SHARP BOUNDS FOR m-LINEAR HARDY AND HILBERT
OPERATORS
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ABSTRACT. The precise norms of m-linear Hardy operators and m-linear Hilbert
operators on Lebesgue spaces with power weights are computed. Analogous results
are also obtained for Morrey spaces and central Morrey spaces.

1. INTRODUCTION

Averaging operators are of fundamental importance in analysis and it is often
desirable to obtain sharp norm estimates for them. The study of these operators
may not be as delicate as that of maximal operators (cf. [7], [11]) but still requires
the use of certain beautiful and elegant ideas. The most fundamental averaging
operator is the Hardy functional

H(P@) =1 [

defined for locally integrable functions f on the line. A classical inequality, due to
Hardy [9], states that

| i@ < (]ﬁ) [ 1r@ras

for 1 < p < oo, and the constant (p%l)p is best possible. Thus the classical Hardy
inequality says that the norm of the Hardy operator on LP(R") is equal to =7
In 1976 Faris [5] introduced the following n-dimensional Hardy operator

(1) NG = g | S, = <R}

defined for nonnegative functions on R", where 2, = F(%fﬁ) is the volume of the

unit ball in R”. The norm of H on LP(R™) was evaluated in [3] and found to be
equal to that of the 1-dimensional Hardy operators, i.e.,

[#lsoqary oy = 25
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In this article we study m-linear averaging operators analogous to the operator in
(1). The study of multilinear averaging operators is a byproduct of the recent interest
in multilinear singular integral operator theory; this subject was founded in the 1970s
by Coifman and Meyer [4] in their comprehensive study of many singular integral
operators of multiparameter function input, such as the Calderéon commutators,
paraproducts, and pseudodifferential operators.

In the sequel we use the following notation: for 1 <i < m, v; = (Y1i, Y2i, - - - » Yni)
will denote elements of R"”. The Euclidean norms of each y; is |y;| = 4 /Z;”:l |y
and of the m-tuple (y1,y2, .., Ym) 18 [(Y1, Y2, - - -, Um)| = /Dosey [Uil>. We use this

notation in the following definition of the m-linear Hardy operator.

Definition 1. Let m € N, f1, fo, ..., fm be nonnegative locally integrable functions
on R™. The m-linear Hardy operator is defined by

(2) 7"lm(f1,---,fm)(x)=QL ! fi) - fn(ym) dyadys - . . dym,
[(y1,e-ym) |<||

mn
mn ||

where x € R™\{0}. The 2-linear operator will be referred to as bilinear.

Two other variants of m-linear Hardy operators (of one-dimensional nature) were
introduced and studied by Bényi and Oh [2]. The n-dimensional m-linear Hardy-
type operator H™ defined above does not seem to have previously appeared in the
literature. Our approach is simpler than that in both [2] and [3] and easily adapts to
the multilinear setting. It relies on the method of rotations and on the principle that
many positive averaging operators attain their (weighted or unweighted) Lebesgue
space operator norms on the subspace of radial functions.

We recall the definitions of the usual beta function B(z, w) fo t=1( ywtde,
where z and w are complex numbers with positive real parts, and the gamma
function I'(z) = fooo t*~le~tdt, where z is a complex number with positive real
part. The following relationship between the gamma and beta functions is valid:
B(z,w)['(z + w) = I'(2)['(w), when z and w have positive real parts.

2. HARDY OPERATORS ON WEIGHTED LEBESGUE SPACES

The main result of this article is the following;:

Theorem 1. Let m € N, f; € LPi( x|%dx), Il <pi<oo, 1 <p<ooi=
1,2,...,m, %:piljtp%—i—...—i—ﬁ, a; <pn(l—1/p;), and o = oy + ag + ... + Q.
Then the m-linear Hardy operator H™ defined in (2) maps the product of weighted
Lebesgue spaces Lp1(|a:|%dm) X Lp2(|a7|%dx) X« ox L (|2 7 da) to LP(|z|dx)
with norm equal to the constant

pmn 1 Hz 1”%( Y ;73))

Winn pmn —n — q 2m~1 I‘(%(m_zl7 - ;Ln))

wp™

Remark 1. The norm from LP(|x|“dx) to itself of the n-dimensional Hardy operator
H defined in (1) is independent of n exactly when o = 0.
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Proof. For clarity, we break up the proof in cases that represent several important
special cases. The general case follows by combining the special cases.

