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Abstract. We obtain endpoint estimates for multilinear singular integrals operators
whose kernels satisfy regularity conditions significantly weaker than those of the stan-
dard Calderón-Zygmund kernels. As a consequence, we deduce endpoint L1×· · ·×L1 to
weak L1/m estimates for the mth order commutator of Calderón. Our results reproduce
known estimates for m = 1, 2 but are new for m ≥ 3. We also explore connections be-
tween the 2nd order higher-dimensional commutator and the bilinear Hilbert transform
and deduce some new off-diagonal estimates for the former.
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1. Introduction

Multilinear Calderón-Zygmund singular integral operators originated in the work of

Coifman and Meyer [CM1], [CM2], [CM3]. The study of these operators has advanced

significantly and although several features of its theory have presently been understood

and developed, several other aspects of it remain unexplored.

In this work, we study boundedness properties of m-linear operators whose kernels

have regularity significantly weaker than that of the standard Calderón-Zygmund kernels.
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For instance, our kernel regularity assumptions allow singularities along planes in Rn.

Consideration of these weak kernel conditions is motivated by the study of singular

multilinear operators, such as the mth order commutators, for which one would like

to obtain an endpoint weak type L1/m estimate on L1 × · · · × L1. The results in this

article have applications in the context of commutators of singular integrals; in fact the

mth order commutator of Calderón falls under the scope of the theory developed herein.

Endpoint estimates for these commutators on products of L1 spaces have been obtained

by C. Calderón [CC] when m = 1 and Coifman and Meyer [CM1] when m = 1, 2 but

the case m ≥ 3 seems to be have been missing from the literature and is completed

in this work. We also study a connection between the higher dimensional commutator

introduced by Christ and Journé [CJ] and the bilinear Hilbert transforms and use this

connection to obtain new off-diagonal bounds for the higher dimensional commutator.

Before we formulate our results we set up some notation. We will follow the notation

in [GT1], [GT2]. These articles, and the references therein, contain some background on

the subject.

Let K(x, y1, · · · , ym) be a locally integral function defined away from the diagonal

x = y1 = · · · = ym in (Rn)m+1, and let T : S(Rn)×· · ·×S(Rn) 7→ S ′(Rn) be an m-linear

operator associated with the kernel K(x, y1, · · · , ym) in the following way:

〈T (f1,· · · , fm), g〉

=

∫
Rn

∫
(Rn)m

K(x, y1, · · · , ym)f1(y1) · · · fm(ym)g(x)dy1 · · · dymdx,(1.1)

where f1, · · · , fm, g in S(Rn) with ∩mj=1supp fj ∩ supp g = ∅. We will assume the size

estimate on the kernel K

|K(x, y1, · · · , yj, · · · , ym)| ≤ A

(|x− y1|+ · · ·+ |x− ym|)mn
(1.2)

for some A > 0 and all (x, y1, · · · , yj, · · · , ym) with x 6= yj for some j. We will also

assume that for some ε > 0 we have the smoothness estimates

|K(x, y1,· · · , yj, · · · , ym)−K(x′, y1, · · · , yj, · · · , ym)|

≤ A|x− x′|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
(1.3)

whenever |x− x′| ≤ 1
2
max1≤j≤m|x− yj| and also for each j,

|K(x, y1,· · · , yj, · · · , ym)−K(x, y1, · · · , y′j, · · · , ym)|

≤
A|yj − y′j|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
(1.4)

whenever |yj − y′j| ≤ 1
2
max1≤j≤m|x− yj|.
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Under the above assumptions we say that T is an m-linear operator with Calderón-

Zygmund kernel K. The collection of kernels K satisfying (1.2), (1.3), and (1.4) with

parameters m, A and ε will denoted by m-CZK(A, ε). Examples of operators with kernels

in 2-CZK(A, 1) are the bilinear Riesz transforms on R× R, given for j = 1, 2 by

Rj(f1, f2)(x) = p.v.

∫
R

∫
R

x− yj
|(x− y1, x− y2)|3

f1(y1)f2(y2)dy1dy2.

Numerous other examples can be constructed. In fact, given a linear operator P on Rmn

with kernel in 1-CZK(A, ε) one may obtain an m-linear operator T on Rn × · · · × Rn

with kernel in m-CZK(A, ε) by setting

T (f1, · · · , fm)(x) = P (f1 ⊗ · · · ⊗ fm)(x, · · · , x) ,

where x ∈ Rn and (x, · · · , x) ∈ Rmn and (f1⊗· · ·⊗fm)(x1, · · · , xm) = f1(x1) · · · fm(xm).

For linear Calderón-Zygmund singular integrals one has the classical endpoint estimate

L1(Rn) → L1,∞(Rn). For m-linear operators, the corresponding endpoint result is as

follows.

Theorem A. Let T be a multilinear operator with a kernel K in m-CZK(A, ε). Assume

that for some numbers 1 ≤ q1, q2, · · · , qm ≤ ∞ and some 0 < q <∞ satisfying

1

q1

+
1

q2

+ · · ·+ 1

qm
=

1

q
,

T maps Lq1(Rn)× · · · · · ·Lqm(Rn) to Lq,∞(Rn). Then T can be extended to be a bounded

operator from the m-fold product L1(Rn) × · · · × L1(Rn) to L1/m,∞(Rn). Moreover, for

some constant Cn,m (that depends only on the parameters indicated) we have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m(A+ ‖T‖Lq1×···×Lqm→Lq,∞).

It should be noted that m-linear operators T that satisfy the hypotheses of Theorem

A are usually called multilinear Calderón-Zygmund operators. For a proof of Theorem

A, we refer to [GT2] and in some special cases, also to [KS].

We work with a class of integral operators {At}t>0, which play the role of an ap-

proximation to the identity operator as in [DM]. We assume that the operators At are

associated with kernels at(x, y) in the sense that

Atf(x) =

∫
Rn
at(x, y)f(y)dy

for every function f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and the kernels at(x, y) satisfy the following

size conditions

|at(x, y)| ≤ ht(x, y) = t−n/sh
( |x− y|s

t

)
,(1.5)
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where s is a positive fixed constant and h is a positive, bounded, decreasing function

satisfying

lim
r→∞

rn+ηh(rs) = 0(1.6)

for some η > 0. These conditions imply that for some C ′ > 0 and all 0 < η′ ≤ η, the

kernels at(x, y) satisfy

|at(x, y)| ≤ C ′t−n/s(1 + t−1/s|x− y|)−n−η′ .

Now, let T be a multilinear operator associated with a kernel K(x, y1, · · · , ym) in the

sense in (1.1). The basic assumptions we are going to be making concerning T are the

following.

Assumption 2.1. Assume that for each j = 1, 2, · · · ,m, there exist operators {A(j)
t }t>0

with kernels a
(j)
t (x, y) that satisfy conditions (1.5) and (1.6) with constants s and η and

there exist kernels K
(j)
t (x, y1, · · · , ym) so that

〈T (f1, · · · , A(j)
t fj, · · · , fm), g〉

=

∫
Rn

∫
(Rn)m

K
(j)
t (x, y1, · · · , ym)f1(y1) · · · fm(ym)g(x)dy1 · · · dymdx,(1.7)

for all f1, · · · , fm, g in S(Rn) with ∩mj=1supp fj ∩ supp g = ∅.

Assumption 2.2. There exist a function φ ∈ C(R) with suppφ ⊂ [−1, 1] and a constant

ε > 0 so that for all x, y1, · · · , ym ∈ Rn and t > 0 we have

|K(x, y1,· · · , ym)−K(j)
t (x, y1, · · · , ym)|

≤ A

(|x− y1|+ · · ·+ |x− ym|)mn
m∑
k=1
k 6=j

φ
( |yj − yk|

t1/s

)

+
Atε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε
(1.8)

for some A > 0, whenever t1/s ≤ |x− yj|/2.
Under Assumptions 2.1 and 2.2 we say that T is an m-linear operator with generalized

Calderón-Zygmund kernel K. The collection of functions K satisfying (1.7) and (1.8)

with parameters m, A, s, η and ε will be denoted by m-GCZK0(A, s, η, ε).

The main goal of this article is to show that endpoint estimates can be obtained for op-

erators associated with generalized Calderón-Zygmund kernels provided these operators

are bounded on a single product of Lebesgue spaces. In particular, the most interesting

endpoint case is the m-fold product of L1 spaces. We have the following result:
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Theorem 1.1. Let T be a multilinear operator with a kernel K in m-GCZK0(A, s, η, ε).

Assume that for some 1 ≤ q1, q2, · · · , qm <∞ and some 0 < q <∞ with

(1.9)
1

q1

+
1

q2

+ · · ·+ 1

qm
=

1

q
,

T maps Lq1(Rn)× · · · × Lqm(Rn) to Lq,∞(Rn). Then T can be extended to be a bounded

operator from the m-fold product L1(Rn)× · · · × L1(Rn) to L1/m,∞(Rn).

