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Abstract

We establish a sharp Olsen type inequality∥∥g Iα(f1, . . . , fm)
∥∥
Lqr
≤ C

∥∥g∥∥
Lq`

m∏
j=1

∥∥fj∥∥Lpjsj
for multilinear fractional integrals Iα(~f )(x) =

∫
(Rn)m

f1(y1)···fm(ym)
(|x−y1|+···+|x−ym|)mn−α d~y, x ∈ Rn,

0 < α < mn, where Lqr, L
q
` , L

pj
sj , j = 1, . . . ,m, are Morrey space with indices satisfying

certain homogeneity conditions. This inequality is sharp because it gives necessary and
sufficient condition on weights function V for which the inequality∥∥Iα(f1, . . . , fm)

∥∥
Lqr(V )

≤ C
m∏
j=1

∥∥fj∥∥Lpjsj
holds.

Morrey spaces play an important role in relation to regularity problems of solutions
of partial differential equations. They describe the integrability more precisely than
Lebesgue spaces.

We also derive a characterization of the trace inequality

∥∥Bα(f1, f2)
∥∥
Lqr(dµ)

≤ C
2∏
j=1

∥∥fj∥∥Lpjsj (Rn),
in terms of a Borel measure µ, where Bα is the bilinear fractional integral operator given

by the formula Bα(f1, f2)(x) =
∫
Rn

f1(x+t)f2(x−t)
|t|n−α dt, 0 < α < n,

Some of our results are new even in the linear case, i.e. when m = 1.

1 Introduction

Let 0 < α < n. The fractional integral operator

Iα(f)(x) =

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn,
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plays a fundamental role in Harmonic Analysis; it also finds applications in PDEs, such as
in the theory of Sobolev embeddings, for instance see Maz’ya [22].

A variant of this operator is the bilinear fractional integral operator

Bα(f1, f2)(x) =

∫
Rn

f1(x+ t)f2(x− t)
|t|n−α

dt, 0 < α < n,

introduced in [6]. The complete Lebesgue space boundedness properties of this operator
were independently obtained by Kenig and Stein [13] and Grafakos and Kalton [7]. These
say that Bα maps Lp1(Rn)× Lp2(Rn) to Lq(Rn) exactly when 1

q = 1
p1

+ 1
p2
− α

n .
A very natural intermediate operator between (Iα1f1)(Iα2f2) and Bα1+α2(f1, f2) is

Iα(~f )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
d~y, x ∈ Rn,

(expressed in its multilinear form) where 0 < α < nm, ~f := (f1, . . . , fm), ~y := (y1, . . . , ym),
d~y = dy1 · · · dym. The introduction of this operator is also motivated by its corresponding
well-known (fractional) maximal analogue

Mα(~f )(x) = sup
Q3x

m∏
i=1

1

|Q|1−α/(nm)

∫
Q

|fi(yi)|dyi, 0 ≤ α < mn,

where |Q| denotes the volume of the cube Q in Rn with sides parallel to the coordinate
axes. When α = 0, the multisublinear Hardy–Littlewood maximal operator M0 appears
naturally in connection with the multilinear Calderón–Zygmund theory; on this see the work
of Lerner, Ombrosi, Pérez, Torres, and Trujillo–González [21].

In this article we study the behavior of the operator Iα on Morrey spaces (Theorem 3.1).
As a consequence, we establish a sharp Olsen type inequality for these spaces. Using the
definition of these spaces given in (5), the Olsen inequality is the following estimate:

∥∥g Iα(~f )
∥∥
Lqr
≤ C

∥∥g∥∥
Lq`

m∏
j=1

∥∥fj∥∥Lpjsj , (1)

where 1 < q ≤ r < ∞, 1 < pj ≤ sj < ∞, j = 1, . . . ,m, p < q < ∞, 0 < α < n
s ,

1
p−

1
q = 1

s −
1
r = α

n −
1
` . Here and throughout the paper we assume the following relationship

on the preceding indices:

1

p
:=

m∑
i=1

1

pi
,

1

s
:=

m∑
i=1

1

si
, m ≥ 2. (2)

In the linear case (m = 1), inequalities of type (1) play an important role in the study
of perturbed Schrödinger equation; see Olsen [27]. We refer to [31] and [32] for subsequent
improvements of Olsen’s original inequality and applications.