1. Weighted case when m = 1.
We were informed that the result in this case was independently obtained by J.
Soria, possibly by a different method. Set

g(x) = — f(z[€) dg, = e R,

Wn Jgl=1

where w, = 272 /T'(n/2). It is easy to see (cf. the next case in the proof of the same
theorem) that the operator H and its restriction to radial functions have the same
operator norm on LP(|z|*). We may therefore assume that f is a radial function.
Fix a < n(p —1). Let w, denote the area of the unite sphere S"~! and B(0, R)
denote a ball of radius R centered at zero. By Minkowski’s integral inequality, we
1

have
1)l ; v p’ | |
Lo (jz|ode) Qp \Jre 121" S 0,Joy)
1 e )
(L1 e

n n B(O,l)
1
. P

o [ ([ ipiaas) ay

n J B(0,1) "

<

1 o
< Q—/ |y =P dy|| £1] Lo (1o da)

n J B(0,1)

Wn 1

= Q_n n(l 1 g) ||f||Lp(‘x|adx)
p pn

__m

Therefore, we have obtained the upper estimate

pn

1| o (faf ) - Lo (12l da) < P —

On the other hand, for 0 < ¢ < min{1, o %}, we take
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We have

1
, 1
1 _n_o__ _n_o_ o P
|H( )l r(ajedsy = O / <|~’17| por E/ ly| "> Ed?J) || dl‘)
n |z|>1 = <ly<1

]
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ko)
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1
1
- = / 2| ™" pgdx) ’ / TRE I T
Q, |z|>1/e 3
n_n_a_
wp 1—e""»
= g i a2¢ fellmgers
m p P
Consequently,
T
1l o olear) s ogerean) 2 G - —a—a 2
" p P
and letting € — 0 (using that ¢ — 1), we deduce
pn
|1 H| Lr (2| da)— Lo (je|de) > pr—

2. Unweighted case when m = 2.
Set as before w,, = 2r2['(2). For i = 1,2 let

9i(yi) = i/ fillvil&) d&i, v € R™.
1€:|=1

n

Obviously, ¢1(y1) and g2(y2) are radial functions and H?(gi, g2)(x) is equal to

o
P 91(y1)92(y2) dy1dy:
Qanl2 " J iy go)1<al

2

o ()
= S T2 — fi(|yz‘|§i)dfi> dydys
Qg [? |<y1,y2>|<|x|,~11 Wn Jjg=1

1 1
= — — dy,d déid
Q2n|$‘2" /|£1|1 /|€21 (wn2 /|(y1,y2)<x| fl(‘y1|£l)f2<‘y2|52) {1 y2) §1d&

1
- / F1(0) fa(ys) diya
[(y1,y2)|<|z]|

QQn’fE‘zn

= Hz(f1,f2)($)-
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Also by Minkowski’s integral inequality, we have

o (/ 91(171)|“dx1>;1
- {w”/‘” 1 /E _ Silr&)ds,
5 {w/ o, /51 1\/‘1 r€)Prdé 1d’]m

= fullers

1911

[

pP1 —
P 71 P
r" dr}

Similarly, for go, we obtain ||ga||zr2 < || f2||zrz. Therefore one has that

HHQ(fl,fz)“LP < ||H2(91792)||LP
[ fullze [ follee = Nlg1llzor [l g2]l rr2

This implies that the operator H? and its restriction to radial functions have the
same operator norm in LP. So, without loss of generality, we assume that f;, i = 1,2
are radial functions in the rest of the proof.

By Minkowski’s integral inequality and Holder’s inequality, we have

1 1 p %
|’H2(f17f2)”Lp = Q_ (/ 2n / fl(yl)fZ(yQ) dyldyQ d,ﬁlf)
' | 1212 i) <o)
1 » 1
= o (/ / fi(lz]|z1) fo(|z]22) dz1d 2 dﬁ)
R™ [J|(21,22)|<1
1 » 1
_ Q_< LAl stz s dx)
R™ [J|(21,22)|<1
! %
= Q_/ (/ ’fl(‘zl|x)f2(fz2|$)|pd$> dz1dzy
[(21,22)|<1 n
2 n
- (/ !fi@)’”dm) a2 T2 dzydig
QQn |(21»22)<1g R™

1 _n _n
= O |21] 71 [2a| P2 dzidzg || frl| oo || fol| Lee
2n J|(z1,22)|<1

1
= g Gllfilenlifellzre
2n
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where (] is the following constant:
Cl = / ‘21|_%|22‘_£ lede
Zl Zz)|<1

o _l _E n—1 n
= / / / pr " pa P tdpidpy dzydzy
Sn—1 Jsn—1 Jp24p2<1,p1>0,p2>0

= wn/ /T"_m_11”"_1)2_1(0080)"_;1_1(sin6)n_f?2_1 rdrdf
o Jo

w2 2 n—-"t—1
= —"1/ (cos§)" i (sin )" r= " dB
n( —;) 0
w? ! 1
= n /(1—t2)2<" e (1 — #2)2dt (t = sin®)
n(2—3) Jo