Moreover, for some constant Cn,m (that depends only on the parameters indicated) we

have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m(A+ ‖T‖Lq1×···×Lqm→Lq,∞).

As a consequence of Theorem 1.1 and multilinear interpolation, T is also bounded

from Lp1(Rn)× · · · × Lpm(Rn) to Lp(Rn) for all 1 < p1, · · · , pm <∞ and 1/m < p <∞
related to the pj as in (1.9). This will be discussed in Section 3.

The layout of the paper is as follows. In Section 2, we give a proof of Theorem 1.1,

and check that our condition is a consequence of the conditions of Theorem A (see

Proposition 2.1 below). In Section 3 we discuss a multilinear interpolation theorem that

allows us to remove the assumption qj <∞ on the indices in Theorem 1.1. In Section 4,

we apply the results of Section 3 to deduce standard bounds for the mth commutators of

A. Calderón; these results seem to be new for m ≥ 3. In Section 5, we obtain new bounds

for the higher dimensional commutator introduced by Christ and Journé by exploiting

a connection between this commutator and the bilinear Hilbert transforms.

Throughout, the letter “C” will denote (possibly different) constants that are inde-

pendent of the essential variables.

2. Proof of Theorem 1.1

For matters of simplicity, we assume that for all j the operators A
(j)
t all coincide with

a fixed operator At with kernel at(x, y) which satisfies conditions (1.5) and (1.6) with

two positive constants s and η > ε, where ε is the constant in (1.8).

Proof of Theorem 1.1. Setting B = ‖T‖Lq1×...×Lqm→Lq,∞ . For 1 ≤ i ≤ m, we fix fi ∈
L1(Rn), and by the linearity of the operator, we may assume that ‖fi‖L1(Rn) = 1. Also

fix a λ > 0. We would like to show that there exists a constant C > 0 such that∣∣∣{x ∈ Rn : |T (f1, ..., fm)(x)| > λ
}∣∣∣ ≤ C(A+B)1/mλ−1/m.(2.1)

Once (2.1) has been established for fi’s with norm one, the general case follows imme-

diately by scaling. Let α be a positive real number to be determined later. We perform
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a Calderón-Zygmund decomposition of functions {fi}mi=1 at height (αλ)1/m to obtain a

decomposition

fi = gi + bi = gi +
∑
k

bi,k

such that

(a) |gi(x)| ≤ C(αλ)1/m for all almost x ∈ Rn;

(b) there exists a sequence of pairwise disjoint cubes {Qi,k}k so that the support of each

bi,k is contained in Qi,k, and∫
Rn
|bi,k(x)|dx ≤ C(αλ)1/m|Qi,k|;

(c)
∑
k

|Qi,k| ≤ (αλ)−1/m;

(d)
∑
k

χQ∗i,k ≤ 12n, where Q∗i,k has the same center as Qi,k and `(Q∗i,k) = (1 + η)`(Qi,k),

for any η with 0 < η < 1/4.

We mention that this decomposition can be obtained by letting {Qi,k}k be the Whitney

decomposition of the set {Mfi > (αλ)1/m}, where M is the uncentered Hardy-Littlewood

maximal operator with respect to cubes. Then property (d) is obtained from the fact

that the ratio of the side lengths of two Whitney cubes that touch is between 1/4 and

4 (see for example, Appendix J, [G]). Note that the functions bi,k are usually chosen

to satisfy
∫
Rn bi,k(x)dx = 0 as well, but we do not need this property. Conditions (b)

and (c) imply that ‖bi‖L1(Rn) ≤ C and hence that ‖gi‖L1(Rn) ≤ 1 + C. In addition, from

condition (a) we have that ‖gi‖Lp(Rn) ≤ C(αλ)1/mp′ for 1 ≤ p ≤ ∞; (p′ is here the dual

exponent of p). Now let

E
(1)
λ =

{
x ∈ Rn : |T (g1, g2, ..., gm)(x)| > λ/2m

}
E

(2)
λ =

{
x ∈ Rn : |T (b1, g2, ..., gm)(x)| > λ/2m

}
E

(3)
λ =

{
x ∈ Rn : |T (g1, b2, ..., gm)(x)| > λ/2m

}
...

E
(2m)
λ =

{
x ∈ Rn : |T (b1, b2, ..., bm)(x)| > λ/2m

}
,(2.2)

where each E
(s)
λ =

∣∣{x ∈ Rn : |T (h1, h2, ..., hm)(x)| > λ/2m
}∣∣ with hj ∈ {gj, bj} and all

the set E
(s)
λ are distinct. Since

∣∣{x ∈ Rn : |T (f1, f2, ..., fm)(x)| > λ
}∣∣ ≤ ∑2m

i=1 |E
(i)
λ | , it

will suffice to prove estimate (2.1) for each of the 2m sets E
(s)
λ .

For the sake of clarity, we first present the proof when m = 2. Let us start estimating

the measure of the set E
(1)
λ which is the easiest. Chebychev’s inequality and the Lq1(Rn)×
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Lq2(Rn)→ Lq,∞(Rn) boundedness of T give

|E(1)
λ | ≤ (4B)qλ−q‖g1‖qLq1 (Rn)‖g2‖qLq2 (Rn)

≤ CBqλ−q(αλ)(2− 1
q

) q
2

≤ C ′Bqλ−1/2αq−
1
2 .(2.3)

Consider now the term E
(s)
λ as above with s = 2, 3, 4. We will show that

|E(s)
λ | ≤ CBqλ−1/2αq−

1
2 + Cλ−1/2(α−1/2 + Aα1/2).(2.4)

Let xQi,k be the center of the cube Qi,k and let `(Qi,k) be the side length of Qi,k. Fix an

ε > 0 in (1.8). We denote by

Ji,ε(x) =
∑
k

(`(Qi,k))
n+ε

(`(Qi,k) + |x− xQi,k |)n+ε
, i = 1, 2,(2.5)

the Marcinkiewicz function associated with the family of the cubes {Qi,k}k. It is a known

fact, see [FS], that for every p > n/(n+ ε) we have

‖Ji,ε‖Lp(Rn) ≤ C(
∑
k

|Qi,k|)1/p ≤ C(αλ)−
1
2p .(2.6)

For the term E
(2)
λ , we note that b1 =

∑
k b1,k in which every b1,k is supported in a cube

Q1,k. We will approximate each b1,k by At1,kb1,k where t1,k = (`(Q1,k)/32)s and s is the

constant appearing in (1.5), and decompose

T (b1, g2)(x) = T (
∑
k

b1,k, g2)(x)

= T (
∑
k

At1,kb1,k , g2)(x) + T (
∑
k

(b1,k − At1,kb1,k) , g2)(x).

For the first of the above term, we note that if x ∈ Rn and y ∈ Q1,k, then

`(Q1,k) + |x− y| ≈ `(Q1,k) + |x− xQ1,k
| .

Using conditions (1.5), (1.6) and property (b) of the Calderón-Zygmund decomposition,

we have

|
∑
k

At1,kb1,k(x)| ≤ C
∑
k

∫
Rn

(`(Q1,k))
ε

(`(Q1,k) + |x− y|)n+ε
|b1,k(y)|dy

≤ C
∑
k

(`(Q1,k))
ε

(`(Q1,k) + |x− xQ1,k
|)n+ε

‖b1,k‖L1(Rn)

≤ C(αλ)1/2J1,ε(x),(2.7)



8 X.T. DUONG, L. GRAFAKOS, AND L.X. YAN

where we used the fact that 0 < ε < η and the size estimate for the decreasing function

h. Using (2.6) we obtain∣∣∣{x ∈ Rn : |T
(∑

k

At1,kb1,k , g2

)
(x)| > λ

4

}∣∣∣ ≤ (4B)qλ−q‖
∑
k

At1,kb1,k‖qLq1 (Rn)‖g2‖qLq2 (Rn)

≤ Cλ−qBq(αλ)q/2‖J1,ε‖qLq1 (Rn)(αλ)
q
2

(1− 1
q2

)

≤ Cλ−qBq(αλ)
q
2

(1− 1
q1

)
(αλ)

q
2

(1− 1
q2

)

≤ C ′Bqλ−1/2αq−
1
2 .(2.8)

Now, we let

Ω∗i =
⋃
k

Q∗i,k, i = 1, 2,

where Q∗i,k is a cube with the same center as Qi,k but expanded 9/8 times. By property

(c) of the Calderón-Zygmund decomposition, we have

|Ω∗i | = |
⋃
k

Q∗i,k| ≤ C
∑
k

|Qi,k| ≤ C(αλ)−1/2.

Then, ∣∣∣{x ∈ Rn :|
∑
k

T
(
b1,k − At1,kb1,k , g2

)
(x)| > λ

4

}∣∣∣
≤ C(αλ)−1/2 +

4

λ

∑
k

∫
(Q∗1,k)c

∣∣T (b1,k − At1,kb1,k , g2)(x)
∣∣dx.(2.9)

Next we observe that for x /∈ Q∗1,k and y1 ∈ Q1,k, we have that

|x− y1| >
1

16
`(Q1,k) = 2t

1/s
1,k

and that

|x− y1|+ |x− y2| ≥ (2 + 16
√
n)−1(|x− y1|+

√
n `(Q1,k) + |y1 − y2|) .

