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Abstract. For 0 ≤ α < 1 we construct examples of even integrable functions Ω
on the unit sphere Sd−1 with mean value zero satisfying

es sup
ξ∈Sd−1

∫
Sd−1

|Ω(θ)| log1+α 1
|θ · ξ|

dθ < +∞ ,

such that the L2-bounded singular integral operator TΩ given by convolution with
the distribution p.v. Ω(x/|x|)|x|−d is not bounded on Lp(Rd) when

∣∣ 1
2 −

1
p

∣∣ > α
1+α .

In particular, we construct operators TΩ that are bounded on Lp exactly when
p = 2.

1. Introduction

Let Ω be an even complex-valued integrable function on the sphere Sd−1, with
mean value zero with respect to the surface measure. We discuss the Lp boundedness
properties of the Calderón-Zygmund singular integral operator

(1) TΩ(f)(x) = lim
ε→0

∫
|y|>ε

Ω(y/|y|)
|y|d

f(x− y) dy = p.v.

∫
Rd

Ω(y/|y|)
|y|d

f(x− y) dy ,

initially defined for functions f in the Schwartz class S(Rd). The singular integral
operator TΩ is given by convolution with the distribution p.v. Ω(x/|x|)|x|−d whose
Fourier transform is the homogeneous of degree zero function

(2) m(Ω)(ξ) := (p.v. Ω(x/|x|)|x|−d)̂(ξ) =

∫
Sd−1

Ω(θ) log
1

|ξ · θ|
dθ .

The L2 boundedness of TΩ is equivalent to the condition that

(3) m(Ω) ∈ L∞(Rd) ,

i.e. m(Ω) is an essentially bounded function. Calderón and Zygmund [1], [2] have
developed the theory of such singular integrals and have established their Lp bound-
edness in the range 1 < p < ∞ for Ω in L log L(Sd−1). The more difficult issue of the
weak type (1, 1) boundedness of such singular integrals with Ω in L log L(Sd−1) was
settled by Christ and Rubio de Francia [5] and Seeger [14].
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The Ω ∈ L log L condition is the sharpest possible, in some sense, that implies
Lp boundedness for TΩ in the whole range of p ∈ (1,∞), as indicated by Weiss and
Zygmund [16]. A fundamental question in the subject is whether there exist other
conditions on Ω that are Lp “sensitive”, i.e. they imply that TΩ is bounded on Lp

for some p but not on Lq for some other index q. This question is motivated by the
well-known p-independence boundedness property of Calderón-Zygmund operators
with sufficiently smooth kernels, i.e. the fact that boundedness on one Lp0 implies
boundedness on all Lp with 1 < p < ∞. It has been an open question whether
p-independence is still valid for all homogeneous singular integrals and if it fails,
what condition is sensitive enough to differentiate boundedness between different Lp

spaces.
A starting point for investigating this question is to ask whether (3) or even the

slightly stronger condition

(4) essup
ξ∈Sd−1

∫
Sd−1

|Ω(θ)| log
1

|ξ · θ|
dθ < ∞ ,

suffices to imply that TΩ is bounded on Lp(Rd) for some p 6= 2. In this work we
prove that this is not the case. In fact, we construct examples of functions Ω that
satisfy (4) such that TΩ is bounded on Lp(Rd) exactly when p = 2. This answers
the above question in the negative: The p-independence boundedness property of
Calderón-Zygmund theory fails for insufficiently smooth homogeneous kernels.

Next, for α ≥ 0 we denote by

mα(Ω)(ξ) =

∫
Sd−1

|Ω(θ)| log1+α 1

|θ · ξ|
dθ

a function defined for ξ ∈ Sd−1 that measures the integrability of Ω against a power
of the logarithm that appears in (4) and we introduce the following conditions on Ω:

(5) essup
ξ∈Sd−1

mα(Ω)(ξ) < +∞ .

These conditions become stronger as α increases and are known to imply boundedness
for TΩ when 1/p lies in some nontrivial open interval centered at 1/2, see [10], [8].

We sharpen the aforementioned result by showing the existence of functions Ω that
satisfy (5) for some α > 0 such that the corresponding operators TΩ are unbounded
on Lp(Rd) for p away from 2. Precisely, we have the following:

Theorem 1. For every α satisfying 0 ≤ α < 1 there is an even integrable function Ω
on Sd−1 with mean value zero that satisfies (5) such that the singular integral operator
TΩ is unbounded on Lp(Rd) whenever

(6)

∣∣∣∣12 − 1

p

∣∣∣∣ >
α

1 + α
.