(We wrote above z; = p;zl, where z/ € S"™! and p; > 0.) Therefore, it follows that

w? n n n n
HHzHLl’l wIp2oLp < —= P B(— -, = — —>
Wan 2p —1

Now for 0 < & < min{1, pl—ln "} we define

By an elementary calculation, we obtain that

10 = A5 = S (2)
1l LP1 211 LP2 _p25 2 .

Consequently, we have that H2(f5, f5)(z) = 0 when |z| < 1 and that

s ) = |

[(y1,92)I1<1; |y1|>T\/f\% |y2|>2\\/3\

|91 Ty 2| v2 dyydys
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when |z| > 1. We write

||H2(f17f2 )lze

b N1
1 n_ P2e _n _ P2¢ _n _
= —Q N lyr| 7w |y| 2 i dys | da
jf>1 (w1,w2) < o[> 53 w2 > %
1
p P
1 _ pae _n _ P _n_.
2 5= v lyr| 20 P fyo| 2 dyidys | do
L2, g |(91.92)|<1s 1> 372 ol > 32
1
1 P n n
—n— —n D2 = —&
- o / ol o) [ ol
on \Jjef>1 [(y1,02) <1 s> 5223 w2 |> 32
1
== Q_CQ 037
2n

where Cy and (5 are the second and third factors in the last term, respectively. We
now compute the values of the constants Cy and C3 . Writing y; = p;z, we have

_n _ P3¢ _n_ g
Cs = / lyr| e e |ye| 2 dyadys
|(y1,02) <Ly | > 52 2] > 322

= / / o B g dpd
Sn=1 J p?4p3<1; p1>2/5,p2>2/‘/;
- wz/ / " pT_ﬁ_%_ Pn_é_a_ dpadpy
! 91:2*\/5E P2=g
2 1 .
- {1/ (1= )27 o= gy
_19_2_ 2 261_2
NEEN I g R LA R
2/¢e n— o — b= 2/¢e
2
2 1 o .
i {1(/ Dt el e
n—.-—c 2°Jy 0
2e n_ﬁ(\/ﬁ)a 1 26 \"" % V2 —h= P2
_< 2 > = n—ﬂ—%<1_< 2 ) (7) () ”)
p1 p1
_ w? 1B<n n PE M — € n +1>
S on=2—c|27\2 2p 2p 2 205
52
_%/ (1— )25 gy
0
V2 (V2) L V2e\nE VINE m
-(*5) (1-(5) (%) ")
2 e n— - 2 2 '
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For C5 we have

02 — (/ |x|_7’b—p28d$) P
lz|>1/e
00 ;
= wh (/ r_”_mer”_ldr)
1/e
1 _ 1 b2c 1 €
PV () (2T () 2
= Wn - — — - Pl P2
P2g P2g 2 Pac 2 Hip Lz

p2¢€ 1 1

v (V2\ 7 pipl
= (%) <—> 22 | fillee L f5 | e

2
P3

=

p2e

2

= ()7 <@> 1F5 o (1 £5 e

Let ¢ — 0. By the beta-function property B(p,q + 1) = ;%qB(% q), p,q > 0, we

obtain

w_i P B(n n o n n>
Waon, 2p—1

HHZHLPl X LP2 [P Z

3. Weighted case when m = 2.
The proof of the upper bound in this case is similar to that of the previous case.
For the proof of the lower bound, for a sufficiently small ¢ € (0,1), we take

O’ z < ﬁ’ 07 T < ﬁ’
fi(z) = { o1 poe il <% f5(xz2) = { o 2] < \%

|z | P \$1|>\/7§; |zo| P2 7, |zo| > 7.

These functions show that the claimed norm of the operator on weighted Lebesgue
spaces is indeed obtained as ¢ — 0.

4. The case m > 3.

Since the proof of the weighted case when m > 3 is similar to that of case 3, we
only give the outline of the unweighted case. The most delicate part of the proof in
the case m > 3 is the calculation of the best constant.