These facts, together with condition (1.8), yields∑
k

∫
(Q∗1,k)c

∣∣T (b1,k − At1,kb1,k , g2)(x)
∣∣dx

≤
∑
k

∫
(Rn)2

(∫
(Q∗1,k)c

∣∣K(x, y1, y2)−K(1)
t1,k

(x, y1, y2)
∣∣dx)|b1,k(y1)||g2(y2)|dy1dy2

≤ CA
∑
k

∫
(Rn)2

(∫
Rn

`(Q1,k)
ε

(|x− y1|+
√
n `(Q1,k)+|y1 − y2|)2n+ε

dx
)
|b1,k(y1)||g2(y2)|dy1dy2

+CA
∑
k

∫
(Rn)3

1

(|x− y2|+
√
n `(Q1,k))2n

φ
(32|y1 − y2|

`(Q1,k)

)
|b1,k(y1)||g2(y2)|dy1dy2dx

= I + II.
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For term I, we have

I ≤ CA
∑
k

∫
(Rn)2

`(Q1,k)
ε

(
√
n `(Q1,k) + |y1 − y2|)n+ε

|b1,k(y1)||g2(y2)|dy1dy2

≤ CA
∑
k

∫
(Rn)2

`(Q1,k)
ε

(1
2

√
n `(Q1,k) + |xQ1,k

− y2|)n+ε
|b1,k(y1)||g2(y2)|dy1dy2

≤ CA(αλ)1/2

∫
Rn
|g2(y2)|J1,ε(y2)dy2

≤ CA(αλ)1/2‖g2‖L2(Rn)‖J1,ε‖L2(Rn) ≤ CA(αλ)1/2.

Consider term II. Since φ is supported in [−1, 1], we have that |y1 − y2| ≤ `(Q1,k)/32.

Note that if y1 ∈ Q1,k, then y2 ∈ Q∗1,k. By property (d) of the Calderón-Zygmund

decomposition, we have

II ≤ CA
∑
k

‖b1,k‖L1(Rn)

∫
(Rn)2

1

(`(Q1,k)+|x− y2|)2n
|g2(y2)|11Q∗1,k(y2)dy2dx

≤ CA(αλ)1/2
∑
k

∫
(Rn)2

`(Q1,k)
n

(`(Q1,k)+|x− y2|)2n
|g2(y2)|11Q∗1,k(y2)dy2dx

≤ CA(αλ)1/2

∫
Rn
|g2(y2)|11∪kQ∗1,k(y2)dy2

≤ CA(αλ)1/2‖g2‖L2(Rn)

∣∣⋃
k

Q∗1,k
∣∣1/2 ≤ CA(αλ)1/2.

Estimates for I and II, combined with (2.9) and (2.8), yield

|E(2)
λ | ≤ Cλ−1/2(α−1/2 + Aα1/2).

By symmetry, we obtain that |E(3)
λ | ≤ Cλ−1/2(α−1/2 + Aα1/2).

Finally, we estimate term E
(4)
λ . For this one, we use an approach as we employed for

terms E
(2)
λ to decompose

T (b1, b2)(x) = T
(∑

k

b1,k,
∑
j

b2,j

)
(x) =:

5∑
i=1

Ti(b1, b2)(x),
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where

T1(b1, b2)(x) = T
(∑

k

At1,kb1,k ,
∑
j

At2,jb2,j

)
(x)

T2(b1, b2)(x) =
∑
k

∑
j: `(Q1,k)≤`(Q2,j)

T
(
At1,kb1,k , b2,j − At2,jb2,j

)
(x)

T3(b1, b2)(x) =
∑
k

∑
j: `(Q1,k)≤`(Q2,j)

T
(
b1,k − At1,kb1,k , b2,j

)
(x)

T4(b1, b2)(x) =
∑
k

∑
j: `(Q1,k)>`(Q2,j)

T
(
b1,k − At1,kb1,k , At2,jb2,j

)
(x)

T5(b1, b2)(x) =
∑
k

∑
j: `(Q1,k)>`(Q2,j)

T
(
b1,k , b2,j − At2,jb2,j

)
(x).

For terms T1(b1, b2) and T2(b1, b2) we can use an argument similar to that in the

treatment of E
(2)
λ to show that∣∣{x ∈ Rn :

∣∣T1(b1, b2)(x)
∣∣ > λ/20

}∣∣ ≤ CBqλ−1/2αq−
1
2

and ∣∣{x ∈ Rn :
∣∣T2(b1, b2)(x)

∣∣ > λ/20
}∣∣ ≤ Cλ−1/2(α−1/2 + Aα1/2).

Now consider term T3(b1, b2)(x). By condition (1.8), we have

|T3(b1, b2)(x)|

≤
∑
k

∑
j:`(Q1,k)≤`(Q2,j)

∫
(Rn)2

∣∣∣[K(x, y1, y2)−K(1)
t1,k

(x, y1, y2)
]
b1,k(y1)b2,j(y2)

∣∣∣dy1dy2

≤ CA
∑
k

∑
j:`(Q1,k)≤`(Q2,j)

∫
(Rn)2

`(Q1,k)
ε

(|x− y1|+ |x− y2|)2n+ε
|b1,k(y1)b2,j(y2)|dy1dy2

+CA
∑
k

∑
j:`(Q1,k)≤`(Q2,j)

∫
(Rn)2

|b1,k(y1)b2,j(y2)|
(|x− y1|+ |x− y2|)2n

φ
(32|y1 − y2|

`(Q1,k)

)
dy1dy2

=: T31(b1, b2)(x) + T32(b1, b2)(x).

Note that if x 6∈
⋃2
i=1 Ω∗i =

⋃2
i=1

⋃
kQ
∗
i,k and yi ∈ Qi,k, then

|x− yi| ≈ `(Qi,k) + |x− xQi,k |.

The assumption `(Q1,k) ≤ `(Q2,j) implies

T31 (b1, b2)(x)

≤ CA

∫
(Rn)2

(∑
k

`(Q1,k)
ε
2 |b1,k(y1)|

(`(Q1,k) + |x− y1|)n+ ε
2

)(∑
j

`(Q2,j)
ε
2 |b2,j(y2)|

(`(Q2,j) + |x− y2|)n+ ε
2

)
dy1dy2

≤ CA(αλ)J1,ε/2(x)J2,ε/2(x),
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which gives∫
(∪2i=1Ω∗i )c

|T31(b1, b2)(x)|dx ≤ CA(αλ)

∫
Rn
J1,ε/2(x)J2,ε/2(x)dx

≤ CA(αλ)‖J1,ε/2‖L2(Rn)‖J2,ε/2‖L2(Rn)

≤ CA(αλ)1/2.(2.10)

On the other hand, since {Q1,k}k is a sequence of pairwise disjoint cubes in Rn, we use

the fact that φ is supported in [−1, 1], the assumption `(Q1,k) ≤ `(Q2,j) and property

(d) of the Calderón-Zygmund decomposition, to deduce

|T32(b1, b2)(x)|

≤ CA
∑
k

∑
j:`(Q1,k)≤`(Q2,j)

‖b1,k‖L1(Rn)

∫
Rn

1

(`(Q2,j) + |x− y2|)2n
|b2,j(y2)|11Q∗1,k(y2)dy2

≤ CA(αλ)1/2
∑
j

∫
Rn

`(Q2,j)
n

(`(Q2,j) + |x− y2|)2n
|b2,j(y2)|11∪kQ∗1,k(y2)dy2

≤ CA(αλ)1/2
∑
j

∫
Rn

`(Q2,j)
n

(`(Q2,j) + |x− y2|)2n
|b2,j(y2)|dy2.

This gives∫
(∪2i=1Ω∗i )c

|T32(b1, b2)(x)|dx ≤ CA(αλ)1/2
∑
j

∫
(Rn)2

`(Q2,j)
n

(`(Q2,j) + |x− y2|)2n
|b2,j(y2)|dy2dx

≤ CA(αλ)1/2
∑
j

∫
Rn
|b2,j(y2)|dy2

≤ CA(αλ)1/2.(2.11)

Therefore,∣∣∣{x ∈ Rn :
∣∣∣T3(b1, b2)(x)

∣∣ > λ

20

}∣∣∣ ≤ |
2⋃
i=1

Ω∗i |+
20

λ

2∑
i=1

∫
(∪2i=1Ω∗i )c

|T3i(b1, b2)(x)|dx

≤ Cλ−1/2(α−1/2 + Aα1/2).

By symmetry, we have the same estimates for terms T4(b1, b2) and T5(b1, b2), and then

the desired estimate E
(4)
λ follows readily. Combining estimates of {E(i)

λ }4
i=1, we obtain

estimate (2.4) for any α > 0. Selecting α = (A+B)−1 in both (2.3) and (2.4) we obtain

the estimate (2.1) when m = 2.

