WEIGHTED KATO-PONCE INEQUALITIES FOR MULTIPLE FACTORS

SEAN DOUGLAS AND LOUKAS GRAFAKOS

ABSTRACT. In this paper, we establish weighted Kato-Ponce inequalities for multiple factors. Our
work is carried out in the framework of Muckenhoupt weights with particular focus on the weighted
L' endpoint case. This study is motivated by the fact that weighted Kato-Ponce inequalities for
many factors do not follow as a consequence of their 2-factor counterpart across the entire spectrum
of indices. In this work we also extend the validity of the Kato-Ponce inequality from the class of
Schwartz functions to the broader class of (weighted) Sobolev spaces.

1. INTRODUCTION

Kato-Ponce (KP) inequalities are normed fractional Leibniz rules estimates of the form

(L.1) 17*(F Dl < Crsprpe (177 Fon 91l os +1Flon 171 o2

where f, g are Schwartz functions, and J* is the Bessel potential which is given by multiplication
by (1 + |§|2)s/2 on the Fourier transform side. Here 1 < p1,p2 < 0, p% + p% = 1%’ and the range of
the smoothness index s is determined by n and p. These types of inequalities initially appeared in
the work of Kato and Ponce [I8] in connection with the Euler and Navier-Stokes equations. Such
estimates were proved using the Coifman-Meyer bilinear multiplier theorem [7] and Stein’s complex
interpolation theorem [28]. Subsequently many authors have studied KP (and related) inequalities:
we mention for instance the works of Kenig, Ponce, and Vega [19], Christ and Weinstein [6],
Gulisashvili and Kon [17], Bae and Biswas [I], Muscalu, Pipher, Thiele, and Tao [22], Grafakos
and Oh [14], Bernicot, Maldonado, Moen, and Naibo [3], Muscalu and Schlag [23], Cruz-Uribe and
Naibo [9], Fujiwara, Georgiev and Ozawa [11], Li [20], Hale and Naibo [24], Douglas and Grafakos
[10].

We note that is valid exactly when 1 < p1,p2 < 00, 1/2 <p < o0 and s > max{n(% —1,0)}
or s € 2N; on this see [I4] and [23]. The fact that is actually valid in the full range of indices
1 < p1,p2 < 0 and 1/2 < p < o makes it rather intriguing in the theory of bilinear operators.
However, it should be stressed that techniques based on Calderén-Zygmund theory cannot provide
strong type estimates at endpoints when p; = 1 or p2 = 1 and p; = py = o0.

Bourgain and Li [4] obtained when p; = ps = o0 via a new technique; this endpoint case
was previously studied in [I3]. The three main ingredients of this endpoint case are Bernstein’s
inequality, an interpolation technique (similar to Lemma, and the use of a suitable commutator.
This commutator enables high-low frequency paraproducts to be treated almost like high-high
frequency paraproducts. A refinement of this technique was employed by Oh and Wu [26] to obtain
the other endpoint case when one or both of p; and ps equal 1.

A weighted KP inequality is an estimate of the form

12) 17U oy < Crsnws (17 F i o190 52y + 17 ) 1700 203y
where f, g are Schwartz functions, p1,p2 = 1, p% + p% = ]13, w1, wsp are locally integrable, nonnegative
functions and w = wf/ P lwg/ P2 Naibo and Thomson [25] proved a generalized normed Leibniz rule
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over weighted Triebel-Lizorkin spaces that implies when 1 < p1,p2 < 0, wy € Ay, wo € 4,
and s is sharp based on n, p1, pa2, w1, wy. Oh and Wu [27] proved when 1 < p1,p2 < 00, and
wj = (1+1]-])%, aj = 0 where j = 1,2, and notably s depends only on n and p.

In this paper we study weighted KP inequalities for several factors. To motivate our study we
show the 3-factor KP inequality may not follow from the 2-factor KP by grouping two terms into
one. When p < 1, applying the 2-factor inequality, we will unavoidably end up with some Holder
indices that are less than one. For instance, in the 3-factor case let p1 = po = 3/2,p3 = 2 and
observe that if g1, g2 are such that % + % + % = q% ~I—% = % + q%, then ¢y <1 and ¢2 < 1. Then
can not be applied in this case as it requires the indices on the right to be greater than or equal to
one.

We now state the precise formulations of our main results. The A, classes and weighted local
Hardy space are defined in the next section. In the sequel we set 7, = inf{p : w € A,}. All norms
below are over R".

Theorem 1.1. Let m € Z+, % <Kp< oo, 1 <p,...,pm < © satz’sfy%z pil—i-'--—i-%. Let
P P

wj € Ap, and w = wy” cewpm . If s > max(n(7 —1),0) or s € 2N, then there exists a constant
C=C(n,m,s,p1,...,Pm,w) < o0 such that for all f; € S(R™) with l € {1,...,m} we have

1D*(f1 -+ Fadllowy < CUD™ Full o gy 12l oy - Il o gy + -

(1.3) s

+||f1HLP1(w1)||f2HLP2(w2) ~|lD meLPm(wm))
w0l € OO Al Vol Al +

T ‘|‘||f1HLp1(w1)”f2HLP2(w2) o 'HJsmeLPm(wm) )
Theorem 1.2. Let me Z™, % <p<o0,l<pr,...,pm <O satz’sfyéz pil—l—---+zi. Let

N lz|% |z <1
wile) = {\xyaj ] > 1
2 .

for je{l,....,m}, Bj,a; € (—n,n(p; — 1)) and let w = w{' ---wiy*. If s > max (O,n(%ﬂ - 1)),
then there exists a constant C = C(w,n,m, s,p1,...,pm) < 0 such that for all f; € sl (wy) with
je{l,...,m} we have
5) 175CF - oy < C U fll zos o 12l oo (g 1ol Lo (o) +

il o ) 12l o2 gy = 1T Finll Lo (un) )

2 B

Furthermore, if w; € Ay, and w = w{* ---wi" is such that %" < 1 then we also have (1.3) with
LP(w) in place of hP(w). We note that in (1.3) any tuple of indices (p1,...,pm) that appears
in a summand on the right of the inequality can be replaced by any other tuple (qi,...,qm) with
1 1

1_ 1,
p tI1+ +Qm

We note that Theorem [1.2] can also be proved with weights of the form (1+|-|)* for @ > 0 and s
independent of the choice of weights in analogy with Oh and Wu in [27]; though we do not provide
details here.

