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Abstract. We prove that mutlilinear paraproducts are bounded
from products of Lebesgue spaces Lp1 ×· · ·×Lpm+1 to Lp,∞, when
1 ≤ p1, . . . , pm+1 <∞, 1/p1+· · ·+1/pm+1 = 1/p. We focus on the
endpoint case when some indices pj are equal to 1, in particular

we obtain a new proof of the estimate L1×· · ·×L1 → L1/(m+1),∞.

In memory of Nigel Kalton

1. Introduction

Paraproducts have become tools of great use in analysis and PDEs.
They are traditionally built by Littlewood-Paley square functions and
may appear in different forms. Paraproducts first emerged in Bony’s
theory of paradifferential operators [5] which has taken a step further
the pseudodifferential operator theory of Coifman and Meyer [6]. They
provide important examples of operators with specific properties and
have been used in significant applications, such as the proof of the T1
theorem by David and Journé [7]. The relationship of paraproducts
with Carleson measures and BMO is so intimate that the former have
been on the forefront of research in harmonic analysis through almost
a quarter century. The boundedness of paraproducts on Lp spaces
for p > 1 is easily achieved via duality, but the extension to indices
p ≤ 1 is more delicate and was proved independently by Grafakos and
Kalton [9] and by Auscher, Hofmann, Muscalu, Thiele, and Tao [1]; a
different proof was given by Bényi, Maldonado, Nahmod, and Torres
[2]. Hundreds of references exist on paraproducts today; of these the
articles [4], [9], [13] and [14] focus on delicate boundedness properties of
them. The expository article of Bényi, Maldonado, Naibo [3] presents
a well-motivated introduction to paraproducts.
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Mutilinear paraproducts may have first appeared explicitly in the
work of Yabuta [16] and later resurfaced in the work of Sato and Yabuta
[15] who obtained their Lp boundedness for p ≥ 1. Although paraprod-
ucts fit into the class of multilinear Calderón-Zygmund theory, one may
wonder if there are insightful direct proofs of their Lp (reps. weak Lp)
boundedness, especially in the difficult case p < 1. Such proofs would
take into account the specific form of paraproducts and would reflect
the interplay of their intrinsic orthogonality with the orthogonality of
Lp (reps. weak Lp). In this work we undertake this task and we include
the endpoint cases when at least one index is 1. Our work is based on
a weak type square function inequality (Lemma 1.2) recently obtained
in [11], which is valid for all 0 < p < ∞. Another type of m-linear
paraproducts built by sums of wave packets associated with dyadic in-
tervals on the line has been studied by Lacey and Metcalfe [12] who
obtained similar endpoint estimates to the ones in this article for the
paraproducts built by the Littlewood-Paley operators.

We will be working on Rd for some natural number d. For a Schwartz
function Φ we denote by ∆Φ

j the Littlewood-Paley operator given by

convolution with the function Φ2−j(x) = 2jdΦ(2jx). We denote by
SΦ
j =

∑
k≤j ∆Φ

k the partial sum operator of the ∆Φ
k ’s. For fixed smooth

bumps Φ and Θ whose Fourier transforms have compact supports that
do not contain the origin, we define the paraproduct operator

P2(f, g) =
∑
j∈Z

∑
k≤j

∆Θ
j (f) ∆Φ

k (g) =
∑
j∈Z

∆Θ
j (f)SΦ

j (g) ,

for Schwartz functions f, g. This operator and its (m+1)-linear version
is the main object of study of this paper. This is defined by

Pm+1(f0, f1, . . . , fm) =
∑
j∈Z

∆Θ
j (f0)SΘ1

j (f1) · · ·SΘm
j (fm) ,

for Schwarz functions f0, f1, . . . , fm and smooth bumps Θ,Θ1, . . . ,Θm.
For 0 < p <∞, we denote by Lp the space of all measurable functions

on Rd whose pth power is integrable over Rd and by Lp,∞ the space of
all measurable functions h that satisfy

‖h‖Lp,∞ = sup
λ>0

λ
∣∣{x ∈ Rd : |h(x)| > λ}

∣∣ 1p <∞ .