Estimate (1) is crucial in obtaining a complete characterization of weight functions V
such that the estimate (trace inequality) below is valid:

‖Iα(~f )‖Lqr(V ) ≤ C
m∏
j=1

‖fj‖Lpjsj
. (3)
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As a consequence of our work, we show that if 1 < p < q <∞, 1
p −

1
q = 1

s −
1
r , 0 < α < n

s ,

then (3) holds for all fj ∈ L
pj
sj , j = 1, . . . ,m, if and only if the Adams’ type condition

[V ]α,p,q := sup
Q∈Q

(∫
Q

V (x)dx

) 1
q

|Q|
α
n
− 1
p <∞ (4)

is satisfied. Here Q denotes the class of all cubes in Rn with sides parallel to the coordinate
axis.

In the linear case (when m = 1 and Iα = Iα), the aforementioned characterization goes
back to Adams [1] on Lebesgue spaces, i.e., when p = s and q = r. This result was later
extended to the multilinear setting by Kokilashvili, Masty lo and Meskhi [14] for Lebesgue
spaces (q = r, pi = si, i = 1, . . . ,m). In the linear case it was also extended by Eridani,
Kokilashvili and Meskhi [5] to the more general setting of quasi-metric measure spaces.

We end this introductory section by recalling a few historical facts concerning Morrey
spaces and multilinear fractional operators.

Morrey spaces were introduced in 1938 by C. Morrey in relation to regularity problems
of solutions of partial differential equations.

Weighted Morrey spaces first appeared in Komori and Shirai [18] in 2009. In that paper,
the authors studied the boundedness of singular integral operators in those spaces. In the
definition of weighted Morrey space introduced in [18], the weighted norm ‖χBf‖Lp(W )

is divided by W (B)λ, where W is weight function. For weighted results regarding linear
fractional integrals Iα and corresponding fractional maximal operators Mα in Morrey spaces
we refer to the papers: [30], [25], [28], [26]. The unweighted and weighted problems for
multilinear fractional integrals in Morrey spaces were studied in [10], [11], [12], [16], [8] (see
also the references cited in [16]). In particular, in [10] and [11] Olsen’s type inequalities for
multilinear fractional integrals have been derived.

For the multilinear fractional operators Iα and Mα Moen [23] obtained one-weight
criteria, as well as “power bump” conditions for the two–weight inequalities. Various type
of one and two–weight multilinear problems for these operators in Lebesgue spaces were also
studied in [4], [9], [14], [15], [16], [17], [19], [20], [24], [29], [33], et. al.

Notation: the relation A ≈ B between two variable quantities A and B indicates the
two-sided estimate: 1

cA ≤ B ≤ cA, for some positive constant c.

2 Background, Preliminaries, and Known Results

Let 1 ≤ q ≤ r <∞ and let dµ be a Borel measure on Rn. We denote by Lqr(dµ) the Morrey
space of all measurable functions f on Rn such that

‖f‖Lqr(dµ) := sup
Q∈Q

1

|Q|
1
q
− 1
r

(∫
Q

|f(x)|qdµ(x)

)1/q

<∞. (5)

In this definition cubes can be replaced by balls and the supremum will then be over all
balls B in Rn. This yields a norm equivalent to ‖ · ‖Lqr(dµ). If V is a locally integrable a.e.
positive function on Rn, i.e. a weight on Rn, then we denote Lqr(dµ) by Lqr(V ).

The following equivalent form of Morrey space norm appears in the literature

‖f‖Lq,λ(V ) := sup
Q∈Q

(
1

|Q|λ

∫
Q

|f(x)|qV (x)dx

)1/q

. (6)
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Note that ‖ · ‖Lqr(V ) coincides with ‖ · ‖Lq,λ/q(V ) given in (6) when λ = 1− q
r .

The weak weighted Morrey space WLqr(V ) is defined as the space of all measurable
functions f such that

‖f‖WLqr(V ) := sup
Q∈Q

1

|Q|
1
q
− 1
r

sup
λ>0

λ

( ∫
{x∈Q:|f(x|>λ}

V (x)dx

)1/q

<∞.