Upon completing this manuscript, we became aware that Wu [32] had recently obtained the L!
endpoint case for Muckenhoupt weights in the case of two factors. We arrived independently at
this result but our work also includes the L' endpoint case for m factors. It should be noted that
the case of two factors does not imply the one for multiple factors, and this justifies the present
study.
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We summarize the contributions of this article in the relevant literature: (a) use of an efficient
decomposition that manages the large array of paraproducts inherited by the complexity of m fac-
tors; (b) a dilation argument that allows the derivation of the homogeneous weighted KP inequality
from its inhomogeneous counterpart; and (c) an extension of Theorem [I.1| from Schwartz functions
to Sobolev space functions (Theorem for power weights (including the unweighted case); this
extension is not straightforward when p < 1 due to lack of duality.

Overall, our work not only provides multilinear extensions but also contains certain ingredients
that add new perspectives to the existing literature on KP inequalities.

2. NOTATION

For locally integrable function w > 0 a.e. and 0 < p < o0, the space LP(w), is defined as the set
of Lebesgue measurable functions on R™ such that

= ([ 1rpue )" <o

For p = o0, Lebesgue measure and wdx are mutually absolutely continuous, thus the essential
supremum with respect to wdz and Lebesgue measure are the same, hence |[-[| o0 = ||| 1o,y We
denote by M the uncentered Hardy-Littlewood maximal function with respect to cubes. For a
locally integrable function g and ¢ > 0, the maximal operator M, is given by M(g) = M(] g|t)%.
For real numbers A, B we use A < B to mean A < CB for some positive constant C. We also say
A and B are comparable, denoted by A ~ B, if and only if A < B and B < A.

For f e L*(R") the Fourier transform and inverse Fourier transform are respectively defined by

o= swermveay  J©) = | ety

We also use F to denote the Fourier transform, that is F(f) = fand F “1(f) = f. The space
of Schwartz functions is denoted by S(R™). The dual space of S(R™) is the space of tempered
distributions and is denoted by S’. We denote by Jou = (1 +|-|>)2@ the fractional Laplacian
operator for u € 8" and by Dsu = | - |*G its homogeneous counterpart defined for certain u € S'.

Let @(5 ) be a positive radially decreasing C°(R") function on R™ supported in twice the unit ball
and equal to one on the unit ball. Let ‘I’({ ) = ®(¢) — B(2¢), which is non-negative and supported in
the annulus % < [€] < 2. The frequency isolation operators A; and S; are defined to be convolution
with 2/7W(27.) and 2/"®(27.) respectively. The shifted frequency isolation operators for u € R™
are denoted by A;, and S;, are given by convolution with 2/"W(27 - +cqu) and 27"®(27 - +cop)
respectively, where the constants c¢j,cy are independent of j and u. By looking on the Fourier
transform side we also have the identity > ._. A; = S, for any jo € Z. The operator >;._, A; will
be denoted by Asy.

A Muckenhoupt weight or A, weight is a non-negative locally integrable function w on R" such

that for 1 < p < o0 and for all cubes @) in R™ with sides parallel to the axes, we have

= su L w(x) dx i wwip%lxp_1<oo
[w]a, = Qp<|Q|fQ (>d>(|Q,jQ (x) d) .

= su L w(z)dz | |w™?
[w]a, = Qp<|Q| fQ (z)d ) w0 < 0.

Now for the some basic facts about A, weights. If w € A; then M(w) < Cn,[w]Alw a.e. It is well
known that if 1 < p < o0 and w € Ay then [|M(f)| () < Cpn[wla, 1/l Loy~ If w e Ap then the
3
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measure wdz is doubling, specifically for A > 1 we have w(AQ) < A"™P[w]a,w(Q). If w € A, then
w’s dual weight 6 := w™ P is in Ap. For we Ay = pe(1,00) Ap We denote 7, = inf{p : w e Ap}.

The weighted fractional Sobolev space LE(w) for 1 < p < o0 and w € A, is defined to be the
space of tempered distributions, u, such that J¥(u) is a function in LP(w). The local Hardy space
hP(w) for 0 < p < o0, and w € Ay is defined to be the space of tempered distributions, wu, such
that [[ul[p(,) = |supgese [t ®(t71) = u]HLp(w) < o0. It is known that hP(w) is complete and
continuously embeds in the space of tempered distributions. For more information on local Hardy
spaces we refer to [12], [2], and [31].

3. INHOMOGENEOUS DECOMPOSITION

In this section we decompose the inhomogeneous fractional derivative, J*(fi--- f,), into para-

products of 4 types. Observe for f; € S(R"), z € R" and using that 3, ‘1’(2 J¢) =1 for £ £ 0 we
obtain

J(fife- - fm)(x)
- fmn(l + &4+ §m|2)§f1(§1)f2(§2) .. J?n:(gm)e%i(gﬁ.“%m),xd& g,

- [ ] 2 v ) R,

(31) jeZm
X (U416 + -+ Enl) 26 &) - Fin ()™ gy - d.

We now partition Z™ into 2™ subsets, then breaking up the kernel of as a sum over these
subsets will provide the desired paraproducts. For i = (11,...,mm) € {0,1Y™\{0} let t1,...,t be
all the indices of 1 corresponding to a 1; that is 1 = n;, = --- = 1, and the remaining entries are
zero. Define

B i :2{5' = (J1,---yJm) EZ™ : jt,, ..., Jt, are equal, strictly positive, and strictly bigger than
the remaining entries of j}

Furthermore, let %5 = (Z<o)™ = {0, —1,-2,...}".

Let us quickly verify that {#;}ge0,1y» is a partition of Z™. Let i=Ut,-rjm) € 2™ If
maxy(jr) < 0 then j € %, so suppose that maxy(ji) > 0. Let ji, = ... = j;, = maxy(ji), were
the remaining entries of j are strictly smaller. Let 77 € {0,1}"" be the element with 7, = 1 for
k = 1,...,b and the remaining entries zero; then clearly ; € #i;. To see these sets are disjoint
suppose 77 + @&, without loss of generality let n1 = 1 and a; = 0. Then if j € % we have
maxy(jx) = j1, while if j e 95’@ we have maxy(jx) > j1.