To obtain the upper bound estimate for the norm, we employ the idea of the
proof of Theorem 1 to conclude that the claimed norm is bounded from above by
the constant

1 _n _n _n_
Cy= / |z1| P12 P2 2| Pm dzidzy . dzy, .
|(217227~~-’Zm)

an <1

Expressing each z; = p;2} in polar coordinates we can write

m

Wy P -
(3) Ci=g / L1 e 7 or " dprdps ... dpu .

2 S pi>0,i=1 20 m i
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Switching to spherical coordinates, we evaluate the integral in (3) as follows:

S n———l /2 2
/ ri=1 / / / (sinf)™ (sin 92)7"’3 .. (sinf,,_2)
0

& n
e —1

($in Oy )" 7

MS

(sin 005" (in o ST ingn )

(Cosﬁm G —— cosﬁm 2) ”"72 - ..(cos&l)n_%_ld%...dGm,ldr
LT
mf2+z(n7£,71) m— 3+Z(nf—71 n—l1——"n0__ 1
(sinfy) P (sin By) =M ...(Sinﬁm_g)2 o T

(cos Gm_2)n_ﬁ_l ... (cos Gl)nfﬁfl dby ...db,,

p(30-2)36-55))

Multiplying by é"mn we obtain the value of Cj claimed in the statement of the
theorem. To show that Cj is the best possible constant, for a sufficiently small € in

() 0, j21] < 7=,
\NTs g _ n _ PmE
HEE Tl >

1,2,...,m—1and

(0,1) we define

where ¢ =
€ et n
nlin) = { onl 75, o] >

We have that
wn 1 Pme€
||f1|LP1 = ||f2|Lp2 = ||f;|i;’}m = p_(_m>

mE

and that H™(ff,..., f5,)(x) is equal to zero when |z| < 1 and is equal to

. m—1 »
n__PméE o T e -
o] 5 / [T ol =5 il 5
=1

an

(Y1) < s | > 20 i=1,...;m
m/e
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when |z| > 1. It follows from this expression that

||Hm”LP1 x LP2 x...LPm — [P Z 04

by letting € — 0. 0

3. HARDY’S INEQUALITY ON MORREY SPACES AND CENTRAL MORREY SPACES

For purposes of this section, we introduce some notation and review some defi-
nitions. In what follows, Q(x, R) denotes the cube centered at x with side length
R and with sides parallel to the coordinate axes. Moreover, |Q(z, R)| denotes the
Lebesgue measure of Q(z, R). Also, B(0, R) denotes a ball of radius R centered at
the origin. To study the local behavior of solutions to second order elliptic partial
differential equations, Morrey [12] introduced the L4*(R™) spaces.

Definition 2. Let 1 < g < oo and —1/q < \. The classical Morrey space L(R™)
is defined by

LARY) = {f € L, R") : [|flleran) < o0},

loc

where

1 1/‘1
fllparmny = sup (—/ flx qd;z:) )
17z ey ackn,m>0 \ |Q(a, R)|1HA Q(a,R)’ (@)l

Obviously, L»~Y4(R") = L(R"), L4°(R") = L*®. When \ > 0, L%(R") = {0}.
For this reason, we only consider the case —1/¢ < A < 0 below. Recently, Alvarez,
Guzmén-Partida and Lakey [1] introduced the notion of central Morrey spaces.

Deﬁnifcion 3. Let1 < g<ooand —1/qg < X< 0. The central homogeneous Morrey
space B4 (R™) is defined by

BIAR") = {f € Li(®") : [1f|purary < o0}

where

1 1/q
sy = SUP [ —=———— x)|%dx )
Wl =3 (552775 )

The inhomogeneous central Morrey space B®*R™) is defined analogously with the
exception that in the previous norm the supremum over R > 0 is restricted to R > 1.

Obviously, B¢*(R") ¢ B**(R") for A > —1/g and 1 < ¢ < oc.

Remark 2. B%**R") and B**(R") reduce to {0} when X < —1/q, and it is true
that B¢ ~1/4 = po—1/a = L1,

Remark 3. When A\ < Ay, we have B C B4* for1 < g <oo. If1 < ¢ <
g2 < 00, then Holder’s inequality yields that B> C BT and B> C B®* for all
A eR.

The following is the main result of this section. It is new even when m = 1.
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Theorem 2. Let m € N, f; be in Bpi”\i(R”), 1 <p <00, 1< p< o0, % =

1%1+1%2+-..+i; ~1/p; <N <0,i=1,2....m, and A\ =\ + Ao+ ...+ \p.
Then H™ maps BPYM x BP2A2 x oo x BPmAm o BPA with norm

w m 1 JIE D5 +1))
Wi A+ m 271 T(5(m + A))

m —
HH HBplv’\l X BP2:A2 x...x BPm>Am — BP,A

Proof. We consider the cases m =1, m = 2, and m > 2.
1. Case m = 1.