Obviously, one has WLqr(V ) ↪→ Lqr(V ).
If V is a constant function, then we denote Lqr(V ) and WLqr(V ) by Lqr and WLqr respec-

tively. In the case q = r we have weighted Lebesgue spaces Lq(V ) and WLq(V ), respectively.
Two boundedness results for fractional integral operator on Morrey spaces are known:

Proposition A. (Spanne, unpublished) Let 0 < α < n, 1 < p0 ≤ s0 <∞, 1 < q0 ≤
r0 <∞. Suppose that 1

s0
− 1

r0
= 1

p0
− 1

q0
= α

n . Then Iα is bounded from Lp0s0 to Lq0r0.

Proposition B. (Adams [3]) Let 0 < α < n, 1 < p0 ≤ s0 < ∞, 1 < q0 ≤ r0 < ∞.
Suppose that 1

r0
= 1

s0
− α

n , q0
r0

= p0
s0

. Then Iα is bounded from Lp0s0 to Lq0r0.

In the unweighted case the following multilinear result is also known.

Proposition C. ([34]) Let 0 < α < mn, 1 < q ≤ r <∞, 1 < pi ≤ si <∞, i = 1, . . . ,m
be such that

1

s
− 1

r
=

1

p
− 1

q
=
α

n
,

where p and s are defined by (2). Then there exists a positive constant C such that for all
fj ∈ L

pj
sj , j = 1, . . . ,m, we have

‖Iα(~f )‖Lqr ≤ C
m∏
j=1

‖fj‖Lpjsj
.

Adams [1] (see also [2]) proved the trace inequality for the Riesz Potentials Iα.

Theorem A. Let 1 < p < q < ∞ and let 0 < α < n/p. Suppose that µ is a Borel
measure on Rn. Then the inequality

‖Iα(f)‖Lq(µ) ≤ C‖f‖Lp

holds if and only if

[µ] := sup
Q

(µ(Q))
1
q |Q|

α
n
− 1
p <∞. (7)

Moreover, ‖Iα‖Lp 7→Lqdµ ≈ [µ].

An analogous multilinear characterization is the following.

Theorem B. ([14]) Let 1 < pi < ∞, i = 1, . . . ,m. Assume that 0 < α < n/p and
p < q <∞. Then the following assertions are equivalent:

(i) For all fi in Lpj we have

∥∥Iα(~f )
∥∥
Lq(V )

≤ C
m∏
i=1

∥∥fi∥∥Lpj ; (8)

(ii) the weak type inequality below is valid
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V
(
{x ∈ Rn : |Iα(~f )(x)| > λ}

)1/q ≤ C

λ

m∏
i=1

∥∥fj∥∥Lpj (9)

(iii) condition (4) is satisfied.

The proof of Theorem B is based on the following statements:

Lemma A. ([14]) Let 1 < pi < ∞, i = 1, · · · ,m. Suppose that 0 < α, β < n/p with
the condition β < α. There is a positive constant C = Cα,β,p such that for all non-negative
fi ∈ Lpi, i = 1, . . . ,m, the pointwise estimate

Iα(~f )(x) ≤ C
[(
Mα−β(~f )(x)

) α−n/p
α−β−n/p

( m∏
i=1

‖fi‖Lpi
) β
β−α+n/p

]
holds for all x ∈ Rn.

Proposition D. ([23]) Let 1 < pi < ∞, i = 1, . . . ,m. Assume that 0 < α < n/p and
p < q <∞. Then the inequality

‖Mα(
−→
f )‖Lq(V ) ≤ C

m∏
i=1

(∫
Rn

∣∣fi(x)
∣∣pidx)1/pi

, (10)

holds for the multilinear fractional maximal operator Mα if and only if (4) is satisfied.
Moreover, if C is the best possible constant in (10), then C ≈ [V ]α,p,q.

Proposition D is proved in [23] in the two–weighted setting under the power-bump condi-
tion on weights but here we need that result only in a special case. Finally, for the purposes
of this paper we need the following sharpening of Theorem B.

Proposition 2.1. Let 1 < pi < ∞, i = 1, . . . ,m. Assume that α < n/p and p < q < ∞.
Then the following estimate holds:

∥∥Iα(~f )
∥∥
Lq(V )

≤ C [V ]α,p,q

m∏
j=1

∥∥fj∥∥Lpj . (11)

Proof. We adapt the arguments in [14]. Let β be as in Lemma A. We set

q1 := q
α− n

p

α− β − n
p

= q

α
n −

1
p

α−β
n −

1
p

. (12)

Then taking condition (4) and identity (12) into account we see that the following
relations hold:

[V ]q1α−β,p,q1 = sup
Q∈Q

v(Q)|Q|((α−β)/n−1/p)q1 = [V ]qα,p,q = sup
Q∈Q

v(Q)|Q|(α/n−1/p)q <∞.