Consider the case m ≥ 3. Chebychev’s inequality and the Lq1(Rn)× ...× Lqm(Rn)→
Lq,∞(Rn) boundedness of T give E

(1)
λ ≤ CBqλ−

1
mαq−

1
m . Let us estimate a set E

(s)
λ of

(2.2) with 2 ≤ s ≤ 2m. Suppose that for some 1 ≤ l ≤ m we have l bad functions and

m− l good functions appearing in T (h1, ..., hm), where hj ∈ {gj, bj}. It suffices to show
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that

|E(s)
λ | ≤ CBqλ−

1
mαq−

1
m + Cλ−

1
m (α−

1
m + Aα1− 1

m ).(2.12)

For matters of simplicity, we assume that the bad functions appear at the entries 1, 2, ..., l,

i.e., E
(sl)
λ = T (b1, ..., bl, gl+1, ..., gm), where sl =

∑l−1
i=0 C

i
m + 1. Fix a x 6∈ ∪lj=1 ∪kj Q∗j,kj .

One has

T (b1, ..., bl, gl+1, ..., gm)(x) =
∑
k1,...,kl

T
(
b1,k1 , ..., bl,kl , gl+1, ..., gm)(x)

=
∑
k2,...,kl

∑
k1:`(Q1,k1

)≤`(Qi,ki )
for all i=2,...,l

T
(
b1,k1 , ..., bl,kl , gl+1, ..., gm)(x)

+
l∑

j=2

∑
k1,...,kj−1

kj+1,...,kl

∑
kj :kj∈Θj

T
(
b1,k1 , ..., bl,kl , gl+1, ..., gm)(x)

=:
l∑

j=1

T (j)(b1, ..., bl, gl+1, ..., gm)(x),(2.13)

where Θj denotes the set

{kj : `(Qj,kj) < `(Qi,ki), i = 1, ..., j − 1 and `(Qj,kj) ≤ `(Qi,ki), i = j + 1, ..., l}.

For every T (j)(b1, ..., bl, gl+1, ..., gm), we will approximate each bj,kj by Atj,kj bj,kj where

tj,kj = (`(Qj,kj)/32)s and s is the constant appearing in (1.5); e.g.,

T (1) (b1, ..., bl, gl+1, ..., gm)(x)

=
∑
k2,...,kl

∑
k1:`(Q1,k1

)≤`(Qi,ki )
for all i=2,...,l

T
(
b1,k1 − At1,k1 b1,k1 , ..., bl,kl , gl+1, ..., gm)(x)

+
∑
k2,...,kl

∑
k1:`(Q1,k1

)≤`(Qi,ki )
for all i=2,...,l

T
(
At1,k1 b1,k1 , ..., bl,kl , gl+1, ..., gm)(x)

=: T (11)(b1, ..., bl, gl+1, ..., gm)(x) + T (12)(b1, ..., bl, gl+1, ..., gm)(x).(2.14)
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Consider the term T (11)(b1, ..., bl, gl+1, ..., gm). Note that x 6∈ ∪lj=1 ∪kj Q∗j,kj . By condition

(1.8), we have

|T (11)(b1, ..., bl, gl+1, ..., gm)(x)|

≤ CA
∑
k2,...,kl

∑
k1:`(Q1,k1

)≤`(Qi,ki )
for all i=2,...,l

∫
(Rn)m

`(Q1,k1)
ε
∏l

j=1 |bj,kj(yj)|(∑m
j=1 |x− yj|

)mn+ε

m∏
j=l+1

|gj(yj)|
m∏
j=1

dyj

+CA

m∑
u=2

∑
k2,...,kl

∑
k1:`(Q1,k1

)≤`(Qi,ki )
for all i=2,...,l

∫
(Rn)m

∏l
j=1 |bj,kj(yj)|(∑m
j=1 |x− yj|

)mn φ(32|y1 − yu|
`(Q1,k)

) m∏
j=l+1

|gj(yj)|
m∏
j=1

dyj

=: T
(11)
1 (b1, ..., bl, gl+1, ..., gm)(x) + T

(11)
2 (b1, ..., bl, gl+1, ..., gm)(x).

The assumption `(Q1,k1) ≤ `(Qi,ki), i = 2, ..., l, together with property (b) of the Calderón-

Zygmund decomposition, imply that

T
(11)
1 (b1, ..., bl, gl+1, ..., gm)(x)

≤ CA

∫
(Rn)m

l∏
j=1

(∑
kj

`(Qj,kj)
ε
m |bj,kj(yj)|

(`(Qj,kj) + |x− yj|)n+ ε
m

) m∏
j=l+1

( `(Q1,k1)
ε
m |gj(yj)|

(`(Q1,k1) + |x− yj|)n+ ε
m

) m∏
j=1

dyj

≤ CA(αλ)l/m
l∏

j=1

Jj, ε/m(x)
m∏

j=l+1

M(gj)(x),

where M denotes the Hardy-Littlewood maximal operator. On the other hand, we

use the fact that φ is supported in [−1, 1], and ‖b1,k1‖L1(Rn) ≤ C(αλ)1/m|Q1,k1|, the

assumption `(Q1,k1) ≤ `(Qi,ki), i = 2, ..., l, to deduce

T
(11)
2 (b1, ..., bl, gl+1, ..., gm)(x)

≤ CA(αλ)1/m

l∑
u=2

∑
k1

∫
(Rn)m−1

l∏
j=2
j 6=u

(∑
kj

`(Qj,kj)
n

m−1 |bj,kj(yj)|
(`(Qj,kj) + |x− yj|)

mn
m−1

)
m∏

j=l+1

( `(Q1,k1)
n

m−1 |gj(yj)|
(`(Q1,k1) + |x− yj|)

mn
m−1

)(∑
ku

`(Qu,ku)
n

m−1 |bu,ku(yu)|
(`(Qu,ku) + |x− yu|)

mn
m−1

11Q∗1,k1
(yu)

) m∏
j=2

dyj

+ CA(αλ)1/m

m∑
u=l+1

∑
k1

∫
(Rn)m−1

l∏
j=2

(∑
kj

`(Qj,kj)
n

m−1 |bj,kj(yj)|
(`(Qj,kj) + |x− yj|)

mn
m−1

)
m∏

j=l+1
j 6=u

( `(Q1,k1)
n

m−1 |gj(yj)|
(`(Q1,k1) + |x− yj|)

mn
m−1

)( `(Q1,k1)
n

m−1

(`(Q1,k1) + |x− yu|)
mn
m−1

|gu(yu)|11Q∗1,k1 (yu)
) m∏
j=2

dyj

≤ CA(αλ)l/m
m∑

u=l+1

l∏
j=2

Jj, n
m−1

(x)
m∏

j=l+1
j 6=u

M(gj)(x)
(
M(gu)(x) + (αλ)1/mJ1, n

m−1
(x)
)
.
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From these estimates, it follows by a standard argument as in the treatment of E
(4)
λ of

m = 2 that∣∣{x ∈ Rn :
∣∣T (11)(b1, ..., bl, gl+1, ..., gm)(x)

∣∣ > λ
}∣∣ ≤ Cλ−

1
m (α−

1
m + Aα1− 1

m ).

For the term T (12)(b1, ..., bl, gl+1, ..., gm), we use estimate (2.6), Chebychev’s inequality

and the Lq1(Rn) × ... × Lqm(Rn) → Lq,∞(Rn) boundedness of T to deduce the desired

estimate. This concludes the case l = 1. For l ≥ 2, we decompose T (j) = T (j1) + T (j2),

2 ≤ j ≤ l, as we did for l = 1 in (2.14). We then prove estimate (2.12) for the terms

T (b1, ..., bl, gl+1, ..., gm) by suitably adapting the argument as in the case l = 1 and m = 2.

This argument does not require any new ideas but just some cumbersome notation and

for this reason it is omitted. This concludes the proof of Theorem 1.1. �

A natural question about Theorem 1.1 is how strong is the imposed assumption (1.8),

and what is its relation with the regularity condition (1.4). We will show that, for

suitably chosen A
(j)
t , condition (1.8) is actually a consequence of (1.4). This implies that

Theorem 1.1 is a strengthening of the analogous theorems in [GT2] and [KS]. Precisely,

following Proposition 2 of [DM], for any m > 0, we can construct at(x, y) with the

following properties

at(x, y) = 0, when |x− y| ≥ t1/s,(2.15) ∫
Rn
at(x, y)dx = 1(2.16)

for all y ∈ Rn, t > 0. This can be achieved by choosing

at(x, y) = t−n/sχB(y,t1/s)(x),

where χB(y,t1/s) denotes the characteristic function on the ball B(y, t1/s). Then let At be

the operators which are given by the kernels at(x, y).