It follows the kernel of (| can be written as

(32) Y W)W %) Y2rg,) = Y D W) P(27R2G) - W27,
jezm 7e{0,1}m je#y

From (3.2) we see 77 with exactly Iy ones can be treated similarly up to permutation. Thus it is
enough to show the result for an 77 where the first [y entries are one, specifically let
o = (1,1,...,1,0,0,...,0).
[ —
lo

Furthermore, since ), _ j A, = S;_1 on the Fourier transform side we see that the entries of 77 with

a 1 correspond to a A; operator, while the coordinates with a 0 correspond to a S;_; operator.
4
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Thus to bound J*(f1 - -- fm,) it is sufficient to bound the following two terms

(3.3) JS((Sofl) e (SOfm)>
(3.4) (DAL (A5 fi) (S figr) -+ (i1 fm))-
jeN

For notational ease we define
(3.5) ul(f) = (A f) (A f2) - (Djfio) (Sj—1fio+1) - (Sj=1.fm).

Notice that J* (ZjeN u;-’o (f )) is a well defined function. This follows from Lebesgue dominated

convergence theorem, the fact Y s supported in an annulus, and that f; are Schwartz functions.
Furthermore, we have suppF (uj’(f)) < B(0, 2d+m).

3.1. Further decomposition for /[y = 1. To bound the L”(w) quasi-norm of we will use
different techniques when Iy = 1 and when [y > 1. When [p = 1 (that is we have exactly one A;
operator) we need a further decomposition. As we show in this section this reduces to showing the
desired bound on terms in (3.12)) and (3.16).

When [y = 1, this corresponds to the paraproduct

(3.6) DA A)(Sj-1fa) - (Sj-1fm)-
jeN
Fix a € N to be determined later. Observe that (3.6) can be written as
(3.7) DA (Si-aket Y Akf) (Siafmt D, Arfm).
jeN j—a<k<j j—a<k<j
Multiplying out the terms in (3.7) we can write (3.6)) as
(3.8) 2B (Sj-af2)(Sj-afs) - (Si—afm)
jeN

plus finitely many other paraproducts with at least one Ay operator where k ~ j. These finitely
many other paraproducts will behave in the same way as for lp > 1, hence we focus on .
We now pick a large enough so that the Fourier transform of a summand of is supported in
an annulus. The support of the Fourier transform of (Sj_qf2)(Sj—af3) - (Sj—afm) is contained in
the ball centered at zero with the radius (m — 1)2/-¢*1. The support of the Fourier transform of
A, f1 in contained in the annulus 2971 < || < 2/%1. Choosing a to be some integer larger than
log,(8m) gives (2m)2/79%1 < 2/~ for all integers j. It follows on the Fourier transform side this
choice of a gives |§| < 5= |&| for [ € {2,...,m}. Hence,
20er] 3 [61+ 4 nl > [61] — fool = ] > ler] - D 1]
m 2

thus [&1] ~ &1+ -+ 4+ &l

Now that the Fourier transform of is supported in an annulus we further decompose it in
terms of a commutator. For operators A, B let [A, B] = AB — BA be their commutator, then
can be written as

(39) Z[szsj—an"'Sj—afm]Ajfl
jeN
(3.10) + Z(JsAjfl)(Sj—afZ)(Sj—afS) e (Sj—afm)'
jeN

5



WEIGHTED KATO-PONCE INEQUALITIES DOUGLAS AND GRAFAKOS
Observe for (3.10) we can write
DT A1) (Sj—af2)(Sj=afs) - (Sjafm)

jeN

(3.11) = DT D) (fo = Dsjmaf2)(fs = Dsjmafs) -+ (fm — Dsjafm)-

jeN

Multiplying out the terms in (3.11]) one sees it can be written as a finite linear combination of terms
of the form

(3.12) DT DG f2) (G fs) -+ (G fom),

JeN

where Gé- is either the identity operator, I, or A ;_,.
Expanding the commutator in (3.9 and applying the fundamental theorem of calculus we obtain

[J87Sj—af2'"Sj—afm]A'fl(x>
[ e e @ ERE)S R &) - S afn(En)

il tm) e ge o qe

=] et ) B S () S n)

2 &t em) T qrge, o dg,,.

(3.13)

Now observe that

%@1 tt+ &) =Gt &) (G HtE+ &) G+ )T

Plugging this derivative into (3.13)) and multiplying out the dot product gives that (3.13) is a sum
of terms of the form

1 —
Lo e v v et + e+ + 60 AR ()

x Si—afa(&2) -+ Sj—afm(En)e?™E T HE)Tatdg, - dg,,

(3.14)

where s € {2,...,m},l e {1,...,m}and & = (&, ...,£™); without loss of generality (by symmetry)
we will assume that x = 2 and [ = 1. Recall a was chosen so that

‘51| 277G +t(&+ -+ &) 2772016 < 4

W~ \

Let A(y) be a C*(R™) function that is 1 on 47! < |y| < 4 and supported in 871 < |y| < 8. Let

oi(y) = y1(27% + [y) T Ay)

for y = (y1,...,Yn), which is a smooth compactly supported function. It follows that (3.14) can be
written as

2a(s_1)L Jnm o277 (E + &+ + EDNAi(6)S)a2(&2)  Siafm(Em)
62m(£1+---+£m)'mdtd§1 o dpm-

(3.15)
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Now using the identity 6/5“?0 = (2mi-)*{ for ¢ € S(R™) we move &2 to the 5;32 term and write

BI) as

1 —_— —_— —
T N GG R R W I PRV ACA R R A

> 627T’i(51+“'+fm)~$dtd§1 L d‘gm

In the sequel we will apply Lemma to (3.16). We note here that o; and all of its partials are
uniformly bounded in j due to the support of A and since j > 0. This gives that o;’s Fourier

coefficients are uniformly bounded in j.
To bound J*(f1--- fm) we have reduced bounding terms of 4 types; those given by (3.3]), (3.4))

when Iy > 1, (8:12), and (3-16).

4. PRELIMINARY MATERIAL

Lemma 4.1. [15] (Peetre’s Lemma) Let 0 < t < o0, u € CH(R™) (that is its partial derivatives are
continuous) and suppose its distributional Fourier transform satisfies supp(u) < B(0,7), then

p M < ChaMy(u)(2)
yeRn (14 7|yl) e

for every x € R™, where the constant is independent of r.

~

Lemma 4.2. [25] Let p € S(R") and 0 <t < o, pe R", f e L (R") and supp(f) = B(0, D27),
then

[2770(27 - 4p0) 5 1| < (14 ) FMu():

Proof. Let x € R™. Observe that

@)+ )| < |

2Im

— oJin
< su If(ﬂé y)| ”j | _dy
yern (1+ 27y + pl)t J (1 + |27y + pf)"*
n |f(z —y) f 20m
t sup L y d
yeitn (11 20y J (T+ [Py + a1
< (L+ |u)) T M(f) (),

where in the last inequality we applied Lemma 4.1 [l

< (1 + |ul)

Lemma 4.3. Let 1 < p < o, let w € A, then the operators J *(s > 0),Aj,Sj,Zj>k A;j are
bounded from LP(w) to LP(w).