Applying Lemma A and Proposition D we write
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‖Iα(~f)‖Lq(V ) ≤ cα,β,p
∥∥∥Mα−β(~f)

α−n/p
α−β−n/p

∥∥∥
Lq(V )

m∏
i=1

‖fi‖
β

β−α+n/p
Lpi

= cα,β,p‖Mα−β(~f)‖q1/qLq1 (V )

m∏
i=1

‖fi‖
β

β−α+n/p
Lpi

≤ c[V ]
q1/q
α−β,p,q1

m∏
i=1

‖fi‖q1/qLpi

m∏
i=1

‖fi‖
β

β−α+n/p
Lpi

= c[V ]α,p,q

m∏
i=1

‖fi‖Lpi .

In the two equalities we used that q1
q =

α−n
p

α−β−n
p

, which is a consequence of (12).

3 Main Results

The main results of this paper are as follows:

Theorem 3.1. Let 1 < q ≤ r <∞, 1 < pi ≤ si <∞, i = 1, . . . ,m, 1 < p < q, 0 < α < n
s .

Let 1
p −

1
q = 1

s −
1
r = α

n −
1
` , where 1

s =
∑m

j=1
1
sj

, 1
p =

∑m
j=1

1
pj

. Then there exists a positive

constant C depending only on n, α, q, r, pi, si, i = 1, . . . ,m, such that for all fj ∈ L
pj
sj ,

j = 1, . . . ,m, inequality (1) holds.

Theorem 3.2. Let 1 < q ≤ r <∞, 1 < pi ≤ si <∞, i = 1, . . . ,m, 1 < p < q, 0 < α < n
s .

Let 1
p −

1
q = 1

s −
1
r , where 1

s =
∑m

j=1
1
sj

, 1
p =

∑m
j=1

1
pj

. Suppose that V is a weight function

on Rn. Then the following statements are equivalent:
(i) there is a positive constant C such that for all measurable ~f we have

‖Iα(~f )‖Lqr(V ) ≤ C
m∏
j=1

‖fj‖Lpjsj
. (13)

(ii) there is a positive constant C such that for all measurable ~f we have

‖Iα(~f )‖WLqr(V ) ≤ C
m∏
j=1

‖fj‖Lpjsj
. (14)

(iii) condition (4) is satisfied.
Moreover, under either assumption, we have the norm equivalence ‖Iα‖ ≈ [V ]α,p,q.

In the linear case, i.e., when m = 1, we have:

Corollary 3.1. Let 1 < q ≤ r < ∞, 1 < p ≤ s < ∞, 1 < p < q and 0 < α < n
s . Let

1
p −

1
q = 1

s −
1
r = α

n −
1
` . Then there is a positive constant C depending only on n, α, q, r,

p, s such that for all f ∈ Lps and g ∈ Lq` we have∥∥g Iα(f)
∥∥
Lqr
≤ C

∥∥g∥∥
Lq`

∥∥f∥∥
Lps

We also have a result for the bilinear fractional integral operator Bα.
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Theorem 3.3. Let 1 < q ≤ r, 1 < pi ≤ si < ∞, i = 1, 2. Let 1 < p < q < ∞ and
0 < α < min{ 1

s1
, 1
s2
}, 1

p −
1
q = 1

s −
1
r = α

n −
1
` , where 1

p = 1
p1

+ 1
p2

, 1
s = 1

s1
+ 1

s2
. Then

there is a positive constant C depending only on n, α, q, r, r, p1, p2, s1, s2 such that for
all f1, f2, g ≥ 0 we have

‖g Bα(f1, f2)‖Lqr ≤ C‖g‖Lq`‖f1‖Lp1s1 ‖f2‖L
p2
s2
. (15)

Furthermore, we have the trace inequality for Bα which analogous to that of Adams [1];
see also [5] in the linear case.