We observe that, as in the proof of Theorem 1, the operator H and its restriction
to radial functions have the same operator norm on the spaces B%*. Let

W@ =g [ Sl

where B(0,1) is the unit ball in R”. By Minkowski’s integral inequality, we have

q 1/q
d
<|B 0.R )M/ o )

2,
— f(t|x|) dt
ol AICE)

1 1/q
= Q. tjz)|7d dt
N Qn/ B, 1) (IB 0 R)\lﬂq /B( R)| (It])] 93)
1 1/q R
Qn/ BO,1) (lB 0, [t[R)[F /B(O,|t|R)‘ ()] |t]
< HfHBﬂ/ [t dt
Qn B(0,1)
<

TN £ | 3o ey

On the other hand, the function fo(z) = |z|™ lies in B9*(R") and satisfies

1
1+ A

H(fo) = Jo-

This yields the desired conclusion.

2. Case m = 2.
As before we note that the operator H? and its restriction to radial functions have
the same operator norm in BP*. Taking radial functions f; and f, we then write

1

H2(f1, fo)(2) = @/ - fillz|z1) fo(|z|22) dz1dzs.

Using Minkowski’s integral inequality and Holder’s inequality, we have
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D 1/p
F(ole]) folysl]) dyadys dx)
(|B 0,R |1+)‘p /(0 R) /(y1 y2)|<1

1 P 1/p
Ji(lya|z) f2(lyz2|z da:)
/(y1 y2) |<1( )|1+/\p /B(O,R) 1<| 1| ) 2(| 2| )
1 / P1 1/]?1
Jillyi]z ’ dac)
/?Jl y2)|<1 (|B 0, R)|1+>\1p1 BO.R) 1(’ 1| )
1 pgd 1/p2 d d
<|B(07 R)|1+>\2p2 /3(073) f2(|y2|I)‘ x) y1dyo

1 1 1/171
- / B R)|1+ ip1 / dz
()<t \| B0, [y1]| R)| B(0,|y1|R)

po 1/p2
f2(5’7)‘ d:c) ‘3/1’”A1|y2|m2 dy,dys

IN

IN

fi()

m
<|B(07 Y2 R)[M 2272 50 1yl )
< / 2| 2|2 dyrdys || F1ll gorss oy | f2ll o2z
[(y1,y2)|<1

where A = A\ + Ay. A calculation yields that the value of the integral is
B3+ M), S0+ 2),

wn 1

(4) / ™ [y [y dys
(y1,y2)|<1 2n 2+ )

and this proves one direction in the claimed identity.
On the other hand, taking f;(z;) = |z;|™ for x; € R, i = 1,2, we obtain

1 / Xipi
;| P dx;
|B(0, R)[*#i [ g0 g ]

R
w i dm—
— n ,r,n)\lpl—l-n ldT’
Rr(+xipi) [

W
n(l+ N\p;)

ﬁ(.%'l)dilfl 8 d.fCl

1
|B(0, R)[* i /B(O,R)

It is easy to verify that f; € BPi ¢ = 1,2. By a simple calculation, we obtain that

W R =@ R g [ ey,
2n J(y1,2)|<1

This observation, combined with (4) concludes the proof in the case m = 2.

3. Case m > 3
This case presents only notational differences and does not require any new ideas.
For brevity we omit the details. 0

Next we have the following result concerning best constants on the subspaces of
LPi*i(R™) consisting of radial functions.
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Proposition 1. Let m € N, f; be radial functions in LPi(R"), i = 1,2
1<pz<oof_1/pl§)\z<0;7f:1a27am;1§p<oole,_1+l+
and N=X + X+ ...+ \,. Then

Pm’

(5) HHm(flafZM"afm)HLP’\ <Cnm)\)\1)\2 ..... /\mHHfZHLPz iy

=1
Moreover, the constant

w, m 1 JLL TGN +1))
Winn A+m 2m=1 T(Z(m + A))

Cn,m)\)\h)\z ~~~~~ Am —
is the same with that in Theorem 2, and is the best possible in inequality (5) for

radial functions.

Proof. We first consider the case m = 1.

