - 3—8 = 1;—8. Then I, is bounded from LX) to LY.
In the unweighted case the following multilinear result is also known.

Proposition C. ([34]) Let0 <a<mn, 1 <g¢g<r<oo,1<p;<s;<o0,i=1,....,m
be such that

where p and s are defined by (2). Then there ezists a positive constant C' such that for all
fi € LS], j=1,...,m, we have

IZa(F)lze < CH 175l 23

7=1

Adams [1] (see also [2]) proved the trace inequality for the Riesz Potentials I,.

Theorem A. Let 1 < p < g < 0o and let 0 < a < n/p. Suppose that u is a Borel
measure on R™. Then the inequality

Ha()lzagey < ClIf e
holds if and only if ) )
(1] = Sgp(u(Q))EIQ!TE < oo. (7)

Morcover, |Tallgsszg, ~ ]
An analogous multilinear characterization is the following.

Theorem B. ([14]) Let 1 < p; < o0, i = 1,...,m. Assume that 0 < a < n/p and

p < g < oo. Then the following assertions are equivalent:
(i) For all f; in LPi we have

HIOé(f)HLq(v) SCHHfiHLPﬁ (8)
i=1
(ii) the weak type inequality below is valid
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(iii) condition (4) is satisfied.
The proof of Theorem B is based on the following statements:

Lemma A. ([14]) Let 1 < p; < oo, i = 1,--- ,m. Suppose that 0 < o, f < n/p with
the condition B < a. There is a positive constant C = C, g, such that for all non-negative
fie LPi i=1,... m, the pointwise estimate

a—n/p

To(f)(x) < C{(Ma_ﬁ(f)(x))aﬂ"/p( 1 Hfi\m)ﬁ‘f““’]
1

holds for all x € R™.

Proposition D. ([23]) Let 1 < p; < 00, i = 1,...,m. Assume that 0 < a < n/p and
p < q < o0o. Then the inequality

Mooy < TT( [ 5@
La(v) l:[l(R/|

] 1/p;
plda:) , (10)

holds for the multilinear fractional mazimal operator My, if and only if (4) is satisfied.
Moreover, if C is the best possible constant in (10), then C = [V]nqp.q-

Proposition D is proved in [23] in the two—weighted setting under the power-bump condi-
tion on weights but here we need that result only in a special case. Finally, for the purposes
of this paper we need the following sharpening of Theorem B.

Proposition 2.1. Let 1 < p; < oo, i = 1,...,m. Assume that o < n/p and p < q < c0.
Then the following estimate holds:

IZa () Loy < € Wlawa [T il - (11)
j=1

Proof. We adapt the arguments in [14]. Let § be as in Lemma A. We set

=49

1
aﬁf". (12)
n

=

Then taking condition (4) and identity (12) into account we see that the following
relations hold:

VIE_ g gy = 50D 0(Q)IQIP/m=1/P = [VL ) = sup o(Q)]Q*/" /P < oo,
QeQ Qe

Applying Lemma A and Proposition D we write
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In the two equalities we used that %1 = af; f%, which is a consequence of (12). O

3 Main Results

The main results of this paper are as follows:

Theorem 3.1. Let1<q<r<oo 1<pi<si<oo,i=1,....m, 1<p<q, 0<a<?

1_1_1_1_a_ 1 1 m 1 1__ym 1 ‘ it
Let 5 — s =5-—7=14 1, where 1 =i sj,p—zjzl p;+ Then there exists a positive

constant C' depending only on n, o, q, v, p;i, si, © = 1,...,m, such that for all f; € L?;,
j=1,...,m, inequality (1) holds.

Theorem 3.2. Let1<q<r<oo, 1<p¢§si<oo i=1,....m, 1<p<qg0<a<?
Let % - % =1_1 wherel= Py S%_, % = p Suppose that V is a weight functwn
on R™. Then the following statements are equwalent

(i) there is a positive constant C' such that for all measurable fwe have

IZa(F) Ly < CHHfJ”LpJ (13)

7=1

(ii) there is a positive constant C' such that for all measurable f we have

IZa (F)llwzsv) <CHHfg||LPJ (14)
7j=1

(iii) condition (4) is satisfied.
Moreover, under either assumption, we have the norm equivalence | Zo|| = [V]apq-

In the linear case, i.e., when m = 1, we have:

Corollary 3.1. Let 1 <g<r <oo, 1 <p<s<oo, 1<p<qgand0 <a<?. Let
;_1_1 1 _a 1

i = s r—n 1 Then there is a positive constant C' depending only on n, «, q, r,

p, s such that for all f € L and g € L} we have

lg L ()]l 12 < Cllgll 4]

We also have a result for the bilinear fractional integral operator B,.