Proof. First recall that convolution with an integrable radially decreasing function is controlled by
the Hardy-Littlewood maximal function. Now we will show the operators given in the statement
of the lemma are bounded in this weighted setting. If 1 < p < co0 then we have

195 1oy = |27 2@ 7|, ) SIMDN oy S 1y

If p = 1 then recalling that ® is radial we have

1:7 0y = [|[ 2722 @~ )00 wiertus

< f W) f 2;’”|<I>\<2f<x—y>>w<x>dxdy
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< f @)\ M(w) (y)dy

<INl £t ) -

Lastly, observe when p = o
195 oy = 1838l o =2 @@ 2 £ Sl = 16N ginay

It is easily seen that the same proof works for A; and J~*, as they correspond to convolution with
an integrable radially decreasing function.
Lastly observe for 1 < p < o0 we have

28| =1 = Skf ey S I o)
>k L (w)
as desired. g

The following lemma provides an estimate, that among others, is required to show that the
inhomogenous Kato-Ponce inequality implies the homogeneous version.

Lemma 4.4. [14] Let f € S(R™) and s > 0. Then for any v € [0,1], there exists a constant
C(n, s, f) independent of 7y, such that

(21 = 8)2 f(2)] < C(n, s, f) (1 + )7

Proposition 4.5. (Bernstein’s inequalities) Let 0 < p < 00, w € Ay, s € R, and let 15(5) be a
C*(R™) function supported in the annulus % < [€] < 2. Define A;’./’f to be convolution with 2™ (27")
for f e S(R™) and j = 0, then

(4.1) [T AY £l o) ~ 275 AY Fll 1o ).

Proof. Let @:(f) be a C* function that is 1 for 3 < |¢| < 2 and supported in } < [£| < 4. Let the

operator A% be defined by convolution with 2774, (27-). Let 0;(£) = (27% + 1€]2)24h, (€) which is a
smooth compactly supported function. Expanding in Fourier series we have

(4.2) 5(8) = X[—aan (&) D Cjue?™Es

UEL™

where due to o;’s smoothness the coefficients decay rapidly in u. Moreover, the Fourier coefficients
decay independently of j since all of the partial derivatives o; are uniformly bounded in j due to

the support of L/Z): and the fact that 7 > 0. Observe,
JSA?f(:C) = J(l + |§|2)%{y\*(z—jg)A;?f(g)ezmg.zdé
_Jzﬂ (275 + 2771 2 (2T AY f(E)e de

N 2ij D e ETTRAY f(€)eP T dg

UEL™
j b
=2° Z Cj,uAj,uf(w)-
HEL™
Hence we obtain

[JATF@)] <2 Y lesul AT, AL f(@)]
,LLEZ"

8
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Applying Lemma [4.2] and using that the Fourier coefficients decay rapidly in u independent of j
we obtain

(4.3)

JAYf| < 2 Mi(AY ).
Suppose w € A, for q = 1, then by choosing ¢ small enough so that £ > ¢ we see applying the
LP(w)-norm to we obtam
(4.4) [T AY Fll o) < 27°IAY £l 2o ).
To get the other direction we simply apply (4.4]),
2jSHA;‘prLP(w) = QjSHJﬂA?JSfHLP(w) < HJSA;‘prLP(w)-
O

Lemma 4.6. [26] If a, < min(2**A,27% B) for some a,b, A, B > 0 and every k € Z, then for any
u > 0, we have {ay}kez € (“(Z) and
b _a
Hartrezllpn < Aer® Bato.

In particular, if || fxll 1r () S lak| for 0 <r < oo, every k € Z, and a weight w then

ka < Aatv Bats,

keZ L7 (w)

The following lemma is a weighted multifactor variation of a lemma by Oh and Wu [26] that will
allow us to bound the commutator.

Lemma 4.7. [26] Let l <Kp<w0, 1<p1,...,pm <®© satzsfy s=o- et i. Let w; € Ay for
2 2
le{l,...,m}, and let w = w{' ---wi™. If 0 is a compactly supported C*(R™) function, then for

any j,b e N we have for all f; € S(R”) wzth le{l,...,m}

1 —_— —_— —_— . —
fo f @G+ &+ + En))D1(6)S (&) - Sjpfn (Em )T dEd

LP(w)
SN2 £l s oy 1550821 oy 1550 55 | s gy S5l o (uy
where the implicit constant depends on p1,...,pm,m,n,o,b. (Here dE: déy - - dép,.)

Proof. Let supp(c) < [-M, M]™ where M > 2m. Expanding ¢ in Fourier series we have
iy L
() = Xararp (1) Y cuemivains

HEL™

where due to o’s smoothness the coefficients decay rapidly in u. Now observe that
X[—M,M]n(27j(§1 T+ +é&m)) =1
on the support of the integrand, that is, the support of
(45) X O¥E &) ®278) - 2277 H,,).
To see this, observe that on the support of . we have
277 (& +t(Ea+ - + &) < 277m2H = 2m < M.

Thus the integral in the statement of this lemma can be written as

3 [ [ e s i KT ()56 8y () )

WEL™
9
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(4.6)

tu tu
= Z WAY f1<a:+ BYESSY; f S bf2 T+ 23+1M> ) Sj—bfm<x+ 2j+1M>dt‘
HEL™

Using the subadditivity of |]||fL'p where p = min(p, 1) and applying Hélder’s inequality to 1D we
have

p

Z CMAjfl (x + ﬁ) J: Sj—b/f2 (x + %fi’lfM) T Sj—bfm( 2]ith>dt

HEZL™
_ 1
T
< Y e |
0
sup
te[0,1]

Lr(w)

&4ﬁ@+.wﬂﬁf

Ajfl (.T + — r ) TIA]
LPQ(w2)

2i+1 0 LP1 (wr)

HEL™

%%m@+fﬂf)

7%
Si—vf3 <3? + m) 21N

Without loss of generality we will only bound the p,, term. By Lemma [£.2] and for small enough p
we have

x || sup

te[0,1]

LP3 (w3) Lpm (wm)

sup (1 + [tu])® My(Sj—sfm)

t
Sj+1—b5j—bfm(ﬂ?+ P )
te[0,1]

sup Y 1 Vi

t€[0,1]

~

Lpm (’LUm) Lrm (wm)

< (L+ 16D 2 1850 Fml| o -
Since the Fourier coefficients, c,, have rapid decay in p we have is bounded above by a constant
multiple of
125111 o g 19502 1o g 15505 o3 gy 1550l o 1,
as desired. (]

The following lemma is a simple multiplier theorem that will be used in the case s is a even
integer.