As in the proof of Theorem 2, we take fy(x) = |z|™, # € R and we only need to
prove that fy € L¥*(R"). In fact, we consider two cases:

(i) if |a| > 2R, then |z| > R. For —1/q < A\ < 0, we have

1 / A 1 A
_—_— |z|"Mdz < —/ R"Mdx =1
|Q(CL, R)|1+>\q Q(a, R) |Q(CL7 R)|1+/\q Q(a, R)

(ii) if |a|] < 2R, then Q(a, R) C Q(0, 3R), we have

1 / A 1 A 1+g)
- |x|"Mdr < —/ |z|"Mdx = 3nltad)
|Q(6L, R)|1+)\q Q(a, R) |Q(CL, R)|l+/\q Q(0,3R)

We now turn to the case m = 2.
Let fi € LP* and f, € LP»*2 be radial functions. By Minkowski’s integral
inequality and Holder’s inequality, we have
P 1/p
dx)

; /
(@7 Ly
1 p l/p
- 1Q(a, R)|*+w fillnlz) fo(|y2|x)dyrdy dx)
(|Q<G,R)|1+>‘P /Q(‘I’R) /(y1y2)|<1 1<| ll ) 2(’ 2| ) 14Y2
1 P 1/17
/I )<1 W/Q( . fillyalz) fo(Jye|2)| da dyydys
(y1,92)I< o
1 P1 1/p1
d
/I(yl,y2)|<1 <|Q(a, R)[Fhim /cz(a,R) f1(!y1|x)‘ ;z:)

1 P2 1/p2
|Q(a, R)|M+A2p2 /Q( R) f2(|y2\x)‘ dx dy1dys

/ £ (nle]) oyl ) Ay dye
[(y1,y2)|<1

IN

IN
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fi()

/ ( 1 / pld )l/pl
= X
i<t \Qalyals [y R)PY S ol )

2 1/p2
fz(f)’ da;) ’yl|n/\1‘yz|m2dyldy2

TR .
<|Q(a\yz!,\y2!ﬁ’)|m2”2 Q(alyaly2|R)
S / ‘ylyn)\l|y2|n)\2dy1dy2HleLPLM||f2||LP2»>\2
[(y1,y2)|<1
= Cuaxnlfillzeos [ follprese -

On the other hand, taking
ﬁ(xz) = |l‘i|n>\i7xi € Rn77’ = 17 2a

we easily verify that f; € LPi, ¢ = 1,2. by considering the cases la| > 2R and
la| < 2R. Then the desired conclusion follows via the method in the proof of
Theorem 2. We omit the details.

At last, the case m > 3 presents only notational differences and does not require
any new ideas; for brevity the details are omitted. 0

4. m-LINEAR HILBERT OPERATORS

In this section we focus our attention to the positive real numbers (0, co0) with the
usual Lebesgue measure and we let T™ be the m-linear Hilbert operator

©6)  T"(fie. fo / / fle) @)

(x+x1+...Fa,)m

where x > 0. The following is a known sharp estimate

™

m||fHLP(0,oo)||9||Lp’(o,oo)v

| T ds <

0

where % + :z% =1, 1 < p < oo; see for instance [13], [10], and [6].
We have the following result concerning T

Proposition 2. Let 1 < p < oo, —1 < a < p—1. For any function f in LP(x*dz),
we have
T

sin(m(a + 1

174 () o oasy < 7yl

Moreover,
T

sin(m(a+1)/p)

| ’ Tl | ’ LP(xdx)—LP(z*dx) —
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Proof. By Minkowski’s integral inequality, we have
1
[ee] [e’e) f(y) p ?
T Dlireras = ([ o
e o [Jo THY
1
o] 00 p ?
([ ([ ) o)
0 o 14y
1
[ ([ voraeas)
yx)|Px®dr | ——dy
0 0 L+y

1

[ ([ 1raear) y e
= z)|Pxdx | ——dy
0 0 I+y

dy

IN

IA

a+l a+1
= B(l - ) >||f||Lp(a:°‘dx)-
p p
Thus, one deduces the estimate
a+1l a+1
17 oo eanrstoeean) < B(1 = i ).

To obtain a lower bound for the operator norm we take 0 < ¢ < min{l,p — o — 1},

and define
0, r <1,
Jelw) = { 337%7%7%, |z| > 1.