Proposition 2.1. Assume that T has an associated kernel K(x, y1, · · · , ym) which sat-

isfies condition (1.4). For each j = 1, 2, · · · ,m, let {A(j)
t }t>0 be approximations to the

identity represented by kernels at(x, y) satisfying (2.15) and (2.16). Then the kernels

K
(j)
t (x, y) of (1.7) satisfy condition (1.8). More precisely, there exist positive constants

C and ε so that

|K(x, y1, · · · , yj, · · · , ym)−K(j)
t (x, y1, · · · , yj, · · · , ym)| ≤ Atε/s

(|x−y1|+ · · ·+ |x−ym|)mn+ε

whenever t1/s ≤ 1
2
|x− yj|.
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Proof. For j = 1, 2, · · · ,m, we assume that t1/s ≤ 1
2
|x− yj|. Then,

|K(x, y1, · · · , yj, · · · , ym)−K(j)
t (x, y1, · · · , yj, · · · , ym)|

=
∣∣∣K(x, y1, · · · , yj, · · · , ym)−

∫
Rn
K(x, y1, · · · , z, · · · , ym)at(z, yj)dz

∣∣∣
=

∣∣∣K(x, y1, · · · , yj, · · · , ym)

∫
|z−yj |<t1/s

at(z, yj)dz

−
∫
|z−yj |<t1/s

K(x, y1, · · · , z, · · · , ym)at(z, yj)dz
∣∣∣

≤
∫
|z−yj |<t1/s

∣∣K(x, y1, · · · , yj, · · · , ym)−K(x, y1, · · · , z, · · · , ym)
∣∣|at(z, yj)|dz

≤ Atε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε

∫
|z−yj |<t1/s

|at(z, yj)|dz

≤ Atε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε
.

Note that the second equality is using condition (2.16) and the second inequality follows

from (1.4). This completes the proof of Proposition 2.1. �

3. Multilinear interpolation

In this section, we will show how to obtain strong type Lp1(Rn)×· · ·×Lpm(Rn)→ Lp(Rn)

boundedness results for multilinear operators of generalized Calderón-Zygmund type

starting from single estimate.

An m-linear operator T : S(Rn)× · · ·×S(Rn) 7→ S ′(Rn) is a linear in every entry and

consequently it has m formally transposes. The jth transpose T ∗j of T is defined via

(3.1) 〈T ∗j(f1, · · · , fm), h〉 = 〈T (f1, · · · , fj−1, h, fj+1, · · · , fm), fj〉,

for all f1, · · · , fm, g in S(Rn).

It is easy to check that the kernel K∗j of T ∗j is related to the kernel K of T via the

identity

(3.2) K∗j(x, y1, · · · , yj−1, yj, yj+1, · · · , ym) = K(yj, y1, · · · , yj−1, x, yj+1, · · · , ym).

Note that if a multilinear operator T maps a product of a Banach spaces X1× · · · ×Xm

into another Banach space X, then the transpose T ∗,j maps the product of Banach spaces

X1 × · · · ×Xj−1 ×X∗ ×Xj+1 × · · · ×Xm into X∗j . Moreover, the norms of T and T ∗,j

are equal. To maintain uniform notation, we may occasionally denote T by T ∗0 and K

by K∗0.
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Assumption 3.1. Assume that for each i = 1, · · · ,m there exist operators {A(i)
t }t>0

with kernels a
(i)
t (x, y) that satisfy conditions (1.5) and (1.6) with constants s and η and

that for every j = 0, 1, 2, · · · ,m, there exist kernels K
∗,j,(i)
t (x, y1, · · · , ym) such that

〈T ∗j(f1, · · · , A(i)
t fi, · · · , fm), g〉

=

∫
Rn

∫
(Rn)m

K
∗j,(i)
t (x, y1, · · · , ym)f1(y1) · · · fm(ym)g(x)dy1 · · · dymdx,(3.3)

for all f1, · · · , fm in S(Rn) with ∩mk=1supp fk ∩ supp g = ∅.

Assumption 3.2. There exist a function φ ∈ C(R) with suppφ ⊂ [−1, 1] and a constant

ε > 0 so that for every j = 0, 1, . . . ,m and every i = 1, 2, · · · ,m, we have

|K∗j(x, y1,· · · , ym)−K∗j,(i)t (x, y1, · · · , ym)|

≤ A

(|x− y1|+ · · ·+ |x− ym|)mn
m∑
k=1
k 6=i

φ
( |yi − yk|

t1/s

)

+
Atε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε
(3.4)

whenever t1/s ≤ |x− yi|/2.

Under Assumptions 3.1 and 3.2 we will say that T is an m-linear operator with general-

ized Calderón-Zygmund kernel K. The collection of functions K satisfying (3.3) and (3.4)

with parameters m, A, s, η and ε will denoted by m-GCZK(A, s, η, ε). A kernel K belongs

to m-GCZK(A, s, η, ε) exactly when it belongs to m-GCZK0(A, s, η, ε) and all of its ad-

joints also belong to m-GCZK0(A, s, η, ε). We say that T is of class m-GCZO(A, s, η, ε)

if T is associated with a kernel K in m-GCZK(A, s, η, ε).

We first have the following:

Theorem 3.1. Assume T is a multilinear operator in m-GCZO(A, s, η, ε). Let 1 <

q1, q2, · · · , qm, q <∞ be given numbers satisfying

1

q1

+
1

q2

+ · · ·+ 1

qm
=

1

q
.

Assume that T maps Lq1(Rn)×· · · · · ·×Lqm(Rn) to Lq(Rn). Let p, pj be numbers satisfying

1/m ≤ p < ∞, 1 ≤ pj ≤ ∞ and 1
p

= 1
p1

+ 1
p2

+ · · · + 1
pm
. Then all statements below are

valid:

(i) when all pj > 1, then T can be extended to be a bounded operator from the m-fold

product Lp1(Rn)× · · · × Lpm(Rn) to Lp(Rn);

(ii) when some pj = 1, then T can be extended to be a bounded operator from the

m-fold product Lp1(Rn)× · · · × Lpm(Rn) to Lp,∞(Rn).
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Moreover, there exists a constant Cn,m,pj ,qj such that the estimate holds

(3.5) ‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m,pj ,qj(A+ ‖T‖Lq1×···×Lqm→Lq) .

Proof. The proof of Theorem 3.1 is similar to that of Theorem 3, page 140 of [GT2]. We

outline the main idea when m = 2.

Proof of (i). Since T : Lq1(Rn) × Lq2(Rn) → Lq(Rn), it follows that the adjoint with

respect to the first variable T ∗1 : Lq
′
(Rn)× Lq2(Rn)→ Lq

′
1(Rn). But then Theorem 1.1

yields that T ∗1 : L1(Rn) × L1(Rn) → L1/2,∞(Rn). Interpolation (in the complex way)

between these estimates yields that T ∗1 : Ls1(Rn)×Ls2(Rn)→ Ls,∞(Rn) for some 1/s1+

1/s2 = 1/s where s > 1 since q′1 > 1. Duality implies that T : Ls
′,∞(Rn) × Ls2(Rn) →

Ls
′
1(Rn). Theorem 1.1 yields that T : L1(Rn) × L1(Rn) → L1/2,∞(Rn). Interpolating

between this estimate and the estimates T : Ls
′,∞(Rn) × Ls2(Rn) → Ls

′
1(Rn) and T :

Lq1(Rn)×Lq2(Rn)→ Lq(Rn) yields boundedness for T in the interior of an open triangle.

(Here we use the bilinear Marcinkiewicz interpolation theorem that yields strong type

bounds in the interior of the convex hull of three points at which Lorentz space estimates

are known, see [GK]). Bootstrapping this argument and using duality and interpolation,

we fill in the entire convex region 1 < p1, p2 ≤ ∞.

Proof of (ii). In the case when some pj = 1 (say p1 = 1), it follows from (i) above that T :

Lp(Rn)×L∞(Rn)→ Lp(Rn) for 1 < p <∞. Let us prove that T : L1(Rn)×L∞(Rn)→
L1,∞(Rn). For a fixed function f2 ∈ L∞(Rn), we set K̃(x, y) =

∫
Rn K(x, z, y)f2(y)dy,

and define the 1-linear operator

T̃ (f1)(x) = T (f1, f2)(x)

=

∫
Rn

(∫
Rn
K(x, z, y)f2(y)dy

)
f1(z)dz

=:

∫
Rn
K̃(x, z)f1(z)dz.(3.6)

It follows that the operator T̃ maps Lp(Rn) to Lp(Rn) with norm

B̃ = ‖T̃‖Lp→Lp ≤ ‖T‖Lp×L∞→Lp‖f2‖L∞ ≤ Cn,2,p,qj(A+ ‖T‖Lq1×Lq2→Lq)‖f2‖L∞ .
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By Assumption 2.2, we have∫
|x−z|≥2t1/s

|K̃(x, z)− K̃(1)
t (x, z)|dx

=

∫
|x−z|≥2t1/s

∣∣∣ ∫
Rn
K(x, z, y)f2(y)dy −

∫
Rn

(∫
Rn
K(x,w, y)f2(y)dy

)
At(w, z)dw

∣∣∣dx
=

∫
|x−z|≥2t1/s

∣∣∣ ∫
Rn

(
K(x, z, y)−K(2)

t (x, z, y)
)
f2(y)dy

∣∣∣dx
≤

∫
|x−z|≥2t1/s

∣∣∣ ∫
Rn

A

(|x− z|+ |x− y|)2n
φ
( |z − y|

t1/s

)
f2(y)dy

∣∣∣dx
+

∫
|x−z|≥2t1/s

∣∣∣ ∫
Rn

Atε/s

(|x− z|+ |x− y|)2n+ε
f2(y)dy

∣∣∣dx
≤ CA‖f2‖L∞(Rn).