Theorem 3.3. Let 1 < ¢ <r, 1 <p < s <o00,1=12. Let1<p<q<ooand

1 1 _1_1_a_ 1 1 _ 1,1 1 1, 1
0<04<rnm{81,52 ST g = s T r = ,wherep— +p2,8—81+52. Then
there is a positive constant C' depending only on n, «, q, v, r, p1, P2, S1, So such that for

all f1, f2,9 > 0 we have
lg Ba(f1, f2)llze < Cliglipall fll o | f2ll gz (15)

Furthermore, we have the trace inequality for B, which analogous to that of Adams [1];
see also [5] in the linear case.

Theorem 3.4. Let 1 < g <r,1 <p <s <00, 1=1,2, andlet1<p<q<oo. Let

0<04<mln{81,s2 %—%:%—;, where%: p—l—f—p—z, g— si—i—é Then there is a
positive constant C depending onn, a, q,r, p1, P2, S1, S2 such that for all fy, fo >0,
1Ba(f1s F)ll Loy < Cldll fill ol 21l 22, (16)

holds, where [u] is defined in (7).
As a corollary we have the trace inequality for classical Lebesgue spaces.

Corollary 3.2. Let 1 <p; < o0, 1 <p<g< oo andlet0 < a< min{p%, p%} Suppose that
1 is a Borel measure on R™. Then there is a positive constant C such that for all f1, fo > 0,

1Ba(f1, f2)llLatawy < Cludllfillze [l fall Loz,
where [u] is defined in (7).

4 Proofs

Proof of Theorem 3.1. First observe that p < ¢ < £ and 7 < a < % < Z. Without loss
of generality we assume that g > 0, f; >0, j = 1,...,m. For any ball B := B(a,r), let
2B := B(a,2r) be the ball with center a and radius 2r We write f; = f0 + f7°, where

f?:ij2B7 fjoozij(QB)C? j:17"'7m

Let f; > 0,7 =1,...,m. In view of this representation we write
Tof (@) S Ta(ffse oo fo) @) + TS ) @) + Y Talf s ) (@),
=1

where f1,...,Bm € {0,00} and the sum contains at least one 5; = 0 and ; = oco. Conse-
quently,

HgIa(f)HLq(B) < HgIa(f{)7 . "f”?T)HLq(B) + Hgla(ffoa s afszo)HLq(B)

+ 2 Tl T ey = N Mo Y

Blr“:ﬁm
Using Proposition 2.1 for V' = |g|?, we write

mo (11
N < CHQHL‘I H HXZBf]HLP; < CHgHLq H HX2Bf]HLpJ ny it (Pj sj)

Jj=1 7=1

= Clallyy TT hanfillugyr™ =) = Clllly TT el
J=1 jaie



Let us estimate N». First observe that if x € B and y; € (2B)¢, then by simple geometric
observations we find that $|a — y;| < |z — y;| < 3|a — y;|. Thus, we get

m

za<ff°,...,f&0><x>sc?sa-m"-l(ﬂ [ )
2r

=1
I = Hyjtla—y,|<s}

<C /Oosa‘m"‘l ( li[ / £ (yj)dyj> ds

1
2r T= Yy la—y;|<2s}

<c [ < T 155l (B(a,%))) T] ("7 )ds
o J=1 j

1

<OTLslyy [ o =R amEE LG5 g
j=1 5 Jor

=c 15l | semmelizla

—CHHJ”JHLPJ el

7j=1

Here we used the fact that a < % = n[% — =+
Hence,

1/q . [1 1] l/q m
( [zt g @e) <ol fgwa) TS,
B B =t '

m
1_1
<ol gl TLI
i=1 ’

o~ =

In the last equality we used the condition % A =3

It remains to estimate » . For simplicity we take m > 3 b1 =02 =oc0and B3 =---=
Bm = 0. Recall that |z —y;| = |a —y;| for all x € B and y; € (2B)¢, j = 1,2. Thus, without
loss of generality, we have that one of the terms of ¥ can be estimated as follows:

To(fi° f52 f5s - ) (@)

F1y) f2(y2) fays) -~ finym)

(12— gl + -+ o = gm0
(2B)¢x(2B)¢x2BX...X2B

< C’( / : f1(y1) f2(y2)dyr dy2 )( / fg(yg)---fm(ym)dyg---dym>

a =yl +la — gl
(2B)ex (2B)° (2B)x-x(2B)

= CIl . .[2

Now we estimate I; and I» separately. By Holder’s inequality and simple observations we



obtain:

e}

L =C / < / S_mn+a_1d8> J1(y1) f2(y2)dyrdy2

(2B)*x(2B)¢  la—y1|+|a—ysz|

< C/ / fl(yl)fQ(yg)dyldy2> 5—mn+a_1d8

2r {y1,y2:la—y1|+|la—y2|<s}

<C ooﬁ(/ )ffi(yi)dyi

2r i=1

0o 2 1/ps 1,1 1,1 1,1
1 . —mn—1+n( 3+ Lyl (L+2L1
=C H( s / ff’l(yi)dyz) v b= Gl
r =1 ‘B(W S)’ % B(a,s)