A calculation yields that || f. . We have

||LP a:o‘dx)

00 o 1tate D X
1T (fo)ll o eode) = </0 (/ yx+y dy) x"‘dx)
. oo, —lecke p 1
</ (/ Y d ) xo‘dx>
1 1T Tty
) 00 1+a+s p %
= </ (/ Y ) xlsd:c> )
1

1+a+te _lto+te 1 _1ltode

[o¢] e — (o] =
/ y dy = / y dy—/ y dy
1 14y o 14y 0o 1+y

S =

LA

v

Note that

N B(l l+a+c¢ 1—|—a+5 / 1+a+s
- p )
l4a4e l4+atey z 75—
_ B<1 , ) e
p p .
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It follows that |7 (f.)||Lr(zed) 1S at least as big as

[e'e) 1
(/ wlgda:) /pB(1_1+a+5’1+a+5>
1 p p

B P </oo (1+1+D‘+5)p 1— Ed )1/17
p—1—-—a—-c\J

l+a+e¢ 1—|—Oz—{—€>_ P 1
p 7 p p—l—a—c(p—-a—-1)/r’

Letting ¢ — 0, we deduce that

1
B 51/PB(1 B

T P(20da 11
i 1L UM lerede) B(1- atl +a>'
e—=0 ||f€||Lp(:v°‘d:E) p p
Thus
a+1l 1+« T
T potoods x”>B<1_ , ):
1T o oae)-s o(oeam) 2 p ' p sin(m(a +1)/p)
and this concludes the proof of the proposition. O

Next we recall the following result from Bényi and Oh [2].

Theorem. Let m > 2, f; € LP(0,00), i =1,2,...,m, 1 <p; <00, 1 <p < o0,
and%:pil—i-p%—i-...jtﬁ. Then

[T, D))

HTm ||L1’l (0,00) x LP2(0,00) X -+ x LPm (0,00)—LP(0,00) — F(m)

[OuN

We provide the following weighted extension of this result.

Theorem 3. Let m € N, f; be in Lpi(:v%dx),i =12,....m, 1 < p; < o0,
1 < p < o0, % = pil—l—p%—i—...—l—zi, —(1+1/pi)p < a; < p(1 —1/p;) and

a=oa+oay+...+a,. Then
[T Ty — 99)T(HE2)

1™ = ’
alp « a =

a1py Qa2p2 ampm
LP1(z P dx)xLP2(x P dx)x--xLPm(zx P dx)—LP(zx%dx) F(m)

Proof. For simplicity we only provide the proof in the case m = 2. (The case m =1
is the essence of Proposition 2.) The proof of Theorem 2 yields the stated upper
bound. It therefore suffices to show that the constant obtained in this way is also a
lower bound. For

O<5<m1n{1 —

we take
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and
fs( ) O, 0< g < 1,
To) = 1 _o2_
? x0T wg > 1.
We have that
g1|1P1 e || P2 1
||f1|| apy = ||f2|| agpy = —.
LPi(zy P dz1) LP2(zy P daxa) p2g

We have the lower estimate

HT(ff, fg)‘ Lr(zdx)

[ee] [e%¢) [oe] £ £ p 1/p
_ ( / ( / / S HEN m) " dm)
0 0 0 (:L"“:Ul‘{’l‘g)
_1_e1_pe _1_ea .
- (/oo (/oo /oo 931 P1 P P1 .’EQ P2 P dm dl‘ )px dl‘) /p
- 1 (x 4+ x1 + x2)? e
00 0o oo _7_%_% —é—%—a P 1/p
= (/ x_l_p”(/ / ! 2 da:ldmg) dm)
1/z J1/x 1 + —|—£L‘2)
_7_‘171_% _1 >
00 0o oo PP P2 P p 1/p
> / poiopeE / / 2 dridrs | dz
. (1+z1 +22)

cep2 oo oo ,.—1/p1—ai/p—p2e/p1 —1/p2—c2/p—c
N ( ) / - - drydry
D2E (1+ 21 + 22)?

Next, we write

00 0o lfl/pl*al/p*pQE/mxfl/pzfag/pfs
/ / 1 2 B dQTld{lfz = [1 — [2,
€ £ (1 + a1 + 1'2)

where

0o poo l,_l/pl—OCI/P_pQE/pll,_l/pQ—OCZ/p_a
Il = / / L 2 5 d$1dl’2
0 £ (]_ + xl + IQ)

e poo xfl/pral/pfpzs/plwfl/pzfaz/pfs
IQ = / / ! 2 5 dIlde'Q .
0 Je (1+ 21 + x2)

17
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We write I; as follows:

