ARE L:-BOUNDED HOMOGENEOUS SINGULAR INTEGRALS
NECESSARILY LP-BOUNDED?
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ABSTRACT. We present a dyadic one-dimensional version of the construction of
even integrable functions £ on the unit sphere S?~! with mean value zero satisfying

1
es sup Q(0)|log
gesd—1Ld1| (6) 16|

such that the singular integral operator T given by convolution with the distribu-
tion p.v. Q(z/|z|)|z|~? is bounded on LP(R?) if and only if p = 2.

df < 40,

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let © be an even complex-valued integrable function on the sphere S%! with
mean value zero with respect to the surface measure. The classical theory of singu-
lar integral operators says that the Calderén and Zygmund principal-value singular
integral initially defined for functions f in the Schwartz class S(R?)

1) To(f) (@) =ty [ QD ¢, _ ) ay,

e—0
ly|>¢
is given by a convolution with the distribution p.v.Q(x/|z|)|z|~¢, whose Fourier
transform is the homogeneous of degree zero function

2) m(Q)(€) = (p.v. Qa/|a) 2]~ (€) = / 20 lo ra%e\

Thus, the L? boundedness of Ty is equivalent to the condition that m(f2) is an
essentially bounded function, i.e. m(Q2) € L>=(R?). The theory of singular integrals of
the form (1) was developed by Calderén and Zygmund [1], [2] who established their L?
boundedness in the range 1 < p < oo for Q in Llog L(S%!). It was proved by Weiss
and Zygmund [8] that T may be unbounded even on L? for  in L(log L)'~¢(S™ 1)
when € > 0. Thus the Llog L condition on () is the sharpest possible, in this sense,
that implies the L boundedness for in the whole range of p € (1, 00). The weak type
(1,1) boundedness of such singular integrals with Q in Llog L(S%™!) was studied
much later by Christ and Rubio de Francia [3] and Seeger [7].
In [5] the following result was established:

do .
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Theorem 1. There is an integrable function 0 with mean value zero on the unit
sphere S"71, satisfying

(3) es sup / 12(0)] log —— df < 0,
gesd-1 Jga-1 |§ 9|
but such that T is LP bounded exactly when p = 2.

In this note we consider the one-dimensional dyadic model D¢, of T,
@) Daf@) = m@@f@).  m@)@ = xon@Y [y seR
I>x

Here the sum is extended over all dyadic subintervals I of [0, 1], and 2 is a nonnegative
function in L'([0, 1]). We observe that

1

2/ y)dy = / > xaiy)Uy)dy < /log |xiy|9(y)dy,

I>z I>z,y

provided x does not belong to a set of ends of dyadic intervals. We prove the following

Theorem 2. There exists a nonnegative function Q € L*([0,1]) such that m(S2) is
bounded and is not a LP Fourier multiplier for any p # 2.

To show that the multiplier norm ||m(€) || s, (w) is infinite for p # 2, we use deLeeuw
[4] type result which comes from the work of Lebedev and Olevski [6]:

Theorem 3. Let b be a function on the real line and let y; be a sequence of real
numbers such that y;11 — y; is a constant for all j. Assume that the function b is
requlated at the points y;, i.e. the average of left and right limits of b at each y;
coincides with b(y;). Then we have

100122, 8) = [1{0(y5) 351l a2 -

Here |[{b(y;) }jlla,(z) is the norm of the operator f — . b(y;) f F(j)e*™ii acting on
functions f on the circle [0, 1]. For compactly supported sequences this norm is at
most the size of the support of the sequence times its L> norm.

Given a compactly supported sequence {¢;}; with a large norm |[{€;};|as,(z) we
will construct an integrable function € and take an arithmetic progression {x;}; such

that [[{m(Q)(z;)}; ]2 = cll{e il @)

2. PROOF OF THEOREM 2

To pick up a sequence {¢,}; with a large multiplier norm, we use the fact that the
Riesz basis of LP(T), {e*™*}2° _ is not unconditional for p # 2. That means that
for any K > 0 we can find a compactly supported sequence a; and a sequence ¢; of
0’s and 1’s such that

(5) 1> ejase®™ ey > K1Y a;e®™|l,.
J J
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. . . k
Consider a decreasing sequence p; > ps > p3 > ... which converges to 2 and let a}

be a sequence supported in {1,... [} and 5? be a sequence of zeros and ones such
that (5) holds with p = p, and K =k, i.e.