In particular, there is a function Ω such that TΩ is Lp bounded exactly when p = 2.
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2. The counterexample of Theorem 1

We only discuss the proof when d = 2 as this example can be embedded in higher
dimensional spaces. We fix an 0 ≤ α < 1. We construct a sequence of even functions
Ωn with mean value zero such that m(Ωn) fails to be an Lp multiplier for any p
satisfying (6) while Ωn satisfies condition (5) uniformly in n.

To prove that the norm of a Fourier multiplier on R2 is large, we are going to use
a deLeeuw type transference argument (see [7]) in a way similar to that used in the
article of Lebedev and Olevskii [11].

Lemma 1. Let {xk}l
k=1 be an arithmetic progression in R2. (This means that there

is a vector v such that xk +v = xk+1 for k = 1, . . . , l−1.) Let m be a function on R2

which is continuous at the points xk. We define a Fourier multiplier sequence b on Z
by the formula b(k) = m(xk) for 1 ≤ k ≤ l and b(k) = 0 otherwise. Then for some
cp > 0, dependent only on 1 < p < ∞, the Lp(R2) multiplier norm ‖m‖Mp(R2) of m
is at least cp times the Lp(T) multiplier norm ‖{b(k)}k∈Z‖Mp(Z) of the sequence b.

Proof. To prove the lemma, by applying a translation, a dilation and a rotation, we
may assume that the points {xk}l

k=1 are the points {(k, 0)}l
k=1. Let R be the rectangle

[−1
4
, l + 1

4
] × [−1

4
, 1

4
]. The continuity of m at the points {(k, 0)}l

k=1 allows us to use
a classical transference theorem (see for instance [9] Theorem 3.6.7) to deduce that

c−1
p ‖m‖Mp(R2) ≥ ‖mχR‖Mp(R2) ≥ ‖{b(k)}k∈Z‖Mp(Z) .

�

If p 6= 2, the Riesz basis {e2πikx}∞k=−∞ of Lp(T) is not unconditional. That means
that for every n = 1, 2, . . . there are two sequences an

k and |εn
k | ≤ 1 supported on the

set {1, . . . , n} such that

(7)
∥∥∥ n∑

k=1

εn
ka

n
ke

2πikx
∥∥∥

Lp[0,1]
≥ K(n)

∥∥∥ n∑
k=1

an
ke

2πikx
∥∥∥

Lp[0,1]
,

where K(n) → ∞ as n → ∞. Using properties of the Rademacher functions we see
that we can take K(n) = c′p n|1/2−1/p|, where c′p depends only on p.

Moreover, we can choose (εn
k)n

k=1 such that

‖(..., 0, ..., 0, εn
1 , ε

n
2 , ..., ε

n
n, 0, ...)‖Mp(Z) =

sup{‖(..., 0, ..., 0, δn
1 , δn

2 , ..., δn
n, 0, ...)‖Mp(Z) : |δn

k | ≤ 1, k = 1, ..., n }.
We fix n ≥ 1000. Denote by I the angular sector from π/2 to 3π/4. Fix s0 large

enough. For k ∈ {1, 2, . . . , 2n}, we introduce points xk = (tk, s0) ∈ Z2∩I and disjoint
open cones Ik centered at the origin whose bisector passes through the points xk so
that (a) the arc Ik ∩S1 has length roughly (20n)−1 and (b) the distance between the
points xk/|xk| and xk+1/|xk+1| is about n−1.

For x ∈ R2 let
x⊥ = {y ∈ R2 : x · y = 0}.

Now let x̃k be the single element of x⊥k ∩ S1 which lies in the first quadrant (its
argument lies in (0, π/4)) and let Aεn

k , k = 1, ..., 2n, be pairwise disjoint arcs of small
length εn (to be chosen later) contained in S1 and centered at x̃k.
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Define

(8) ωεn
k = C(n, εn)

3∑
j=0

(−1)jχAεn
k + jπ

2
,

where Aεn
k + jπ

2
are the translations of the arcs Aεn

k along S1 by the amounts jπ
2

.
Finally we introduce the function

Ωn =
2n∑

k=1

(−1)kεn
[(k+1)/2]ω

εn
k ,

where [ ] denotes the integer part. The normalization constant C(n, εn) is chosen so
that

mα(ωεn
k )(xk/|xk|) = 1/2 .