*1/101 a1/p— p2€/p1x*1/p2 az/p—e
Il = / / 2 dIlde'Q
1421+ 932)2

/ / —1/171 Oél/P P2€/P1x2—1/172 az/p—e
= d$1d1'2

+ xr, + 1’2)2
—1/p1 ou/p pza/plx 1/p2—a2/p—¢
/ / 2 dlEldl'Q
1 +x1 + {L‘Q)Q
€ 1 € 1 leY o+ 14+ pye
S TE U T ST R AN I R S
Y4 p Y4 P p P %) p p
e poo :L,Il/pl a1/pfp2€/p1x271/praz/pf€
— dlEgd[L‘l
o Jo (14 21 + x5)?
1 I} € «Q € 1 o o+ 1+ pye
— B<_,__1_1£71+_+_1+PL> <_,__2_57—P2>
Y41 p P P p P1 Y2 p p

1 « 1 o ¢
T W g
Py P2 P2 P2 0 (1+4a) tetete

1 I} € 1 « € 1 o o+ 14 poe
2 B<_I__1_1271_‘___{__1_‘_11)3(_/__2_57—172)
Y41 p P y4 b Y4 Y2 p p
1 «a 1 -5 5 &
- (———2—€,1+—+—2+5) —
%) D2 2 D2 1—1,—1—?—1,1

We estimate I in the following way:

1/171 ai/p— p2€/p1$—1/p2 az/p—e
I, = / / 2 dridxo

1 +x1 + $2>2
—1/P1 al/p p28/p1x—1/p2 as/p—e

= / / 2 dl’ldl’g

1 + 21 + .172)2
,1/1,1 al/p p25/plx;1/P2 az/p—e
dxridx
/ / 1 +x1 + 1‘2)2 1502
_1_ap_
P2 P

«o € 1 € T
— B(_,__l_pil_i__+_+pi)/ 2
0(1

y41 P1 p D1 -+ To
—1/p1 a1 /p— pzé/mm 1/p2—aa/p—e
2
/ / 3 dl’ldIQ
]_ + 1+ 5(72)
1 [eP]
a € 1 « e\ & pm » °

cop(looonny L e ey SR

pP1 P D1 PP p/l—— =2 —c

e pe xfl/mfal/pfpﬁ/mxfl/pzfaz/pfe
1 2
— / / dl’ldIg.
o Jo (1421 + 29)?
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The previous expressions for [; and I, allow us to easily compute their limits as
€ — 0. Indeed, letting ¢ — 0, we obtain

lim ‘|T(f1€ﬂf§)’|Lp zdx)

E_>0||fl||L,,1 ap ||J02||L,,2 22
1 1 1 1
> (=@ Loy Dyp(io e L
p y41 p y41 p D2 p

- F(1— o i)r(1— a2 i)r(”“).
p P p P2 p

This estimate provides the reverse norm inequality and finishes the proof of The-
orem 3. 0

5. FINAL REMARKS

Obviously, both the m-linear Hardy operator (2) and the m-linear Hilbert operator
(6) map L' x ... x L' to weak L'™. Tt follows by interpolation that they map
LPrx ... x LPm to LP when 1/p; + ...+ 1/p,, = 1/p > 1. We are uncertain at the
moment as to what the norm of these operators are on these spaces when p < 1.

We provide some remarks related to the case m = 2 and % < p < 1. These easily
extend to general m > 2.

Proposition 3. Let f; be in LPi(R™), 1 = 1,2, 1 < p; < 00, 1/2 < p < 1, and
S pil + p%. Then we have

p
HHQ(fl) fQ)HLp < C]/J,p1,p2,an1HLp1 HfQHLp27

n? o
where 2= 55 B(5 = 5505 = 555) < Ol < 5 5051 2
Proof. The idea of the proof of Theorem 1 yields a lower bound. For the upper
bound, since the condition |(y1,y2)| < |z| implies that |y1| < |z| and |yo| < |x|, we
obtain the estimate

1 1

|WUMM@|=§EE@/MWMﬁ%M%MWM

1 1 /
< L M@wm/ o) dys
Qon |27 Sy <12l

ly2|<|z
2

Q:
< o, H(f1)(@)H(f1) ().

1 _
p2/p
2

Q, ( p p
12 P)lascay < g2 (757 ) (S22 Wl oy Follosaceny.

This proves the claimed estimate. 0

By Holder’s inequality (I%/p + 1) and Theorem 1 in [3], we obtain

We have an analogous proposition for the bilinear Hilbert operator T2
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Proposition 4. Let f; be in LPi(R"), 1 = 1,2, 1 < p; < 00, 1/2 < p < 1, and

L— L L Then we have
p P1 b2

1T (f1, f)lle < Cp il fill o | fol 22,

where

™ ™

sinm/p; sinw/py

(/P01 /po)L(1/p) < Cply iy <

At last, our guess for the sharp bounds in the case 1/m < p < 1 are the constants
obtained by the radial counterexamples.
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