2
< CH ||fi||Lpiro¢7mn+2nfn[%+é] +n [Hf;JrE*g] )
i

i=1
In the latter estimate we used fact that

(1 1> 1 1 1 1
a—mn+2n—n| —+ — —f—n{——l———(——i——)}
P P2 P P2 1 82

1 1
—a—mn+2n—n[+] <0
s1 89

which is a consequence of the condition o < . Further, by using Hélder’s inequality again,
we find that

- n [ ) m 411
I SCHHfi”Lg;T (Zkzspk)-i' (Zk:S [pk sk])

1=3
1

= CH ”fz”ng Tn(m72)7"221=3 iT”(ZZLg [ifg])
1=3

Consequently, summarizing estimates for I; and I» we find that

a_ 1

< ola Bt g )
(/Ia(flooa.f;ofg7 7f791)q(x)gq($)dx) < Crn »P T.” P o @t HgHLZ H Hf]HL];J
B =t J

|:1 1] m
Cr''la™r HgHLg | | ||f]||LfJ
j=1 J

In the last equality we again used the condition: 5=
This completes the proof. [J
Proof of Theorem 3.2. The implication (i1i) = (i) follows from Theorem 3.1 taking

V = |g|? there and observing that ||g||Lg = [V]ap,q, where é —1= % — =, The implication
(79) = (74i) is a consequence of taking the test functions f; = xp, 7 =1,...,m in (4i). Since
(i) = (i1), we are done. O



Taking m = 1 in Theorem 3.1, we deduce Corollary 3.1.

Next we prove Theorem 3.4 and we note that Theorem 3.3 will be its consequence.
Proof of Theorem 3.4. Let us fix a ball B := B(a,r). Suppose that fi, fo > 0. Using

Holder’s inequality twice with exponents %1 and %2 we find that

IxBBalf1; f2)llLagu < lIxs[Lal pl/p)]p/pl [Za( 52/p)]p/p2HL‘1(du)

< lxplal D) E  xs Ta( 22 P) R, = Ny - Na,

where I, is the Riesz potential defined on R".
Now we estimate IN; and Na separately. Representing fi as fi1 + fi2, where f11 =
f1-x2B, fiz = fi — fi,1, we find that

Ny < </ [[a(ffl/p)(x)]qdu(x)>1?/(qp1)

B
(qp1) p/(qp1)
SCKB/ (I (Y @)] " dpte ) ( / ¥ d“"“) ]
=Ny 1+ Npo.

In view of Theorem A we have that
. 11
Ny < Clu]m Hf1||L§% Bl 1

Now we estimate Njo. First observe that if x € B and y € (2B)° then |y —a| <
2|z — y|. Consequently, by Holder’s inequality with respect to the exponents p and p’, and
the condition 0 < & < % we get:

p

p1/p o

N2,1 < C(M(B))p/(QPl) </ Mdy) 1
@By |y —al"™@

D

'y oW/ 15
= C ,LL B p/(qpl) / <77dy
( ( )) ; 2k+1B)\(2k B) ’y_a’n—oz
[ 7 1.
P N2 | P
< C'(,u(B))p/(qpl) Z </ (ng(y))pldy) (/ ly — a\(o‘ n)p > 3 ] 1
“h=1 N @TTBNETE) (251 B)\(28B)
[o¢] 1 p
< C(u(B))P/ () Z </ (fm(y))pldy) |2kB|} P
Lp=1 \7 (2FHIB)\(28B)
kS o 11 oL £
@ P
= Clu(B)ym)| > <(/ (fl,z(y))”ldy> i |2’“+1B!n‘m> ’ ]2’“B|n—sfp} "
L k=1 (21 B)\(2¥B)

ap _ 1 1_ 1
< C(u(B)P/ P | full oy | B3 < CLulP/P | full | Bl .
Summarizing estimates for N1 1 and N2 we find that

P I
Ny < Clul || fill g | BI7
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Analogously for N2 we have that
» 11
Ny < Clul¥s | foll 3 |BIE 5.
These estimates give

1
)

1_
IxBBa(f1; f)llLaqwy < Clulllfill oyl f2ll oz | Bl

O

which implies the desired estimate.

Proof of Theorem 3.3. Taking du(x) = g%(x)dz in Theorem 3.4, setting % - % =2 -
and observing that [u] = | g]| 12> we derive the claimed conclusion.

)

|

To conclude, taking p; = s1, p2 = s2, ¢ = r we deduce Corollary 3.2 as a consequence of
Theorem 3.4.
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