Set
D(n, εn) = m(ωεn

k )(xk) = m(ωεn
k )(xk/|xk|)

and note that in view of rotational invariance the constants C(n, εn) and D(n, εn) do
not depend on k. Also notice that

sup
x

mα(ωεn
k )(x) = mα(ωεn

k )(xk/|xk|) and

sup
x
|m(ωεn

k )(x)| = |m(ωεn
k )(xk)| = |m(ωεn

k )(xk/|xk|)|.

We will make use of the following auxiliary estimates.

Lemma 2. We have
C(n, εn) ≈ ε−1

n | log εn|−1−α

and
D(n, εn) ≈ | log εn|−α,

for all x /∈ ∪3
j=0(I

k + jπ
2

) ∩ S1

(9) mα(ωεn
k )(x) . (log n)1+α| log εn|−1−α

and for x /∈ (∪3
j=0(I

2k + jπ
2

)) ∪ (∪3
j=0(I

2k−1 + jπ
2

)) ∩ S1 and 1 ≤ k ≤ n

(10) |εn
km(ωεn

2k)(x)− εn
km(ωεn

2k−1)(x)| . | log εn|−1−α

n|x− x2k/|x2k||
.

Proof. These estimates are straightforward. To prove (10) we use the mean value
theorem for integrals and the fact that for θ1, θ2 in two successive arcs Aεn

2k−1, Aεn
2k we

can control | log |x ·θ1|−1− log |x ·θ2|−1| by a multiple of n−1|x ·θ2|−1 which is at most
a multiple of n−1|x− x2k/|x2k||. �

Recall the fixed constants εn
k in (7). We examine properties of the function Ωn.

Observe that

(11) ‖Ωn‖L1(S1) . n | log εn|−1−α

and note that in view of (9) we have

(12) ‖mα(Ωn)‖L∞(S1) . max
(
1, n (log n)1+α | log εn|−1−α

)
.
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On the other hand,

m(Ωn)(xk) = D(n, εn)εn
k +

∑
1≤i6=k≤2n

(−1)iεn
[(i+1)/2]m(ωεn

i )(xk) = D(n, εn)εn
k + on

k ,

and (10) implies |on
k | ≤ D(n, εn)/4 as long as

constant (log n) | log εn|−1−α ≤ 1

4
| log εn|−α

which is equivalent to

(13) n4constant . ε−1
n .

The function m(Ωn) is continuous at the points xk, since m(ωεn
k ) is continuous at

xk/|xk| as a circular convolution of L1(S1) and L∞(S1) functions. By Lemma 1
applied to points xk we get that the Lp multiplier norm of m(Ωn) is comparable to

CpD(n, εn)n|
1
2
− 1

p
|. Indeed,

‖m(Ωn)‖Mp(R2) ≥ cp‖(..., 0, m(Ωn)(x1), m(Ωn)(x2), ...,m(Ωn)(xn), 0, ...)‖Mp(Z)

≥ cp D(n, εn)
(
‖(..., 0, ..., 0, εn

1 , ε
n
2 , ..., ε

n
n, 0, ...)‖Mp(Z) −

‖(..., 0, on
1 , o

n
2 , ..., o

n
n, 0, ...)/D(n, εn)‖Mp(Z)

)
≥ 1

2
cp D(n, εn)n|

1
2
− 1

p
|,

since the inequality∥∥∥(..., 0, on
1 , o

n
2 , ..., o

n
n, 0, ...)

D(n, εn)

∥∥∥
Mp(Z)

>
1

2

∥∥(..., 0, εn
1 , ε

n
2 , ..., ε

n
n, 0, ...)

∥∥
Mp(Z)

would contradict the choice of (εn
k)n

k=1. This shows that the Lp operator norm of TΩn

is at least a constant multiple of

(14) D(n, εn)n|
1
2
− 1

p
| ≈ | log εn|−αn|

1
2
− 1

p
| .

We select εn satisfying

n(log n)(1+α) = | log εn|1+α ,

and we note that (13) holds for this choice of εn. Also observe that (12) gives
‖mα(Ωn)‖L∞(S1) . 1, (11) yields ‖Ωn‖L1(S1) . 1, while (14) gives

‖TΩn‖Lp→Lp ≥ n|
1
2
− 1

p
|− α

1+α (log n)−α .