Now fix a λ > 0. For every α > 0, we apply the Calderón-Zygmund decomposition to

the function f1 at height αλ, and an argument similar to that of Theorem 1 of [DM] to

obtain that there exists a constant C > 0 such that∣∣{x ∈ Rn : |T (f1, f2)(x)| > λ
}∣∣ =

∣∣{x ∈ Rn : |T̃ f1(x)| > λ
}∣∣

≤ Cλ−1
(
B̃pαp(1−

1
p

) + A‖f2‖L∞(Rn)

)
‖f1‖L1(Rn) .

We now select α =
[
(A+ ‖T‖Lq1×Lq2→Lq)‖f2‖L∞

]−1
. Therefore,∣∣{x ∈ Rn : |T (f1, f2)(x)| > λ

}∣∣ ≤ Cλ−1
(
A+ ‖T‖Lq1×Lq2→Lq

)
‖f1‖L1(Rn)‖f2‖L∞(Rn),

and thus T : L1(Rn)×L∞(Rn)→ L1,∞(Rn). Since T : L1(Rn)×L1(Rn)→ L1/2,∞(Rn),

it follows by (linear) interpolation that T : L1(Rn) × Lp2(Rn) → Lp,∞(Rn) where p =

p2/(p2 + 1).

Keeping track of the constants yields (3.5) as the norm of T from L1(Rn)×L1(Rn) to

weak L1/2(Rn) is bounded by a multiple of A plus the norm of T on Lq1(Rn)×Lq2(Rn). �

We note that in the proof of our Theorem 1.1, the assumption q1, q2, ..., qm < ∞ on

the indices was necessary (needed for instance in (2.8) in the inequality involving the

Marcinkiewicz integral). This restriction presents an inconvenience in certain applica-

tions. The main contribution of the result below is to remove this restriction on the

indices qj.

Theorem 3.2. Assume T is a multilinear operator in m-GCZO(A, s, η, ε). Assume that

for some 1 ≤ q1, q2, · · · , qm−1 ≤ ∞, 1 < qm <∞ and 0 < q <∞ with

1

q1

+
1

q2

+ · · ·+ 1

qm
=

1

q
,(3.7)

T maps Lq1(Rn)× · · · × Lqm(Rn) to Lq,∞(Rn).
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(i) Then T can be extended to be a bounded operator from the m-fold product L1(Rn)×
· · · × L1(Rn) to L1/m,∞(Rn). Moreover, for some constant Cn,m (that depends only on

the parameters indicated) we have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m(A+ ‖T‖Lq1×···×Lqm→Lq,∞).

(ii) T can be extended to be a bounded operator from the m-fold product Lp1(Rn) ×
· · · × Lpm(Rn) to L1/(m−m0),∞(Rn) where pik = ∞ for 1 ≤ k ≤ m0 and pik = 1 for

m0 + 1 ≤ k ≤ m with norm

‖T‖Lp1×···×Lpm→L1/(m−m0),∞ ≤ Cn,m(A+ ‖T‖Lq1×···×Lqm→Lq,∞).

Proof. By Theorem 1.1, it suffices to prove there exist some 1 ≤ q∗1, q
∗
2, · · · , q∗m−1, q

∗
m <∞

and 0 < q∗ <∞ with

1

q∗1
+

1

q∗2
+ · · ·+ 1

q∗m
=

1

q∗
,(3.8)

T maps Lq
∗
1 (Rn) × · · · × Lq∗m(Rn) to Lq

∗,∞(Rn). We outline the main idea when m = 2.

Suppose q1 = ∞ and 1 < q2 < ∞ and suppose T : Lq1(Rn) × Lq2(Rn) → Lq2(Rn).

Then T ∗1 maps Lq
′
2(Rn) × Lq2(Rn) → L1(Rn). As all the adjoints of T and T ∗1 have

kernels that satisfy assumptions 3.1 and 3.2 it follows from Theorem 3.1 that T ∗1 maps

Lp1(Rn) × Lp2(Rn) → Lp(Rn) for the whole range of exponents. In particular it maps

L3(Rn)× L3(Rn)→ L3/2. Then so does T and then we can apply Theorem 3.1 again to

obtain boundedness for T in the whole range possible.

�

4. Applications: commutators of singular integrals

In this section we apply Theorem 3.2 to deduce nontrivial bounds for the commutators

of A. Calderón. This operator along with its higher counterparts first appeared in the

study of the Cauchy integral along Lipscitz curves and in fact these led to the first proof

of the L2-boundedness of the latter. The first order commutator is defined as

C2(a, f)(x) =

∫
R

A(x)− A(y)

(x− y)2
f(y)dy, where A′ = a.(4.1)

It is known that the operator C2(a, f) extends as a bounded operator from Lp(R) ×
Lq(R) to Lr(R), when 1 < p, q ≤ ∞ and 1

p
+ 1

q
= 1

r
, r 6= ∞. Moreover, if either p

or q equals 1, then C2(a, f) maps Lp(R) × Lq(R) to Lr,∞(R) and in particular it maps

L1(Rn)×L1(R) to L1/2,∞(R). We refer to the articles of [AC], [CC] and [CM1] for these

results.
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In this section we obtain all possible Lebesgue strong and weak type bounds concerning

the mth order commutator of Calderón using the techniques developed in the previous

sections. We note that the results below for m ≥ 3 seem to be new (the previous articles

only consider the case m = 1 while [CM1] also considers the case m = 2).

We recall the m-th commutator given by

(4.2) Cm+1(f, a1, . . . , am)(x) =

∫
R

∏m
j=1

(
Aj(x)− Aj(y)

)
(x− y)m+1

f(y) dy x ∈ R ,

where A′j = aj. It is a well-known fact that f → Cm+1(f, a1, . . . , am) is a bounded

operator on L2(R). Moreover Cm+1 can be viewed as an m + 1-linear operator which

satisfies an L2 × (L∞)m → L2 estimate for each number m, that is, there is a constant

Cm > 0 such that for all suitable functions f, a1, . . . , am we have

‖Cm+1(f, a1, . . . , am)‖L2×L∞×...×L∞→L2 ≤ Cm ‖f‖L2(R)

( m∏
j=1

‖A′j‖L∞(R)

)
.

This will be our starting estimate of Theorem 3.2 for the operator Cm+1 with q1 = 2,

q2 = · · · = qm+1 =∞ and q = 2. There are various estimates for Cm ([CJ] and [M]). For

example, there is an absolute constant C > 0 such that Cm ≤ C(1 + m)3 for every m.

See Theorem 3, page 68 of [CJ].

Define

e(x) =

 1, x > 0,

0, x < 0.

Since A′j = aj, the m+ 1-linear operator Cm+1(f, a1, . . . , am) can be written as

Cm+1(f, a1, . . . , am)(y0) =

∫
Rm+1

K(y0, . . . , ym+1)a1(y1) . . . am(ym)f(ym+1)dy1 . . . dym+1

where the kernel K is

K(y0, . . . , ym+1) =
(−1)e(ym+1−y0)m

(y0 − ym+1)m+1

m∏
`=1

χ(
min(y0,ym+1),max(y0,ym+1)

)(y`) .
We notice that the adjoint kernels K∗j for j ∈ {1, . . . ,m} are

K∗j(y0, . . . , ym+1) =
(−1)e(ym+1−yj)m

(yj − ym+1)m+1

m∏
`=0
` 6=j

χ(
min(yj ,ym+1),max(yj ,ym+1)

)(y`) ,
while K∗(m+1) is essentially the same as the original kernel

K∗(m+1)(y0, . . . , ym+1) = −(−1)(e(y0−ym+1)+1)m

(y0 − ym+1)m+1

m∏
`=1

χ(
min(y0,ym+1),max(y0,ym+1)

)(y`) .
We have the following result concerning Cm+1.
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Theorem 4.1. The m-th order commutator Cm+1 in (4.2) is an (m+ 1)-linear operator

with a kernel K in (m+1)-GCZK(A, 1, 1, 1). Precisely, there exist operators {At}t>0 with

kernels at(x, y) that satisfy conditions (1.5) and (1.6) and for all j ∈ {0, 1, . . . ,m + 1}
and for all i ∈ {1, . . . ,m + 1} there exist kernels K

∗j,(i)
t (y0, y1, . . . , ym+1) so that (1.7)

holds and there exists a function φ ∈ C1(R) with suppφ ⊂ [−1, 1] such that

|K∗j(y0, y1,. . . ym+1)−K∗j,(i)t (y0, y1, . . . , ym+1)|

≤ A

(
∑m+1

k=1 |y0 − yk|)m+1

m+1∑
k=1
k 6=i

φ
( |yi − yk|

t

)
+

A t

(
∑m+1

k=1 |y0 − yk|)m+2
(4.3)

whenever t ≤ |y0 − yi|/2.