Lemma 4.8. Given r € (0,00], let o be a compactly supported C* function on R™, and w € Ay.
Then for any j € Z,

4@%

Lm(w)

f 0(279€)h(E)e* V)
where the implicit constant is independent of j.

Proof. Let supp(c) < [-M, M]"™ where M » 1. Expanding ¢ in Fourier series we have
L
U(y) = X[—M,M]n (y) Z cueZﬂ-’Ly 21\/1'“
UEL™

where the Fourier coefficients decay rapidly in u. Hence we have

F

J 0(277{)5]71(5) Ecu zmg.(m+2171M7w)d§
L (w) HEZ L (w)
[ 7
ZEMSh@+mHM) o

HEZL

10
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where in the last line we applied Lemma[4.2] and used the rapid decay of the Fourier coefficients. [

The following useful Theorem of Naibo and Thomson [25] enables us to side step the issue of
decay of the Fourier coefficients.

Theorem 4.9 ([25]). Let f € (L(R™)™, 0 < p < 0, w € Ay and s > n(min(1,p/7,)"" — 1).
Then for the inhomogeneous paraproduct (3.4)) we have

7 (S ub) <[l (S ub ) <|(X |2j5u}75(f>|2)§

JEN LP(w) jeN hP(w) JjeN Lp(’LU)

where the implicit constant depends only on n, s, p,w.
5. PROOF OF THEOREM [I.1]

As stated in the introduction this is an adaptation of Oh and Wu’s proof in [26] as well as the
work of Naibo and Thomson [25]. After applying our paraproduct decomposition many of the
techniques emulate the m = 2 case. For the readers convenience we supply the details. To prove
Theorem [1.1] we will show the desired bound for (3.3)),(3.4) when Iy > 1, (3.12)) and (3.16).

5.1. Low Frequency Term. First we will deal with bounding (3.3), i.e. JS((Sofl) e (Sofm)),
which can be written as

(5.1) J nm(l F1E + 4 EmDER(EN)FLEL) - B (&) Fin (&)X E - FEm) T ge, o ge
Let v := (Sof1) - (Sofm)- Note that ¥ is supported in |¢| < 2m. Thus we have

0(8) = (B(27™€))%0(€) = (27€) Smu(€),
since @(2*“) equals 1 on the support of ¥. It follows that || can be written as

52 | a+lepide s

Letting (&) = (1+ |§|2)%§>(2*m§), which is a smooth function with compact support, and applying
Lemma 4.8 we have

| a@sm©eme=a

R R CIARRCI

=[(Sof1) -+ (Sofm)ll 1o ()
< HSOfl”Lpl (wy) " 'HSOmeme(wm)

s HJ_SJSfl HLPI (w1)||f2”Lp2(w2) o 'Hmeme(wm)

Lr(wdzx L (w)

S Hjsflan(wl)Hf2||LP2(w2) o ’||fm||me(wm) .

The last line above is justified by the fact that the Bessel potential, J %, is bounded on LP*(w;)
by Lemma

5.2. lp = 2. For the term in (3.4)) we need to bound

(5.3) T (L) (Asfu)(Si1fosr) -+ (Si-1fm))

jeN Ip

where at least the first two operators are A;. For a natural number j recall

-

WP () = (512) (B fu)(Sjtfigs1) -+ (i1 fm):
11
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—

First suppose that s € 2N. Note that f(u?o(f)) is supported in |¢| < m2/t! < 27+™ Thus we
have

FPFNE) = (@™ L) 2F WP (£))(€) = B((27H™) ) F(Sjamul (£))(€),

since &)((2”’”)_1-) equals 1 on the support of F(u 0(j':‘)) . It follows that J*(};cy v/ B(f)) can be
written as

S0 IR RS, P (PP

jeN
=7 J IO F(Sjemul (£)) (&)X T dg
jeN
where
aj(€) = (27% + [¢[)2 @(27M¢)
is a smooth function with compact support. Note that the Fourier coefficients of o; will be uniformly
bounded in j since j > 0 and s/2 is a integer. Applying Lemma we obtain

2° [ o,@IOF (S emuP (PO

LP(w)

< 978

Sj-i—mugo(f)‘
mo(f
U (f) Lr(w)

Now suppose that s > n(min(1,p/7,) "' —1). Then by Theorem [4.9/we obtain ([5.3)) is also bounded
by a constant multiple of

LP(w)

(5.4)

(5.5) (SR <X R

jeN L (w) jeN LP(w)

In view of Lemma [4.6| and the estimates (5.4)) and (5.5)) it will sufficient to obtain two upper
u ()

Lo(w) which will cover both cases of s € 2N and s > n(min(1, p/7,) " — 1).
P(w

bounds on 275

By Holder’s inequality, 27¢ uzfo( f )’ o) is bounded above by
(5:6) 2 A Fll o gy 185 ol oo g 1951 Frot | oo s g )+ S5=1 Fonl o
(5.7) S QjSHleLm(wl) a 'HfIOHL”lo (wlo)HfloHHLploH(wlOH) . 'HmeLPm(wm) :

Applying Proposition twice on the first two A; operators we obtain that (5.6)) is bounded above
by a constant multiple of

2785 Fall ooy 15 Pt [ 0 gy 11 o L g a1y S50 F | o

68) <29 Al ol o Vil Ul
In view of , and Lemmaw1th a=s,b=—s,and
A= ||f1||LP1 (w1)||f2||Lp2 (w2) *° ‘Hflo HLplo (wiy) Hfl(’“HLplO“(szH) o ‘||fm||me(wm) s
B = HJSfl”LPI ||Jsf2”Lp2(w2) o 'HAjfZOHL”o (wlo])HfloJrlHLPlo+1(wl0+1) o ‘Hfm”LPm(wm)

12
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we obtain

T (D A2 (A i) (St figs1) -+ (Si-1fm))
JeN LP(w)

