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Abstract. We present a dyadic one-dimensional version of the construction of
even integrable functions Ω on the unit sphere Sd−1 with mean value zero satisfying

es sup
ξ∈Sd−1

∫
Sd−1

|Ω(θ)| log
1

|θ · ξ|
dθ < +∞ ,

such that the singular integral operator TΩ given by convolution with the distribu-
tion p.v. Ω(x/|x|)|x|−d is bounded on Lp(Rd) if and only if p = 2.

1. Introduction and statements of results

Let Ω be an even complex-valued integrable function on the sphere Sd−1, with
mean value zero with respect to the surface measure. The classical theory of singu-
lar integral operators says that the Calderón and Zygmund principal-value singular
integral initially defined for functions f in the Schwartz class S(Rd)

(1) TΩ(f)(x) = lim
ε→0

∫
|y|>ε

Ω(y/|y|)
|y|d

f(x− y) dy,

is given by a convolution with the distribution p.v. Ω(x/|x|)|x|−d, whose Fourier
transform is the homogeneous of degree zero function

(2) m(Ω)(ξ) := (p.v. Ω(x/|x|)|x|−d)̂(ξ) =

∫
Sd−1

Ω(θ) log
1

|ξ · θ|
dθ .

Thus, the L2 boundedness of TΩ is equivalent to the condition that m(Ω) is an
essentially bounded function, i.e. m(Ω) ∈ L∞(Rd). The theory of singular integrals of
the form (1) was developed by Calderón and Zygmund [1], [2] who established their Lp

boundedness in the range 1 < p < ∞ for Ω in L log L(Sd−1). It was proved by Weiss
and Zygmund [8] that TΩ may be unbounded even on L2 for Ω in L(log L)1−ε(Sn−1)
when ε > 0. Thus the L log L condition on Ω is the sharpest possible, in this sense,
that implies the Lp boundedness for in the whole range of p ∈ (1,∞). The weak type
(1, 1) boundedness of such singular integrals with Ω in L log L(Sd−1) was studied
much later by Christ and Rubio de Francia [3] and Seeger [7].

In [5] the following result was established:
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Theorem 1. There is an integrable function Ω with mean value zero on the unit
sphere Sn−1, satisfying

(3) es sup
ξ∈Sd−1

∫
Sd−1

|Ω(θ)| log
1

|ξ · θ|
dθ < ∞ ,

but such that TΩ is Lp bounded exactly when p = 2.

In this note we consider the one-dimensional dyadic model DΩ of TΩ,

(4) D̂Ωf(x) = m(Ω)(x)f̂(x), m(Ω)(x) = χ[0,1](x)
∑
I3x

∫
I

Ω(y)dy, x ∈ R.

Here the sum is extended over all dyadic subintervals I of [0, 1], and Ω is a nonnegative
function in L1([0, 1]). We observe that

∑
I3x

∫
I

Ω(y)dy =

1∫
0

∑
I3x,y

χI(y)Ω(y)dy ≤
1∫

0

log
1

|x− y|
Ω(y)dy,

provided x does not belong to a set of ends of dyadic intervals. We prove the following

Theorem 2. There exists a nonnegative function Ω ∈ L1([0, 1]) such that m(Ω) is
bounded and is not a Lp Fourier multiplier for any p 6= 2.

To show that the multiplier norm ‖m(Ω)‖Mp(R) is infinite for p 6= 2, we use deLeeuw
[4] type result which comes from the work of Lebedev and Olevski [6]:

Theorem 3. Let b be a function on the real line and let yj be a sequence of real
numbers such that yj+1 − yj is a constant for all j. Assume that the function b is
regulated at the points yj, i.e. the average of left and right limits of b at each yj

coincides with b(yj). Then we have

‖b‖Mp(R) ≥ ‖{b(yj)}j‖Mp(Z).

Here ‖{b(yj)}j‖Mp(Z) is the norm of the operator f →
∑

j b(yj)f̂(j)e2πijx acting on

functions f on the circle [0, 1]. For compactly supported sequences this norm is at
most the size of the support of the sequence times its L∞ norm.

Given a compactly supported sequence {εj}j with a large norm ‖{εj}j‖Mp(Z) we
will construct an integrable function Ω and take an arithmetic progression {xj}j such
that ‖{m(Ω)(xj)}j‖Mp(Z) ≥ c‖{εj}j‖Mp(Z).

2. Proof of Theorem 2

To pick up a sequence {εj}j with a large multiplier norm, we use the fact that the
Riesz basis of Lp(T), {e2πijx}+∞

j=−∞ is not unconditional for p 6= 2. That means that
for any K > 0 we can find a compactly supported sequence aj and a sequence εj of
0’s and 1’s such that

(5) ‖
∑

j

εjaje
2πijx‖p ≥ K‖

∑
j

aje
2πijx‖p.
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Consider a decreasing sequence p1 > p2 > p3 > . . . which converges to 2 and let ak
j

be a sequence supported in {1, . . . , lk} and εk
j be a sequence of zeros and ones such

that (5) holds with p = pk and K = k, i.e.

(6) ‖
lk∑

j=1

εk
j a

k
j e

2πijx‖pk
≥ k‖

lk∑
j=1

ak
j e

2πijx‖pk
.