Proof. We begin by observing that it suffices to prove the required estimate for j = 0.

In fact the case j = m + 1 is identical to that of j = 0 while the case j ∈ {1, . . . ,m} is

symmetric; one just needs to reverse the roles of y0 by that of yj. Let us therefore take

j = 0 and consider the following two cases: (1) i ∈ {1, 2, , . . . ,m} and (2) i = m+ 1.

Let φ ∈ C∞(R) be even, 0 ≤ φ ≤ 1, φ(0) = 1 and supp (φ) ⊂ [−1, 1]. We set Φ = φ′

and Φt(x) = t−1Φ(x/t). Define,

Atf(x) =

∫
R
at(x, y)f(y)dy where at(x, y) = Φt(x− y)χ(x,∞)(y).

Then the kernels at(x, y) satisfy the conditions (1.5) and (1.6) with constants s = η = 1.

For i 6= 0 we set

(4.4) K
(i)
t (y0, . . . , ym+1) =

∫
R
K(y0, . . . yi−1, z, yi+1, . . . , ym+1)at(z, yi)dz

Case (1) i ∈ {1, 2, . . . ,m}.
In this case we may take i = 1 as all the indices in the set {1, 2, . . . ,m} play the same

role. There are two subcases to consider: y0 < ym+1 and ym+1 < y0.

Subcase (1.1) y0 < ym+1.

Here we have that K(y0, y1, . . . , ym+1)−K(1)
t (y0, y1, . . . , ym+1) is equal to

(4.5) (−1)m
∏m

k=2 χ(y0,ym+1)(yk)

(y0 − ym+1)m+1

[
χ(y0,ym+1)(y1)−

∫ y1

−∞
χ(y0,ym+1)(z)Φ

(z − y1

t

)dz
t

]
.

If the intervals (y0, ym+1) and (y1 − t, y1) do not intersect, then the difference in (4.5) is

zero. If they intersect, since t < |y0 − y1|/2, we must have that y0 < y1 − t < y1. Now if

ym+1 > y1, then the expression inside the square brackets in (4.5) is 1−
∫ y1
y1−t Φ( z−y1

t
)dz
t

which is zero. Therefore (4.5) is not zero exactly when y0 < y1 − t < ym+1 < y1. In this
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case we have ∣∣∣∣K(y0, y1, . . . , ym+1)−K(1)
t (y0, y1, . . . , ym+1)

∣∣∣∣
=

∣∣∣∣∏m
k=2 χ(y0,ym+1)(yk)

(y0 − ym+1)m+1

∫ ym+1

y1−t
Φ
(z − y1

t

)dz
t

∣∣∣∣
≤ C

(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+1
φ
(ym+1 − y1

t

)
.

Subcase (1.2) ym+1 < y0.

In this case we have that K(y0, y1, . . . , ym+1)−K(1)
t (y0, y1, . . . , ym+1) is equal to

(4.6)

∏m
k=2 χ(ym+1,y0)(yk)

(y0 − ym+1)m+1

[
χ(ym+1,y0)(y1)−

∫ y1

−∞
χ(ym+1,y0)(z)Φ

(z − y1

t

)dz
t

]
.

If the intervals (ym+1, y0) and (y1 − t, y1) do not intersect, then (4.6) is zero. If they

intersect, then since t < |y0− y1|/2 we must have y1− t < y1 < y0. Now if ym+1 < y1− t
the expression inside the square brackets in (4.6) is 1 −

∫ y1
y1−t Φ( z−y1

t
)dz
t

which is zero.

Thus (4.6) is not zero exactly when y1 − t < ym+1 < y1 < y0. In this case we have∣∣∣∣K(y0, y1, . . . , ym+1)−K(1)
t (y0, y1, . . . , ym+1)

∣∣∣∣
=

∣∣∣∣∏m
k=2 χ(ym+1,y0)(yk)

(y0 − ym+1)m+1

(
1−

∫ y1

ym+1

Φ
(z − y1

t

)dz
t

)∣∣∣∣
≤ C

(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+1
φ
(ym+1 − y1

t

)
.

Case (2) i = m+ 1.

Subcase (2.1) y0 < ym+1.

In this case we have K(y0, y1, . . . , ym+1)−K(m+1)
t (y0, y1, . . . , ym+1) is equal to

(4.7) (−1)m
∏m

k=1 χ(y0,ym+1)(yk)

(y0 − ym+1)m+1
−
∫ ym+1

−∞
(−1)e(z−y0)m

∏m
k=1 χ(y0,z)(yk)

(y0 − z)m+1
Φ
(z − ym+1

t

)dz
t
.

The first observation is that if yk < y0 or yk > ym+1 for some k ∈ {1, 2, . . . ,m}, then

the expression in (4.7) is zero. Therefore we must have y0 < yk < ym+1 for all k ∈
{1, 2, . . . ,m} for (4.7) not to be zero. This forces the first product in (4.7) to be equal

to 1. Since t < |y0 − ym+1|/2 in this situation we must have y0 < ym+1 − t < ym+1.

For the integral in (4.7), the range of integration in z is ym+1−t < z < ym+1 and yk < z

for all k = 1, . . . ,m. The latter can rephrased as yk0 < z where yk0 = max1≤k≤m yk. We

consider the following two sub-subcases:

Subsubcase (2.1.1) y0 < ym+1 − t < yk0 < ym+1.
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We observe that if t < |y0 − ym+1|/2 and ym+1 − t < z < ym+1 then |z − y0| ≥
|y0 − ym+1|/2 and also |yk0 − y0| ≥ |y0 − ym+1|/2. Since Φ = φ′, φ ∈ C∞0 (−1, 1) and

φ(0) = 1, an integration by parts gives

|K(y0, y1, . . . , ym+1)−K(m+1)
t (y0, y1, . . . , ym+1)|

=
∣∣∣(−1)m

1

(y0 − ym+1)m+1
− (−1)m

∫ ym+1

yk0

∏m
k=1 χ(y0,z)(yk)

(y0 − z)m+1
Φ
(z − ym+1

t

)dz
t

∣∣∣
=

∣∣∣ 1

|y0 − yk0|m+1
φ
(yk0 − ym+1

t

)
− (m+ 1)

∫ ym+1

yk0

1

(y0 − z)m+2
φ
(z − ym+1

t

)
dz
∣∣∣

≤
C φ
(yk0−ym+1

t

)
(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+1

+
C t

(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+2
.

Subsubcase (2.1.2) y0 < yk0 < ym+1 − t < ym+1.

Here we have

∣∣K(y0, . . . , ym+1)−K(m+1)
t (y0, . . . , ym+1)

∣∣
=

∣∣∣ 1

(y0 − ym+1)m+1
−
∫ ym+1

ym+1−t

1

(y0 − z)m+1
Φ
(z − ym+1

t

)dz
t

∣∣∣
= (m+ 1)

∣∣∣ ∫ ym+1

ym+1−t

1

(y0 − z)m+2
φ
(z − ym+1

t

)
dz
∣∣∣

≤ C t

(|y0 − ym+1|)m+2
≤ C ′ t

(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+2
.

Subcase (2.2) ym+1 < y0.

We have K(y0, y1, . . . , ym+1)−K(m+1)
t (y0, y1, . . . , ym+1) is equal to

(4.8)

∏m
k=1 χ(ym+1,y0)(yk)

(y0 − ym+1)m+1
−
∫ ym+1

−∞
(−1)e(z−y0)m

∏m
k=1 χ(z,y0)(yk)

(y0 − z)m+1
Φ
(z − ym+1

t

)dz
t
.

In this case we have ym+1 − t < ym+1 < y0. We first observe that (4.8) is zero unless all

yk lie in the interval (ym+1 − t, y0).

The range of integration for z is the intersection of the two intervals (ym+1 − t, ym+1)

and (−∞, yk1), where yk1 = min1≤k≤m yk. We consider the following two sub-subcases:

Subsubcase (2.2.1) ym+1 − t < ym+1 < yk1 < y0.