(HfIHLm (w1) Hf2||LP2 (wa) " 'HmeL”m(wm) HJSfIHLm (w1) HJSf2||Lp2 (wz)HfZ&HLpg(w?,) o '||fm||me(wm))

SIT Fill por oy 12l Lo oy = I Fomll o ey 110 21 o) 12 P2l 2 ) 1 31 08 gy = I o | o )

D=

as desired. This finishes the proof for the diagonal term.
5.3. High Frequency Terms. We bound terms in i.e.,
2 (A )G ) (G fs) - (G ).
jeN
where G is either the identity operator I, or A~ ;_,. First if Gl =1 for all l € {2,...,m} then by

Lemma E A~y is a bounded operator from LP!(w;) — L1 (wl) so applying Holder s inequality
to (JA=of1)f2- - fm, gives the desired bound. Now assume that at least one Gl Aj_q; without

loss of generality we will assume Gé- = Aj_, for every L € {1,...,m}, ie.
(5.9) DT A )(Ajafo) - (Asjafm).
jeN

We proceed by a similar method used in the previous case. Note that in general for f € S(R"),
q>1, and u e A, by Lemmas 3] and we have

(510) [ Asjmaf Nl =|| 2 Af|| S X 2T A ey S 271l
k>j—a La(u) k>j—a

Also, using Lemma [£.3] we have

(5.11) 1A j—af | Loy <1l zacu)

Applying the LP(w) quasi-norm to each summand in gives
H(JSAjfl)(A>jfaf2) T (A>jfafm)HLp(w)
(5.12) < HJSAijHLpl(wl)HA>j—af2HLp2(w2)Hf3”LP3(w3) el Lo ) -
It follows by , that is bounded above by a constant multiple of both
277N fill on uony 12 Foll 2o gy | 3l s (g = 1ol o (o)

and 2js”f1HLP1(w1)HfQHLm(wg)Hf3HLP3(w3) o ‘||meme(wm) :

Applying Lemma with @ = b = s and using the AMGM inequality again gives the desired
estimate.

5.4. Commutator. Lastly this leaves the estimate for the commutator, which recall we reduced

to the term in (3.16) i.e.,
. 1 . —
PO || o+ UG+ + DA ) g S () Sl

% 62m(£1+---+£m TAtdéy - - - dép.
Taking the LP(w) quasi-norm and applying Lemma yields

(5.13) IL7%, Sj-afz - Sjmafml Aifill oy
13
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(5.14) S POV AG 11 o (o 195=a91 F2 | 1o (g 130 225 gy Il om0

where the implicit constant is independent of j. Let A}C be the operator associated with the Fourier
multiplier &3®(27%.) (here & is the first coordinate of &) and let 0 < ¢ < min{1, s}. Observe,

HSj—‘lalfQHLm(wz) < 2 ”AkalfQHLPQ(“’?)
k<j—a
_ 2k: )Al
k;—a ‘ kfz‘ LP2 (w2)
5.15 = ok(1=€)gek || AL .
( ) kg—a ka‘ LP2(w2)

Noting that by Proposition we have

24| abs]|,, S min @l ) 21 Pll s )

and taking the geometric mean with respect to 1 — £, < gives

26k:

Abf

1—€ €
LP2 (ws) < ||f2||Lpi(w2)||Jsf2||Lp2(w2) :
Plugging this estimate into (5.15)) and using geometric series we obtain
S1 1—£ £
HSJ*aalfQHLpg(wQ) S 2](1 e)Hf2||Lzogs(w2)||<]Sf2||sz(w2) :

Applying this estimate to |i we have H[JS, Sj—afa--- Sj_afm]AjleLp(w) is bounded above by
a constant multiple of

—Je|| 78 =51 7s H
27N full o oy 12l s 12 F2ll o2 a5 ] 2 ) =Ll om0

and
211 F1ll 2o ) 1211 222 (o) 13 203 ) =1 | o ()
Applying Lemma (4.6l with a = s and b = € gives

DS Sjaf2 Si—afmlAjf1

Jez" L7 (w)

< (11100 ) 121 22 ) 1 5l sy =l sy )
s 1-£ — e
X (HJ flHLPI(wl)Hf2HLP2(w2)H‘] fQHLpz(wZ)HfBHLﬁs(wg) o 'Hfm”me(ws))

= (Il oy 17 P2 o g s gy Lol )

s

X (HJSfl”Lpl(wl)||f2”LP2(w2)||f3HLP3(w3)"'Hfm”LPm(wm))s+e

S ||f1||LP1 (wl)||Jsf2||Lp2(w2)||f3”Lp3(w3) o 'Hmeme(wm)

1T Fill Lon o) 12l 2oz () 1311 205 (g == 1 [l Lo o)

where the last line follows from concavity of the natural logarithm. This completes the proof of

the inhomogeneous estimate in ((1.4)). O
14
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6. ABOUT THEOREM

With the paraproducts in (3.3) and (3.4)) the proof of Theorem can be quickly handled by
Theorem and weighted vector valued Caldrén-Zygmund theory. In fact, it will be enough to
show the desired bound for (3.3) and (3.4). Recall p; > 1 for [ € {1,...,m}. First assume that

f1s--+, fm are Schwartz functions. The bound for (3.3)), i.e. J* ((Sofl) . (Sofm)> was given in the
proof of Theorem So we focus our attention on (3.4), i.e. J S(Z jeN u °(f )) By Theorem .

we obtain

1
s 0/ F is, o F\(2) 2
FEuP@)| || (SRR
jeN he (w) jeN L7 (w)
1
(12 A1) (A ) (S o) = (S ) )
jeN L7 (w)
1
<[ (X 127a;n12)® sup |2 (f2)| |5 18 ()|
JEN LP1(wy) ! LP2 (w2) J L0 (wy,))
< [sup 1S5 (fig 1) |lsup 15 ()]
J IPlo+1 (wig+1) J LPm (wy,)

<12 Fill o oy 12l oy -l

where in the last line we used the well known equivalence between the Triebel-Lizorkin norm and
Lebesgue norm for p; > 1 (one could also prove it using Lemma ), and the other operators
are dominated by the Hardy-Littlewood maximal operator. This proves Theorem for Schwartz
functions, in section 8 we extend this to weighted fractional Sobolev spaces. O

7. INHOMOGENEOUS WEIGHTED KP IMPLIES HOMOGENEOUS WEIGHTED KP

We now show that follows from . While it is possible to directly verify the homogeneous
KP inequality, it is worth noting that the process is slightly more delicate since it requires a different
paraproduct decomposition, and the sums are over j € Z rather than j € N. The forthcoming
method appears to offer a more intuitive pathway for achieving the homogeneous version. Though
the unweighted version of this technique is mentioned in the literature [§],[I7] it does not appear
to be adapted in more recent publications.