To construct Ω (depending on εk
j ), we look at m(Ω) where Ω = χI0 is the char-

acteristic function of any dyadic interval I0 ⊂ [0, 1] of length 2−i0 . We observe that
m(χI0)(x) = (i0 +1)2−i0 for x ∈ I0, and m(χI0)(y) ≤ n02

−i0 , for y outside I0. Here n0

is the number of dyadic subintervals of [0, 1] that contain both I0 and y. This means
that given any dyadic interval I and any δ > 0, one can find a centrally located
(within I) dyadic subinterval J of I of length 2−j and a function Ωδ,I = 2jχJ/(j + 1)
such that m(Ωδ,I)(x) = 1 when x ∈ J and m(Ωδ,I)(x) ≤ δ when x is not in I. Note
that the L1 norm of Ωδ,I is 1/(j + 1), j = − log |J |, and it can be made small.

We set

Ω =
∞∑

k=0

ΩIk
, ΩIk

=

lk∑
j=1

εk
j Ωδk,j ,Ik,j

.

where ΩIk
are supported in Ik, the dyadic subintervals of [0, 1],

I1 = [0, 1/2], I2 = [1/2, 3/4], I3 = [3/4, 7/8], I4 = [7/8, 15/16], ....,

and εk
j are as in (6). To define Ωδk,j ,Ik,j

we pick irrational points

xk,1 < xk,2 < · · · < xk,lk

inside Ik so that the intervals spanned by two consecutive such points have the same
length. We choose small disjoint subintervals Ik,j of Ik centered at the points xk,j for
all j ∈ {1, 2, . . . , lk}. Next, we select an interval Jk,j ⊂ Ik,j such that the function

Ωδk,j ,Ik,j
=

χJk,j

|Jk,j|(log(1/|Jk,j|) + 1)

satisfies

(7) m(Ωδk,j ,Ik,j
)(x) = 1 when x ∈ Jk,j,

and

(8) m(Ωδk,j ,Ik,j
)(x) ≤ δk,j = 2−2−j−k/l2k when x /∈ Ik,j.

We can also assume that Jk,j satisfies

(9) log
1

|Jk,j|
≥ k2 lk.

Observe that (9) implies

‖Ω‖1 ≤
∞∑

k=1

lk∑
j=1

1

log(1/|Jk,j|)
≤

∞∑
k=1

1

k2
< ∞.
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Observe also that m(Ω) is a bounded function. Indeed, let x ∈ [0, 1]. Then x ∈ In

for some n ≥ 1, and

(10) m(Ω)(x) ≤
∞∑

k=1,k 6=n

lk∑
j=1

m(Ωδk,j ,Ik,j
)(x) +

ln∑
j=1

m(Ωδn,j ,In,j
)(x).

The first term in the right hand side of (10) is bounded due to the choice of Ik,j and
δk,j, see (8). To estimate the second one, we consider two cases, a) x ∈ In,s \ Jn,s for
some fixed s = 1, 2, . . . , ln, and b) x ∈ Jn,s, or x ∈ In \ In,s. We write

(11)
ln∑

j=1

m(Ωδn,j ,In,j
)(x) ≤

ln∑
j=1,j 6=s

m(Ωδn,j ,In,j
)(x) + m(Ωδn,s,In,s)(x).

In the case a) we have

m(Ωδn,s,In,s)(x) ≤
∑

I3x,Jn,s

∫
I

Ωδn,s,In,s(y)dy ≤
|Jn,s|

∑
I3x,Jn,s

1

|Jn,s|(log(1/|Jn,s|) + 1)
< ∞,

and the boundedness of the right-hand side in (11) follows from (8). In the case b)
we use (7) and (8). Thus, the second term in (10) is bounded and m(Ω) is bounded.

It remains to show that m(Ω) is not an Lp Fourier multiplier for any p 6= 2. We
fix a p > 2 and pick a k0 so that 2 < pk0 < p. Then ‖m(Ω)‖Mp(R) ≥ ‖m(Ω)‖Mpk0

(R)

and it suffices to show that the latter can become arbitrarily large.

Observe that the function m(Ω) is regulated at the points {xk0,j}
lk0
j=1, (this can

be easily seen by splitting m(Ω)(xk0,j) into the sums similar to (10), (11)), and by
Theorem 3 we have

‖m(Ω)‖Mpk0
(R) ≥ ‖{m(Ω)(xk0,j)}

lk0
j=1‖Mpk0

(Z).

But the last expression is at least as big as

‖{m(ΩIk0
)(xk0,j)}

lk0
j=1‖Mpk0

(Z) − ‖{
∑
k 6=k0

m(ΩIk0
)(xk0,j)}

lk0
j=1‖Mpk0

(Z).

Note that the functions
∑

k 6=k0
m(ΩIk

) are constant on the interval Ik0 and therefore

the sequence {
∑

k 6=k0
m(ΩIk0

)(xk0,j)}
lk0
j=1 is constant of length lk0 . The multiplier

norm of this sequence is a constant c(pk0) which is bounded above by a constant
c(p) = cot(π/2p) independent of k0. Now

m(ΩIk0
)(xk0,j) = εk0

j + Ek0
j ,

where

Ek0
j =

∑
1≤j′ 6=j≤lk0

εk0

j′ m(Ωδk0,j′ ,Ik0,j′
)(xk0,j),

and (8) implies |Ek0
j | ≤ 2−2−j−k/lk, ‖{Ek0

j }
lk0
j=1‖Mpk0

(Z) ≤ 2−2−j−k, due to the com-

pactness of the support of {Ek0
j }j. We conclude that ‖m(Ω)‖Mp(R) ≥ k0 − 1 − c(p)

and this can be made arbitrarily large. Hence ‖m(Ω)‖Mp(R) = ∞.
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