We conclude that ‖TΩn‖Lp→Lp goes to infinity with n as long as |1
2
− 1

p
| > α

1+α
.

The existence of the function Ω claimed in Theorem 1 is a consequence of the
uniform boundedness principle. Denote by Bα the Banach space of all even integrable
functions Ω on S1 with mean value zero with norm

‖Ω‖Bα ≡ ‖Ω‖L1(S1) + ‖mα(Ω)‖L∞(S1) < ∞.

Consider the family of linear maps from Bα → Lp(Rn)

Ω → TΩ(f)
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indexed by functions in the set U = {f ∈ Lp(Rn) : ‖f‖Lp = 1}. If no Ω as in
Theorem 1 existed, then for all Ω ∈ Bα we would have

sup
f∈U

‖TΩ(f)‖Lp ≤ C(Ω) < ∞ .

The uniform boundedness principle implies the existence of a constant K < ∞ such
that

‖TΩ‖Lp→Lp = sup
f∈U

‖TΩ(f)‖Lp ≤ K ‖Ω‖Bα

for all Ω ∈ Bα. But this clearly contradicts the construction of the Ωn’s whenever
|1
2
− 1

p
| > α

1+α
. This concludes the proof of Theorem 1.

3. Final Remarks

It is natural to ask whether boundedness holds for TΩ outside the region ruled out
by Theorem 1. This question was previously addressed and partially answered by
Grafakos and Stefanov [10] who showed that condition (5) implies the boundedness
of TΩ on Lp(Rd) for p satisfying

∣∣1
2
− 1

p

∣∣ < α
2(2+α)

. A sharper version of this theorem

where α
2(2+α)

is replaced by α
2(1+α)

was obtained by Fan, Guo, and Pan [8].

The issue of the sufficiency of condition (5) for the Lp boundedness of TΩ remains
unanswered for p’s satisfying α

2(1+α)
≤ |1

2
− 1

p
| ≤ α

1+α
whenever 0 < α < 1. It is

possible that for α > 1, TΩ is bounded on Lp for all 1 < p < ∞ whenever (5) is
satisfied, but this is also unknown at present. We note that for zonal functions Ω,
condition (4) suffices for the boundedness of TΩ on all Lp spaces (1 < p < ∞) as
proved by Ryabogin and Rubin [13].

It should be noted that the counterexamples discussed in this paper are related to
those that indicate the sharpness in the Coifman-Rubio de Francia-Semmes condition
[6] in terms of the s-variation of the multipliers. They are also related in spirit to
the work of Carbery, Christ, Vance, Wainger, and Watson [3], Christ [4], Seeger,
Wainger, Wright, and Ziesler [15], as well as the work of Olevskii [12].

The authors would like to thank to N. Kalton for a hint on the best value of the
constant in (7).
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éstimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 351–354.
[7] K. deLeeuw, On Lp multipliers, Ann. Math, 81 (1964), 364–379.



ON THE p-INDEPENDENCE OF SINGULAR INTEGRALS 7

[8] D. Fan, K. Guo, and Y. Pan, A note of a rough singular integral operator, Math. Ineq. and
Appl., 2 (1999), 73–81.

[9] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River,
NJ 2004.

[10] L. Grafakos and A. Stefanov, Lp bounds for singular integrals and maximal singular integrals,
Indiana Univ. Math. J., 47 (1998), 455–469.

[11] V. Lebedev and A. Olevskii, Idempotents of Fourier multiplier algebra, Geom. Funct. Anal. 4
(1994), 539–544.

[12] V. Olevskii, A note on Fourier multipliers and Sobolev spaces. Functions, series, operators
(Budapest 1999), 321–325, János Bolyai Math. Soc., Budapest, 2002.

[13] D. Ryabogin and B. Rubin, Singular integrals generated by zonal measures, Proc. Amer. Math.
Soc., 130 (2002), 745–751.

[14] A. Seeger, Singular integral operators with rough convolution kernels, Jour. Amer. Math. Soc.,
9 (1996), 95–105.

[15] A. Seeger, S. Wainger, J. Wright, and S. Ziesler, Classes of singular integrals along curves and
surfaces, Trans. Amer. Math. Soc. 351 (1999), 3757–3769.

[16] M. Weiss and A. Zygmund, An example in the theory of singular integrals, Studia Math. 26
(1965), 101–111.

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia,
MO 65211, USA

E-mail address: loukas@math.missouri.edu
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