~

Proposition 7.1. Let 0 < p <0, 1 <7 <0, f € S(R?), Jif = F Y((R2+|-12)3f), we Ay,
and s > max(0,n(7,/p — 1)), then

A TR F oy = 1D° Fll oy

Proof. Let € be small enough so that 7 = 7, + € and s > max(0,n(7/p—1)); notice w € A;. First let
p < 2. By Lebesgue dominated convergence theorem .J3 converges pointwise to D°f. By Lemma
we have the estimate |J5f(x)[P < (1 + |z])~("**)P where the implicit constant is independent
of R. Now observe

[ ) ™ P ut) < g+ [ @ lal) )

|z|=1

Cwspn‘i‘ZJ i(nts)p w(:c)

§>0 J<\x|<2]+1
15
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< Curspn + Z 27](n+5)p2jnT
7=0

which is finite; here we used the fact that Muckenhoupt weights are doubling. Thus by Lebesgue
dominated convergence theorem again we have limp_,o||J5 f|| Lo(w) = Dl Lo (- Now suppose

p = o0. Observe that
Uif =D PO =| | (B + )% = i) F)eay
< | (R R =) Fwlan
Notice that ((1 + |y[2)? — \y|5)|f(y)| is a uniform upper bound. Thus by Lebesgue dominated

convergence theorem we can bring the limit inside, giving the desired limit. O

To prove the homogeneous case from the inhomogeneous case we will use a dilation argument.
For f € S(R") let fF) := f(R-). Observe,

PN = [ iR R ey

(y) e27riy-R£dy

=R [ (R P ey
= R*J3(f)(RE)

thus,

(7.1) T (N (©) = RETR(f)(RE).

It follows applying the inhomogeneous KP inequality to (fi--- fm)(R) = (fl)(R) T (fm)(R) with
dilated weights w;(R-) and using (7.1]) gives

1TRCS - fn) (B Lo ()
(7.2) <C(HJ}S%fl(R')HLPl(wl(R-))HfQ( Moz o)) I (B o (w0, (R)) +

AN BRI Lo oy (o 12 (B | o2 (o () -l TR S (R ')||me(wm(R~))>

where the R® term cancels from both sides. By a change of variables on both sides of ([7.2)) we note
that the factor R » cancels from both sides and thus we obtain

[JR(f1- fm)HLP(w) < C(HJf%leLm(wl)||f2HLpz(w2) . 'Hmeme(wm) +

1l Lot o) 121l 2o ) - 'HJ}S%meme(wm))-

The constant C' in this inequality is a function of [w;(R-)] Ay, but it is easy to see from the definition
of Muckenhoupt weight that [w;(R-)] Ap, = [w;] Ay, - Thus the constant C'is independent of R. The
homogeneous Kato-Ponce inequality is then attained by letting R — o0 and using Proposition

71l O

8. DENSITY AND COMPLETION OF THEOREM [L.2]

The existing literature regarding KP inequalities with an integrability index p < 1 has primarily
focused on Schwartz functions. In this section, we present a density argument that extends these
results to fractional Sobolev spaces within the framework of Muckenhoupt power weights.

16
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It’s important to note that if f; are Schwartz functions, then J*(fi - - fy,) is a well-defined func-
tion, allowing us to compute its weighted LP-norm. However, when dealing with general functions
fje Yo (wy), J°(f1,--., fm) is defined solely as a tempered distribution. Consequently, we cannot
directly employ LP(wj;) on the left-hand side of equation . To proceed with the proof, we must
first establish the well-defined nature of J*(f1 - fi,) as a tempered distribution. To prove this we
need the following statements about weights.

Proposition 8.1. Let g € LY9(w), 1 < ¢ < o where w € Ay, then g is a well defined tempered
distribution.

Proof. Let ¢ € S(R™), and 6 = w7 which is the dual weight of w € A;. Observe
11 —(n
<9, )| < JRR lgllelwaw™a (1 + )" (1 + |2) ="+
< 1 —(n+1)H 1 n+1
190y | 0+ lo) oy S0 (1 1) (o)

Y, sup [z[%p(@)].

o <n+1 TR

(3.1) <91l o | 1 + L2~

L (9)

The result will follow from (8.1]) once we show H(l + |z])=(+1) HL » is finite. To see this observe,
q

q / . ’
Hu + \x|)—<"+1>] , sf (1 + |a))~ ("D (2 da + ZJ 9=3i(n+1)d' g (1) dys
La(6) lz|<1 30 J2i<al<2i
SCo+ P2 [ gn)da
§=0 |z|<27+1
(8.2) < Cy+ Z 9—i(n+1)q 9jng’
j=0
<
where in (8.2)) we used that fdx is a doubling measure. O

Let Q,,m < R™ denote, for v € Ny and m € Z", the n-dimensional cube with sides parallel to the
coordinate axes, centered at 27”m, and with side length 27%. Furthermore, let w(Q) = SQ w(zx) dr
for a weight w and a cube Q.

Theorem 8.2. [2I] Let s >0, 1 <p < q < 0, wy € Ay, and wy € A;. Then LE(wg) — LI(w1) if
and only if

(8-3) sup 2_,/571)0(Ql/,m)_%wl(Ql/,m)é < 0.
veNg,mezZ™
For B,a > —n, let wg o € Ay be defined by
() lz|?if 2] < 1,
wg () =
P z[* if |2 > 1.
It is well known that wg, € A, if and only if 8, € (—n,n(p — 1)).

Proposition 8.3. [2I] Let o, By, cn, 61 > —n, and s > 0. Then the weights wy = wg, a, W1 =

wg, o, satisfy (8.3)) if and only if

(8.4) g MtPoy nth
p q

(8.5) s—

n n
— 2 -
p q
17
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Qo a1
p q
8.1. J*(f1--- fm) is a tempered distribution when %” > 1. Let w and w; be power weights as in
the statement of Theorem [1.2{and suppose %“ > 1. Let 7 := 7, +€ > 1 such that s > n(7/p—1) > 0.
Notice this implies % > 1. We will use Propositionto show if f; € Yo (wj) then fi - fr, € L7 (w).