Uk
(6) | 28 EI > K Y ke,
j=1

To construct (2 (depending on €%), we look at m(€Q) where Q = xy, is the char-
acteristic function of any dyadic interval I C [0, 1] of length 27%. We observe that
m(xr,)(x) = (ig+1)27% for x € Iy, and m(xy,)(y) < ne2~, for y outside I,. Here ng
is the number of dyadic subintervals of [0, 1] that contain both I, and y. This means
that given any dyadic interval I and any 6 > 0, one can find a centrally located
(within I) dyadic subinterval J of I of length 277 and a function Qs; = 27y ;/(j + 1)
such that m(2s,)(z) = 1 when x € J and m(£2s,)(z) < § when x is not in I. Note
that the L' norm of Qs is 1/(j + 1), j = —log|J|, and it can be made small.

We set

Uk

Q=) "9, Q=) Q%
k=0 j=1
where €, are supported in I, the dyadic subintervals of [0, 1],

and €% are as in ( ). To define ng I, We pick irrational points

i j
Tl < Tro < < Tg,
inside [ so that the intervals spanned by two consecutive such points have the same

length. We choose small disjoint subintervals I} ; of I, centered at the points zy ; for
all j € {1,2,...,1;}. Next, we select an interval Jj ; C I ; such that the function

S o
worths = [ 1 (log (/1 T) + 1)

satisfies

(7) m(Qs, ,.1.,)(x) =1 when x € Ji;,

and

(8) m(Qs, 1) (@) < 6y = 27277517 when  z ¢ I} ;.
We can also assume that J ; satisfies

(9) log ‘Ji,j‘ > k2l

Observe that (9) implies

”Q”1<2210g ij 5 < oo

k=1
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Observe also that m() is a bounded function. Indeed, let 2 € [0,1]. Then z € I,
for some n > 1, and

(10) @@ < S m @ i)) +Zm )

k=1,k#n j=1

The first term in the right hand side of (10) is bounded due to the choice of I ; and
k.4, see (8). To estimate the second one, we consider two cases, a) x € I, 5\ J, s for
some fixed s =1,2,...,1,, and b) x € J, 5, or x € I,,\ I,, ;. We write

ln

(11) Zm utn) @) <Y U, 1, (@) + (D, 5, ) (@)

j=1,j#s

In the case a) we have

’Jn8|219 J, 1
Q 0 y)d : Deme <
) Z/ ot WM = 5 g (/1) + D)~

and the boundedness of the right-hand side in (11) follows from (8). In the case b)
we use (7) and (8). Thus, the second term in (10) is bounded and m(£2) is bounded.

It remains to show that m(2) is not an L” Fourier multiplier for any p # 2. We
fix a p > 2 and pick a kg so that 2 < py, < p. Then ||m(Q)|r,®r) > ||m(Q)||MPkO(R)

and it suffices to show that the latter can become arbitrarily large.
Observe that the function m(€2) is regulated at the points {xy, ]}] 1, (this can

be easily seen by splitting m(£2)(z, ;) into the sums similar to (10), (11)), and by
Theorem 3 we have
!
Im()a,,, @) = {m(Q) (wro,) Y21 ls,,, (2)-
But the last expression is at least as big as
1m(20,) @0, ) Y520t 20 = 1D () @ho) Y20 sy, 2
k#ko
Note that the functions }, , m(€;,) are constant on the interval Jj, and therefore

the sequence {3, m(szO)(ﬁko,j)}?Bl is constant of length l;,. The multiplier
norm of this sequence is a constant ¢(pg,) which is bounded above by a constant
¢(p) = cot(m/2p) independent of ky. Now

(kaoxxko J) ko + Eko

where
k k
Er = Z ej,om(Q(gkO’j,’[koﬂj,)($k07j),
1</ #§<lg
and (8) implies [E°| < 272797/l [{E}} )|, 2y < 272797, due to the com-

pactness of the support of {Efo}] We conclude that ||m(Q)||Mp(R) > ko —1—c(p)
and this can be made arbitrarily large. Hence ||m(£2)|a,®) = 0.
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