Given a bump Ψ, we define the square function associated with Ψ by

SΨ(f) =
(∑
`∈Z

|∆Ψ
` (f)|2

) 1
2
.
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We will also work with the “lacunary” square function

SΨ
q (f) =

(∑
`∈Z

|∆Ψ
q`(f)|2

) 1
2
.

defined for a positive integer q. (Notice that SΨ
1 = SΨ.) Under very

mild assumptions on Ψ (such as |Ψ(x)| + |∇Ψ(x)| ≤ A(1 + |x|)−d−ε
and

∫
Rd Ψ(x) dx = 0), it is known that SΨ (also SΨ

q ) maps Lr(Rd) to

Lr,∞(Rd) for all 1 ≤ r < ∞ (see [8]). Finally, we denote by M the
Hardy-Littlewood maximal operator. We recall that

sup
j∈Z
|∆Θ

j (f)|+ sup
j∈Z
|SΘ
j (f)| ≤ CΘ M(f) ,

for all Schwartz functions f , for some constant CΘ.
The main goal of this paper is to indicate how to obtain boundedness

for Pm+1 from the product of Lebesgue spaces Lp0 ×Lp1 × · · · ×Lpm to
Lp,∞ whenever 1 ≤ p0, p1, . . . , pm <∞ and p = (p−1

0 +p−1
1 +· · ·+p−1

m )−1.
The case p ≥ 1 is quite easy to deal with via duality and Hölder’s
inequality, but the case p < 1 is more delicate and we will focus on it.
In particular, we show paraproducts map L1 × · · · × L1 → L1/(m+1),∞

which is the strongest endpoint estimate concerning them.
When m = 1 this result is known, see for instance [9], [1], [12], but

the contribution of this paper is to provide a simple proof of it that
does not rely on deep technical machinery (tiles, Carleson measures)
and which also works for all m ≥ 1. The following is our main result.

Theorem 1.1. Fix an integer m ≥ 1 and smooth bumps Θ,Θ1, . . . ,Θm

whose Fourier transforms are compactly supported in Rd\{0}. For each
0 ≤ k ≤ m− 1 and functions fj in the Schwartz class of Rd define the
(m+ 1)-linear paraproduct

(1) P
(k)
m+1(f0, f1, . . . , fm) =

∑
j∈Z

[
∆Θ
j (f0)

k∏
s=1

∆Θs
j (fs)

m∏
s=k+1

SΘs
j (fs)

]
,

with the understanding that when k = 0, the first product is missing.

Let p be defined by p−1 = p−1
0 +p−1

1 +· · ·+p−1
m . Then P

(k)
m+1 is is bounded

from Lp0(Rd)×Lp1(Rd)× · · ·×Lpm(Rd) to Lp,∞(Rd) when 1 ≤ pj <∞
and into Lp(Rd) when 1 < pj <∞ for all j.

We will need the following lemma which is Corollary 4 in [11].

Lemma 1.2. Let Ψ be a smooth bump whose Fourier transform is
supported in an annulus that does not contain the origin and satisfies
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for some positive integer q:∑
j∈Z

Ψ̂(2−jqξ) = 1, ξ ∈ Rd \ {0}.

Then for any 0 < p <∞ there is a constant Cp,d (that also depends on
Ψ) such that for all functions g in L2 we have

‖g‖Lp,∞ ≤ Cp,d
∥∥SΨ

q (g)
∥∥
Lp,∞ .

2. The proof of the Theorem 1.1

When all pj > 1, the fact P
(k)
m+1 : Lp0 × Lp1 × · · · × Lpm → Lp is a

consequence of the corresponding weak type estimate via multilinear

interpolation, see [10]. It will therefore suffice to prove that P
(k)
m+1 maps

Lp0 × Lp1 × · · · × Lpm to Lp,∞ when 1/(m+ 1) ≤ p <∞.
We suppose that the Fourier transform of Θ is supported in the

annulus a0 < |ξ| < b0 for some 0 < a0 < b0 <∞, of Θj is supported in
the annulus aj < |ξ| < bj for some 0 < aj < bj <∞, 1 ≤ j ≤ m.

Case 1: m ≥ 1 and k = m− 1.
Subcase 1.a: m ≥ 2.

When k = m − 1 only one partial sum operator Sj appears in the

product in (1). Then, for m ≥ 2, P
(m−1)
m (f, f1, . . . , fm) is pointwise

bounded by(∑
j∈Z

|∆Θ1
j (f1) · · ·∆Θm−1

j (fm−1)|2
) 1

2
(∑
j∈Z

|∆Θ
j (f0)SΘm

j (fm)|2
) 1

2
.

This is in turn controlled by

(2) SΘ1(f1)
[
M(f2) · · ·M(fm−1)

] [
SΘ(f0)M(fm)

]
(with the understanding that the middle factor does not appear when
m = 2) which is easily shown to satisfy the claimed conclusion, by ap-
plying Hölder’s inequality on weak Lp spaces (i.e. ‖g0g1 · · · gm‖Lp,∞ ≤
‖g0‖Lp0,∞‖g1‖Lp1,∞ · · · ‖gm‖Lpm,∞) and using the boundedness of the
maximal and square functions from Lr to Lr,∞ for 1 ≤ r <∞.