Observe
T T L Lyp %
1o fnllrey < ([ (1A Pl o)
- 1lrp - 1P
(87) < ([ ) e ([ )™
n Rn
We now prove the product of terms in (8.7]) are finite by using Proposition to prove
5) 150500y <1l
For je{1,...,m} let

(8.6)

Tpi >
qi = —p; > pi.
1= b j
Notice that ) . .
S )
pPi 4 Py T
it follows
&1 1 1 P 1 1
(8.9) Z———zf(l——>=f——.
=g opN T/ p T
Furthermore, implies that
1 1 1
T q1 dm

The hypothesis % — 1< 2 and fact 7 > 1 imply

1 1 1
(8.10) St 228
p T nT n
The inequality in (8.10) and equality in then imply
1 1 s

)

bj 4 n
so we satisfy (8.5). Now to prove (8.4)). Let s, = n(% - 1). We have the following chain of

equivalences

_n—i—ﬂj >_n+5j
Dy %Pj
n_Bi__np_ Bip

S*_i_

pj pj piT DT
S*>£<1—£)+&<1—£) —

Sx

by T Dby T
wr (ZeB)0-) =
b; Dj T
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(8.11) US|
p P Py

Notice since |z|% € Ap,; we have f; € (—n,n(p; —1)). It follows

n ; n n(p; — 1 n n T
f+&<—+L=f+—,=n<nf.
pi  Pj Pj pj p;  Dj p

Thus we satisfy (8.11]), and working back up the chain of inequalities and using s, < s we attain

(8-4).
To show we satisfy observe,

J)—j — J)ng
Dj 4qj pj  PiT

and since 2 < 1 we satisfy (8.6)). Lastly we need |- |, |- |% € Ayg;- This is true since
T
aj,Bj € (—n,n(p; — 1)) <— n,n(pjz—) — 1))
Therefore, we may apply Proposition to obtain (8.8)), hence

1 p

1fre Sl ) < (J|Jsf1|mw1>;lf'~ (J|Jsfm|pmwm> mT < oo,

It follows that f1--- f;, € L™ (w), hence by Proposition J*(f1--- fm) is a well defined tempered
distribution.

8.2. Density Argument %w > 1. Recall ¢; = %pi and % = q% +- 4 ﬁ. Pick Schwartz functions
fij , for i € {1,...,m} converging to f; respectively in LY (w;) as j — o0. Then fij also converge to
fi respectively in L% (w;) as j — o0 by Proposition We will show this implies f{ - - - f7, converge

to fi-+ fm in L™ (w) as j — . By induction (adding and subtracting mixed terms) one can show
for aj, bj € C that

(8.12) a1+t — by bl < Y g = O] I | - |y [y |-l
j=1

where df; is either ay, or by. Applying (8.12)) to ’ fi fm— ff e f,,%q, we will without loss of generality

only consider a summand of the form |f; — f{ llg2| - - - |gm]|, where g; is either f; or fg . We now proceed
by bounding

. . 1p 12 s\ 7
— J o .. = — J “ e TP, T Pm
1= gl -t = [ [ (15 = el Ll ™ -0

<

(8.13)

La1 (wl)HgQHLqQ(wg) .. 'Hgm||L‘1m(wm)

letting j — oo gives the desired result.
Since f{,--- fi, converges to fi--- fp, in L™(w) this implies convergence in &’. To see this let
gj — g in L™(w) and let ¢ € S(R™) then

!

(8.14) j | |H—f 19— gllelwt o <|lg = g5l 1o 16
. Rn g gj = Rn g gkl S 19 g] LT(“’) ¥ LT/(’U}%)

/
T

which goes to zero as j — oo in view of the fact that the dual weight of w e A; is w™ ~.
Convergence of fi -+ f3, to f1 -+ fm in & then implies J5(f{, ..., fi) converges to J*(f1,..., fm)
in §&’. Also, by the KP inequality proved in Section 6 for Schwartz functions the sequence

Js(ff, .. ,ff}L) is Cauchy in hP(w), and thus it converges to G in hP(w), hence it converges to
19
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G in §’. By the uniqueness of the limit in §’, we have that G = J*(f1,..., fm). We conclude that

(1.3) holds.

8.3. 72 < 1. For this case we may work with general Muckenhoupt weights, that is assume w; € A, .
Furthermore, notice that w € A, since 7, < p. Observe,

1
1 1 P p
11+ Fonll o (W(n [Fmlo] )
1

< (f . ’f1|p1w1>pll e (JRn |fm|pmwm)rm

< O

where in the last line we applied Proposition By Proposition it follows that J*(f1--- fin)
is a well defined tempered distribution. The same density argument now works with with LP(w) in
place of h?(w).

Combining these facts we conclude the proof of Theorem

Remark: Suppose that {g;}jen is a sequence of Schwartz function that is Cauchy in h?(R™) for

some p < 1. (In our context, g; = f{ -+ fi.) Then as h?(R™) is a complete space, the sequence g;
converges in h?(R™) as j — oo to a tempered distribution g4. But for locally integrable functions,
the AP quasi-norm controls the LP quasi-norm, so the sequence g; is also Cauchy in LP(R™). Hence,
gj converges in LP(R™) as j — oo to a function g € LP(R™). A natural question is then how do the
function g and the tempered distribution gy relate. Let P; be the Poisson kernel. We claim that
the a.e. nontangential limit of P; * g4 as t — 07, which we call go, is equal to g a.e.

To verify this assertion we make some remarks. The characterizations of local hardy spaces in
terms of truncated maximal averages and truncated maximal Poisson averages (see Goldberg [12],
Stein [30, Chapter III, 5.17], and Wang, Yang, and Yang [31, Def 4.2 and Lemma 4.3]) provide
the necessary ingredients to conclude that Calderén’s theorem [5], [29, Chapter 7] on nontangential
limits of P, * w as t — 0% for v in HP? is also valid for w in h?.

Then to verify that gy = g a.e. we argue as follows: Suppose that P; x gg — go for all x € R"\E,
where |E| = 0. For points in R™\E we write

g0—9="(90—Pr*ga) + Pr*(9a—9;) + (Prxg; —g;) + (95 — 9).

For such points we take the pointwise limit as ¢ — 0 to obtain

l90 — g| < limsup |P; * (g4 — g5)| + |9; — 9] < Sup |Pt # (94 — 95)| + |gj — gl-
<<

t—0+

Raising to the power p and integrating over R™\E yields,

lgo = 9ll% < Cllga = gill}s + 95 = 9ll7
so letting j — o0 we obtain that gy = g a.e.
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