Theorem 3.4. Let 1 < q ≤ r, 1 < pi ≤ si < ∞, i = 1, 2, and let 1 < p < q < ∞. Let
0 < α < min{ 1

s1
, 1
s2
}, 1

p −
1
q = 1

s −
1
r , where 1

p = 1
p1

+ 1
p2

, 1
s = 1

s1
+ 1

s2
. Then there is a

positive constant C depending on n, α, q, r, p1, p2, s1, s2 such that for all f1, f2 ≥ 0,

‖Bα(f1, f2)‖Lqr(dµ) ≤ C[µ]‖f1‖Lp1s1 ‖f2‖L
p2
s2
, (16)

holds, where [µ] is defined in (7).

As a corollary we have the trace inequality for classical Lebesgue spaces.

Corollary 3.2. Let 1 < pi <∞, 1 < p < q <∞ and let 0 < α < min{ 1
p1
, 1
p2
}. Suppose that

µ is a Borel measure on Rn. Then there is a positive constant C such that for all f1, f2 ≥ 0,

‖Bα(f1, f2)‖Lq(dµ) ≤ C[µ]‖f1‖Lp1‖f2‖Lp2 ,

where [µ] is defined in (7).

4 Proofs

Proof of Theorem 3.1. First observe that p < q < ` and n
` < α < n

s <
n
p . Without loss

of generality we assume that g ≥ 0, fj ≥ 0, j = 1, . . . ,m. For any ball B := B(a, r), let
2B := B(a, 2r) be the ball with center a and radius 2r. We write fj = f0j + f∞j , where

f0j = fjχ2B, f∞j = fjχ(2B)c , j = 1, . . . ,m.

Let fj ≥ 0, j = 1, . . . ,m. In view of this representation we write

Iα ~f (x) ≤ Iα(f01 , . . . , f
0
m)(x) + Iα(f∞1 , . . . , f∞m )(x) +

m∑
j=1

Iα(fβ11 , . . . , fβmm )(x),

where β1, . . . , βm ∈ {0,∞} and the sum contains at least one βj = 0 and βj = ∞. Conse-
quently, ∥∥gIα(~f )

∥∥
Lq(B)

≤
∥∥gIα(f01 , . . . , f

0
m)
∥∥
Lq(B)

+
∥∥gIα(f∞1 , . . . , f∞m )

∥∥
Lq(B)

+
∑

β1,...,βm

∥∥Iα(fβ11 , . . . , fβmm )
∥∥
Lq(B)

:= N1 +N2 +
∑

.

Using Proposition 2.1 for V = |g|q, we write

N1 ≤ C
∥∥g‖Lq` m∏

j=1

∥∥χ2Bfj‖Lpj ≤ C
∥∥g∥∥

Lq`

m∏
j=1

∥∥χ2Bfj
∥∥
L
pj
sj

r
n
∑m
j=1

(
1
pj
− 1
sj

)

= C
∥∥g∥∥

Lq`

m∏
j=1

∥∥χ2Bfj
∥∥
M
pj
sj

r
n
(

1
p
− 1
s

)
= C

∥∥g∥∥
Lq`

m∏
j=1

∥∥χ2Bfj
∥∥
M
pj
sj

r
n
(

1
q
− 1
r

)
.
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Let us estimate N2. First observe that if x ∈ B and yj ∈ (2B)c, then by simple geometric
observations we find that 1

2 |a− yj | ≤ |x− yj | ≤
3
2 |a− yj |. Thus, we get

Iα(f∞1 , . . . , f∞m )(x) ≤ C
∞∫

2r

sα−mn−1
( m∏
j=1

∫
{yj :|x−yj |<s}

f∞j (yj)dyj

)
ds

≤ C
∞∫

2r

sα−mn−1
( m∏
j=1

∫
{yj :|a−yj |<2s}

f∞j (yj)dyj

)
ds

≤ C
∞∫

2r

sα−mn−1
( m∏
j=1

‖fj‖Lpj (B(a,2s))

) m∏
j=1

(sn/p
′
j )ds

≤ C
m∏
j=1

‖fj‖Lpjsj

∫ ∞
2r

s
α−1−

∑m
j=1

n
pj

+n
∑m
j=1

(
1
pj
− 1
sj

)
ds

= C

m∏
j=1

‖fj‖Lpjsj

∫ ∞
2r

s
α−1−n

p
+n
[
1
q
− 1
r

]
ds

= C
m∏
j=1

‖fj‖Lpjsj
r
α−n

p
+n
[
1
q
− 1
r

]
.