Subcase 1.b: m = 1.
In this case we write

SΘ1
j = SΘ1

j+r0
+

j∑
i=j+r0+1

∆Θ1
i .

for some r0 < 0 chosen so that the spectra of SΘ1
j+r0

and ∆Θ
j are dis-

joint; picking r0 so that b12r0+j < a02j suffices. Then the function
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∆Θ
j (f)SΘ1

j+r0
(f1) is supported in the annulus

(a0 − b12r0)2j < |ξ| < (b0 + b12r0)2j .

We pick integers n0 < m0 such that

2n0 < a0 − b12r0 < b0 + b12r0 < 2m0

and we choose a function Ω whose Fourier transform equals 1 on the
annulus 2n0 < |ξ| < 2m0 , vanishes off the annulus 2n0−1 < |ξ| < 2m0+1,
and satisfies

(3)
∑
`∈Z

Ω̂(2(m0−n0+1)`ξ) = 1, ξ ∈ Rd \ {0}.

It follows from (3) that

(4)
∑
`∈Z

Ω̂(2`ξ) = m0 − n0 + 1, ξ ∈ Rd \ {0}.

Then we write

(5) P
(0)
2 (f0, f1) =

∑
j∈Z

∆Ω
j

(
∆Θ
j (f0)SΘ1

j+r0
(f1)

)
+ E,

where E is a finite sum of terms of the form
∑

j ∆Θ
j (f0)∆Θ1

j+c(f1). Since

E is pointwise bounded by a constant multiple of SΘ(f0)SΘ1(f1), the re-
quired conclusion follows for E via an application of Hölder’s inequality
for weak type spaces.

We need to argue a bit more to handle the first term on the right
in (5). We pick a function Ψ whose Fourier transform is equal to
1 on the annulus 2n0−2 < |ξ| < 2m0+2 and vanishes off the annulus
2n0−3 < |ξ| < 2m0+3. Set q = m0 − n0 + 5. We split Z as a disjoint
union of sets Is = {`q + s, ` ∈ Z}, 0 ≤ s ≤ q − 1. Next we split the
sum in (5) as a finite sum over s ∈ {0, 1, . . . , q − 1} of the sums

(6) Σs =
∑
j∈Is

∆Ω
j [∆Θ

j (f0)SΘ1
j+r0

(f1)].

We also define a function Ψs by setting Ψ̂s(ξ) = Ψ̂(2−sξ) and we note

that
∑

` Ψ̂s(2
−`qξ) = 1 for ξ in Rd \ {0}.

We make the following crucial observation: for j ∈ Is and ` ∈ Z
the supports of the functions ξ → Ψ̂s(2

−`qξ) and ξ → Ω̂(2−jξ) intersect
exactly when j = `q + s and this case ∆Ω

j ∆Ψs
`q = ∆Ω

j as the first function
equals 1 on the support of the second. We deduce that for j ∈ Is and
` ∈ Z we have

∆Ψs
`q

[∑
j∈Is

∆Ω
j [∆Θ

j (f0)SΘ1
j+r(f1)]

]
= ∆Ω

`q+s[∆
Θ
`q+s(f0)SΘ1

`q+s+r0
(f1)]

]
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and this exactly equals ∆Θ
`q+s(f)SΘ1

`q+s+r0
(f1). It follows that

SΨs
q (Σs) =

(∑
`∈Z

∣∣∆Ψs
`q (Σs)

∣∣2) 1
2

=
(∑
`∈Z

∣∣∆Θ
`q+s(f0)SΘ1

`q+s+r0
(f1)

∣∣2) 1
2

which is pointwise controlled by a constant multiple of SΘ
q (f0)M(f1).

To apply Lemma 1.2 we need to show that Σs defined in (6) lies in L2.
By the orthogonality of L2-norms, we have∥∥∥∑

j∈Is

∆Ω
j [∆Θ

j (f0)SΘ1
j+r0

(f1)]
∥∥∥2

L2
=
∑
j∈Is

∫
Rn

∣∣∆Ω
j [∆Θ

j (f0)SΘ1
j+r0

(f1)](x)
∣∣2dx

≤ C‖M(f1)‖L∞
∑
j∈Is

∫
Rn

∣∣∆Θ
j (f0)(x)

∣∣2dx
≤ C‖f1‖L∞‖f0‖2

L2 <∞ .