In this case all the yk are between ym+1 and y0 and we have
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|K(y0, . . . , ym+1)−K(m+1)
t (y0, . . . , ym+1)|

=
∣∣∣ 1

(y0 − ym+1)m+1
−
∫ ym+1

ym+1−t

1

(y0 − z)m+1
Φ
(z − ym+1

t

)dz
t

∣∣∣
= (m+ 1)

∣∣∣ ∫ ym+1

ym+1−t

1

(y0 − z)m+2
φ
(z − ym+1

t

)
dz
∣∣∣

≤ C t

(|y0 − ym+1|)m+2
≤ C ′ t

(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+2

since |z − y0| ≥ |y0 − ym+1| in this case.

Subsubcase (2.2.2) ym+1 − t < yk1 < ym+1 < y0.

Here we apply an integration by parts as we did previously to obtain the estimate

|K(y0, . . . , ym+1)−K(m+1)
t (y0, . . . , ym+1)|

=
∣∣∣ ∫ yk1

ym+1−t

1

(y0 − z)m+1
Φ
(z − ym+1

t

)dz
t

∣∣∣
≤ C

|y0 − yk1|m+1
φ
(yk1 − ym+1

t

)
+

(m+ 1) t

(|y0 − yk1|)m+2

≤
Cφ
(yk1−ym+1

t

)
(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+1

+
t

(|y0 − y1|+ · · ·+ |y0 − ym+1|)m+2

since in this case we have |y0 − yk1| ≥ |y0 − yk| for all k = 1, 2, . . . ,m+ 1.

The proof of the theorem is complete. �

Applying Theorem 3.2 we deduce the following result concerning the mth order com-

mutators. This contains several new endpoint estimates for them.

Corollary 4.2. Let 0 < 1/p =
∑m+1

j=1 1/pj. Then the m-th order commutator Cm maps

Lp1(R) × · · · × Lpm+1(R) to Lp,∞(R) whenever 1 ≤ p1, . . . , pm+1 ≤ ∞ and it also maps

Lp1(R) × · · · × Lpm+1(R) to Lp(R) when 1 < pj < ∞ for all j. In particular it maps

L1(R)× · · · × L1(R) to L1/(m+1),∞(R).

5. The higher dimensional commutator

In this section we obtain new bounds for the higher dimensional commutator intro-

duced by Christ and Journé [CJ]. We discuss a connection between this commutator

and the bilinear Hilbert transforms and we use this connection to obtain some nontrivial

new off-diagonal estimates for the former. The results of this section are inspired by

of Calderón’s original idea to express the 1-dimensional commutators in terms of the

bilinear Hilbert transforms.
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The higher dimensional commutator is defined as

(5.1) C(n)
2 (f, a)(x) = p.v.

∫
Rn
K(x− y)

∫ 1

0

f(y)a((1− t)x+ ty) dt dy

where K(x) is a Calderón-Zygmund kernel in dimension n and f , a are functions on Rn.

Christ and Journé [CJ] proved that C(n)
2 is bounded from Lp(Rn) × L∞(Rn) to Lp(Rn)

for 1 < p < ∞. Here we discuss some off-diagonal bounds Lp × Lq → Lr, whenever

1/p+ 1/q = 1/r and 1 < p, q, r <∞.

To obtain these bounds we will exploit a connection with the bilinear Hilbert transform

defined as

Hα,β(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt)g(x− βt)dt

t

for f, g are functions on the line and x, α, β ∈ R. This operator was first shown to be

bounded by Lacey and Thiele [LT1], [LT2] in the range

(5.2) 1 < p, q ≤ ∞ , 2/3 < r <∞ , 1/p+ 1/q = 1/r .

Uniform Lr bounds (in α, β) for it were obtained by Grafakos and Li [GL] in the local

L2 case, (i.e the case when 2 < p, q, r′ < ∞) and extended by Li [L] in the hexagonal

region

(5.3) 1 < p, q, r <∞ ,
∣∣∣1
p
− 1

q

∣∣∣ < 1

2
,

∣∣∣1
p
− 1

r′

∣∣∣ < 1

2
,

∣∣∣1
q
− 1

r′

∣∣∣ < 1

2
.

As the operator C(n)
2 (f, a) is n-dimensional, we will need to “transfer” Hα,β in higher

dimensions. To achieve this we use rotations. We have the following lemma:

Lemma 5.1. Suppose that K is kernel in R2n (which may be a distribution) and let TK

be the bilinear singular integral operator associated with K

TK(f, g)(x) =

∫∫
K(x− y, x− z)f(y)g(z) dy dz .

Assume that TK is bounded from Lp(Rn) × Lq(Rn) → Lr(Rn) with norm ‖T‖ when

1p+ 1/q = 1/r. Let M be a n× n invertible matrix. Define a 2n× 2n invertible matrix

M̃ =

(
M O
O M

)
, where O is the zero n × n matrix. Then the operator TK◦M̃ is also

bounded from Lp(Rn)× Lq(Rn)→ Lr(Rn) with norm at most ‖T‖.

Proof. To prove the lemma we note that

TK◦M̃(f, g)(x) = TK(f ◦M−1, g ◦M−1)(Mx)



26 X.T. DUONG, L. GRAFAKOS, AND L.X. YAN

from which it follows that

‖TK◦M̃(f, g)‖Lr = (detM)−1/r‖TK(f ◦M−1, g ◦M−1)‖Lr

≤ (detH)−1/r‖T‖ ‖f ◦M−1‖Lp‖g ◦M−1‖Lq

= ‖T‖ (detM)−1/r‖T‖ ‖f‖Lp(detM)1/p‖g‖Lq(detM)1/p = ‖T‖ .

�

We apply Lemma 5.1 to the bilinear Hilbert transform. Let e1 = (1, 0, . . . , 0) be the

standard coordinate vector on Rn. We begin with the observation that the operator

He1
α,β(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt e1)g(x− βt e1)

dt

t
x ∈ Rn

defined for functions f, g on Rn is bounded from Lp(Rn) × Lq(Rn) → Lr(Rn) for the

same range of indices as the bilinear Hilbert transform. Indeed, the operator He1
α,β can

be viewed as the classical one-dimensional bilinear Hilbert transform in the coordinate

x1 followed by the identity operator in the remaining coordinates x2, . . . , xn, where x =

(x1, . . . , xn). By Lemma 5.1, for an invertible n× n matrix M we have that

He1
α,β(f ◦M−1, g ◦M−1)(Mx) = p.v.

∫ +∞

−∞
f(x− αtM−1e1)g(x− βtM−1e1)

dt

t
, x ∈ Rn

maps Lp(Rn) × Lq(Rn) → Lr(Rn) with norm the same as the one-dimensional bilinear

Hilbert transform Hα,β whenever the indices p, q, r satisfy (5.2). If M is a rotation (i.e.

an orthogonal matrix), then M−1e1 can be any unit vector in Sn−1. We conclude that

the family of operators

Hθ
α,β(f, g)(x) = p.v.

∫ +∞

−∞
f(x− αt θ)g(x− βt θ)dt

t
x ∈ Rn

is bounded from Lp(Rn) × Lq(Rn) to Lr(Rn) with a bound independent of θ ∈ Sn−1

whenever the indices p, q, r satisfy (5.2). This bound is also independent of α, β whenever

the indices p, q, r satisfy (5.3).

It remains to express the higher dimensional commutator C(n)
2 in terms of the operators

Hθ
α,β. Here we make the assumption that K is an odd homogeneous singular integral

operator on Rn, such as a Riesz transform. For a fixed x ∈ Rn we apply polar coordinates

centered at x by writing y = x − rθ. Then we can express the higher dimensional

commutator in (5.1) as

(5.4)

∫
Sn−1

∫ ∞
0

K(θ)

rn

∫ 1

0

f(x− rθ)a(x− trθ) dt rn−1dr dθ .
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Changing variables from θ → −θ, r → −r and using that K(θ) is odd we write this

expression as

(5.5)

∫
Sn−1

∫ 0

−∞
K(θ)

∫ 1

0

f(x− rθ)a(x− trθ) dt dr
r
dθ .

Averaging the (5.4) and (5.4) we arrive at the identity

C(n)
2 (f, a)(x) =

1

2

∫
Sn−1

K(θ)

∫ 1

0

Hθ
1,t(f, a)(x) dt dθ .

This certainly implies the boundedness of C(n)
2 from Lp(Rn)×Lq(Rn) to Lr(Rn) whenever

the indices p, q, r satisfy (5.3). Interpolation with the known Lp×L∞ → Lp bounds yield

the following:

Corollary 5.2. Let K be an odd homogeneous singular integral on Rn. Then the n-

dimensional commutator C(n)
2 associated with K maps Lp(Rn)×Lq(Rn)→ Lr(Rn) when-

ever 1/p+1/q = 1/r and (1/p, 1/q, 1/r) lies in the open convex hull of the pentagon with

vertices (0, 1/2, 1/2), (0, 0, 0), (1, 0, 1), (1/2, 1/2, 1), and (1/6, 4/6, 5/6).

Bounds for C(n)
2 near the vertex (0, 1, 1) and on Lr(Rn) for r ≤ 1 (in particular, the

L1 × L1 → L1/2,∞ estimate derived in the 1-dimensional case) remain elusive at the

moment.
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