Here we used the fact that α < n
s = n

[
1
p −

1
q + 1

r

]
< n

p .
Hence,

(∫
B

Iα(f∞1 , . . . , f∞m )q(x)gq(x)dx

)1/q

≤ Crα−
n
p
+n
[
1
q
− 1
r

](∫
B

gq(x)dx

)1/q m∏
j=1

‖fj‖Lpjsj

≤ Crn
[
1
q
− 1
r

]
‖g‖Lq`

m∏
j=1

‖fj‖Lpjsj
.

In the last equality we used the condition 1
p −

1
q = α

n −
1
` .

It remains to estimate
∑

. For simplicity we take m ≥ 3, β1 = β2 = ∞ and β3 = · · · =
βm = 0. Recall that |x− yj | ≈ |a− yj | for all x ∈ B and yj ∈ (2B)c, j = 1, 2. Thus, without
loss of generality, we have that one of the terms of Σ can be estimated as follows:

Iα(f∞1 , f∞2 , f03 , . . . , f
0
m)(x)

=

∫
(2B)c×(2B)c×2B×...×2B

f1(y1)f2(y2)f3(y3) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
d~y

≤ C
( ∫
(2B)c×(2B)c

f1(y1)f2(y2)dy1dy2
(|a− y1|+ |a− y2|)mn−α

)( ∫
(2B)×···×(2B)

f3(y3) · · · fm(ym)dy3 · · · dym
)

:= CI1 · I2.

Now we estimate I1 and I2 separately. By Hölder’s inequality and simple observations we
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obtain:

I1 = C

∫
(2B)c×(2B)c

( ∞∫
|a−y1|+|a−y2|

s−mn+α−1ds

)
f1(y1)f2(y2)dy1dy2

≤ C
∞∫

2r

( ∫
{y1,y2:|a−y1|+|a−y2|<s}

f1(y1)f2(y2)dy1dy2

)
s−mn+α−1ds

≤ C
∫ ∞
2r

2∏
i=1

(∫
B(a,s)

fpii (yi)dyi

)1/pi

s
n
p′1

+ n
p′2
−mn+α−1

ds

≤ C
∫ ∞
2r

2∏
i=1

(
1

|B(a, s)|1−
pi
si

∫
B(a,s)

fpii (yi)dyi

)1/pi

s
α−mn−1+n

(
1
p′1

+ 1
p′2

)
+n
[

1
p1

+ 1
p1
−
(

1
s1

+ 1
s2

)]
ds

≤ C
2∏
i=1

‖fi‖Lpisi r
α−mn+2n−n

[
1
p1

+ 1
p2

]
+n
[

1
p1
− 1
s1

+ 1
p2
− 1
s2

]
.

In the latter estimate we used fact that

α−mn+ 2n− n
(

1

p1
+

1

p2

)
+ n

[ 1

p1
+

1

p2
−
( 1

s1
+

1

s2

)]
= α−mn+ 2n− n

[
1

s1
+

1

s2

]
< 0

which is a consequence of the condition α < n
s . Further, by using Hölder’s inequality again,

we find that

I2 ≤ C
m∏
i=3

‖fi‖Lpisi r
n
(∑m

k=3
1
p′
k

)
+n
(∑m

k=3

[
1
pk
− 1
sk

])

= C
m∏
i=3

‖fi‖Lpisi r
n(m−2)−n

∑m
k=3

1
pk r

n
(∑m

k=3

[
1
pk
− 1
sk

])
.

Consequently, summarizing estimates for I1 and I2 we find that

(∫
B

Iα(f∞1 , f∞2 f03 , · · · , f0m)q(x)gq(x)dx

)1/q

≤ Crn
[
α
n
− 1
p

]
r
n
[
1
p
− 1
s

]
+n
[
1
q
− 1
`

]
‖g‖Lq`

m∏
j=1

‖fj‖Lpjsj

= Cr
n
[
1
q
− 1
r

]
‖g‖Lq`

m∏
j=1

‖fj‖Lpjsj
.

In the last equality we again used the condition: 1
p −

1
q = 1

s −
1
r = α

n −
1
` .

This completes the proof. �

Proof of Theorem 3.2. The implication (iii) ⇒ (i) follows from Theorem 3.1 taking
V = |g|q there and observing that ‖g‖Lq` = [V ]α,p,q, where 1

q −
1
` = 1

p −
α
n . The implication

(ii)⇒ (iii) is a consequence of taking the test functions fj = χB, j = 1, . . . ,m in (ii). Since
(i)⇒ (ii), we are done. �
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Taking m = 1 in Theorem 3.1, we deduce Corollary 3.1.