Using Lemma 1.2, for each s ∈ {0, 1, . . . , q − 1} we obtain that

‖Σs‖Lp,∞ ≤ Cp‖SΨs
q (Σs)‖Lp,∞

and by the previous discussion this expression at most a constant mul-
tiple of ‖SΘ

q (f0)M(f1)‖Lp,∞ . The required conclusion is an easy conse-
quence of Hölder’s inequality and of the boundedness of the maximal
and square functions from Lr to Lr,∞ for 1 ≤ r <∞.

Case 2: m ≥ 2 and k < m− 1.
Having established the case k = m − 1, we continue the proof by

reverse induction on k. Fix a k ∈ {0, 1, . . . ,m − 2} and assume that
the conclusion is valid for all k′ > k (and k′ ≤ m − 1.) We need to
prove the same conclusion for k.

We begin by writing for all s ∈ {k + 1, . . . ,m}

SΘs
j = SΘs

j+rs
+

j∑
i=j+rs+1

∆Θs
i

for some rs < 0 that satisfy

(7) bk+12rk+1 + · · ·+ bm2rm < a0

so that the spectra of S
Θk+1

j+rk+1
(fk+1) · · ·SΘm

j+rm
(fm) and ∆Θ

j (f0) are dis-
joint.

Then we express P
(k)
m+1 as a finite sum of operators of the form P

(k+1)
m+1 ,

P
(k+2)
m+1 , . . . , P

(m−1)
m+1 plus

(8)
∑
j∈Z

[
∆Θ
j (f0)

m∏
s=k+1

SΘs
j+rs

(fs)
] [ k∏

s=1

∆Θs
j (fs)

]
,
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with the understanding that if k = 0, the last product does not appear.

The induction hypothesis on k yields the boundedness of P
(k+1)
m+1 , P

(k+2)
m+1 ,

. . . , P
(m−1)
m+1 , while the boundedness of (8) is discussed below considering

two subcases.

Subcase 2.a: k ≥ 1.
In this subcase things are straightforward. We apply the Cauchy-

Schwarz inequality to control (8) by the product of the `2 norms of the
expressions inside the square brackets and therefore by the product

SΘ(f0)SΘ1(f1)
[ m∏
s=2

M(fs)
]
.

Obviously, this expression is bounded from Lp0 × · · · × Lpm to Lp,∞.

Subcase 2.b: k = 0.
Condition (7) implies that the function ∆Θ

j (f0)SΘ1
j+r1

(f1) · · ·SΘm
j+rm

(fm)

is supported in the annulus 2n02j < |ξ| < 2m02j where n0 < m0 are
integers chosen so that

2n0 < (a0 − (b12r1 + · · ·+ bm2rm)) < (b0 + b12r1 + · · ·+ bm2rm) < 2m0 .

We choose a smooth function Ω which is equal to 1 on the annulus
2n0 < |ξ| < 2m0 and vanishes off the annulus 2n0−1 < |ξ| < 2m0+1 .
Then we write the expression in (8) as follows:

(9)
∑
j∈Z

∆Ω
j

[
∆Θ(f0)

m∏
s=1

SΘs
j+rs

(fs)
]
.

We now pick a function Ψ whose Fourier transform is equal to 1 on
the annulus 2n0−2 < |ξ| < 2m0+2 and vanishes outside the annulus
2n0−3 < |ξ| < 2m0+3. Set q = m0 − n0 + 5. We split Z as a disjoint
union of sets Is = {`q + s, ` ∈ Z}, 0 ≤ s ≤ q − 1. Next we split the
sum in (9) as a finite sum over s ∈ {0, 1, . . . , q − 1} of the sums Σs

where the indices j in (9) run over the set Is. We also define a function

Ψs by setting Ψ̂s(ξ) = Ψ̂(2−sξ) and we note that
∑

` Ψ̂s(2
−`qξ) = 1 for

ξ in Rd \ {0}.
We observe that for j ∈ Is and ` ∈ Z the supports of the functions

ξ → Ψ̂s(2
−`qξ) and ξ → Ω̂(2−jξ) intersect nontrivially exactly when

j = `q + s and this case ∆Ω
j ∆Ψs

`q = ∆Ω
j . We are therefore in a po-

sition to use Lemma 1.2, since again we can control the L2-norm of∑
j∈Is ∆Ω

j [∆Θ(f0)
∏m

s=1 S
Θs
j+rs

(fs)] by C
∏m

s=1 ‖fs‖L∞‖f0‖L2 < ∞, and
argue as in Subcase 2.2 to complete the proof.
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Remark 2.1. The exponent pj can be taken to be equal to infinity
whenever the maximal function M(fj) appears in the estimate control-

ling P
(k)
m+1 (pointwise or in norm). For instance, when m ≥ 2 and

k = m− 1, we may take p2 = · · · = pm =∞; see (2).
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