Next we prove Theorem 3.4 and we note that Theorem 3.3 will be its consequence.

Proof of Theorem 3.4. Let us fix a ball B := B(a, r). Suppose that f1, f2 ≥ 0. Using
Hölder’s inequality twice with exponents p1

p and p2
p we find that

‖χBBα(f1, f2)‖Lq(dµ) ≤ ‖χB
[
Iα(f

p1/p
1 )

]p/p1[Iα(f
p2/p
2 )

]p/p2‖Lq(dµ)
≤ ‖χBIα(f

p1/p
1 )‖p/p1Lq(dµ)‖χBIα(f

p2/p
2 )‖p/p2Lq(dµ) := N1 ·N2,

where Iα is the Riesz potential defined on Rn.
Now we estimate N1 and N2 separately. Representing f1 as f1,1 + f1,2, where f1,1 =

f1 · χ2B, f1,2 = f1 − f1,1, we find that

N1 ≤
(∫
B

[
Iα(f

p1/p
1 )(x)

]q
dµ(x)

)p/(qp1)

≤ C
[(∫

B

[
Iα(f

p1/p
1,1 )(x)

]q
dµ(x)

)p/(qp1)
+

(∫
B

[
Iα(f

p1/p
1,2 )(x)

]q
dµ(x)

)p/(qp1)]
:= N1,1 +N1,2.

In view of Theorem A we have that

N1,1 ≤ C[µ]
p
p1 ‖f1‖Lp1s1 |B|

1
p1
− 1
s1 .

Now we estimate N1,2. First observe that if x ∈ B and y ∈ (2B)c, then |y − a| ≤
2|x− y|. Consequently, by Hölder’s inequality with respect to the exponents p and p′, and
the condition 0 < α < 1

s1
we get:

N2,1 ≤ C(µ(B))p/(qp1)
(∫

(2B)c

(f1,2)
p1/p(y)

|y − a|n−α
dy

) p
p1

= C(µ(B))p/(qp1)
[ ∞∑
k=1

∫
(2k+1B)\(2kB)

(f1,2(y))p1/p

|y − a|n−α
dy

] p
p1

≤ C(µ(B))p/(qp1)
[ ∞∑
k=1

(∫
(2k+1B)\(2kB)

(f1,2(y))p1dy

) 1
p
(∫

(2k+1B)\(2kB)
|y − a|(α−n)p′

) 1
p′
] p
p1

≤ C(µ(B))p/(qp1)
[ ∞∑
k=1

(∫
(2k+1B)\(2kB)

(f1,2(y))p1dy

) 1
p

|2kB|
α
n
− 1
p

] p
p1

= C(µ(B))p/(qp1)
[ ∞∑
k=1

((∫
(2k+1B)\(2kB)

(f1,2(y))p1dy

) 1
p1

|2k+1B|
1
s1
− 1
p1

) p1
p

|2kB|
α
n
− p1
s1p

] p
p1

≤ C(µ(B))p/(qp1)‖f1‖Lp1s1 |B|
αp
np1
− 1
s1 ≤ C[µ]p/p1‖f1‖Lp1s1 |B|

1
p1
− 1
s1 .

Summarizing estimates for N1,1 and N1,2 we find that

N1 ≤ C[µ]
p
p1 ‖f1‖Lp1s1 |B|

1
p1
− 1
s1 .
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Analogously for N2 we have that

N2 ≤ C[µ]
p
p2 ‖f2‖Lp2s2 |B|

1
p2
− 1
s2 .

These estimates give

‖χBBα(f1, f2)‖Lq(µ) ≤ C[µ]‖f1‖Lp1s1 ‖f2‖L
p2
s2
|B|

1
p
− 1
s ,

which implies the desired estimate. �

Proof of Theorem 3.3. Taking dµ(x) = gq(x)dx in Theorem 3.4, setting 1
p −

1
q = α

n −
1
` ,

and observing that [µ] = ‖g‖Lq` , we derive the claimed conclusion.

To conclude, taking p1 = s1, p2 = s2, q = r we deduce Corollary 3.2 as a consequence of
Theorem 3.4.
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