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Abstract. For all n > 1, the characteristic function of the unit ball in R2n is not the
symbol of a bounded bilinear multiplier operator from Lp(Rn)× Lq(Rn) to Lr(Rn) when
1/p + 1/q = 1/r and exactly one of p, q, or r′ = r/(r − 1) is less than 2.

1. Introduction

We denote the Fourier transform of a function f on Rn by f̂(ξ) =
∫

Rn f(t)e−2πit·ξ dt and
its inverse Fourier transform by f∨(ξ) = f̂(−ξ). Let B be the unit ball in Rn and χA the
characteristic function of a set A. The unboundedness of the linear operator

TχB (f) = (f̂χB)∨

on Lp(Rn) when p 6= 2 and n > 1 was established by Fefferman [2].
In this article we provide a variant of Fefferman’s result in the bilinear setting. Our

arguments also work for multilinear operators. Let 1 ≤ p1, · · · , pk ≤ ∞ and 0 < p < ∞.
We recall that a bounded function m : (Rn)k 7→ C is called a k-linear multiplier if the
k-linear operator

(f1, · · ·, fk) →
∫

Rn

· · ·
∫

Rn

m(ξ1, · · ·, ξk)f̂1(ξ1) · · · f̂k(ξk)e2πi(ξ1+···+ξk)·xdξ1 · · · dξk

initially defined for Schwartz functions fj on Rn admits a bounded extension

(1.1) Tm : Lp1(Rn)× · · · × Lpk(Rn) 7→ Lp(Rn).

In this case we call m the symbol of Tm. We will denote by Mp1,p2,...,pk,p(Rn) the set of all
k−linear multipliers m such that the corresponding operator Tm satisfies (1.1). The norm
of m in Mp1,p2,...,pk,p(Rn) is defined as the norm of Tm.

Nontrivial examples of functions in Mp1,p2,p(R) are characteristic functions of half-planes
(see [7],[8]) when p−1

1 +p−1
2 = p−1 < 3/2 and characteristic functions of planar ellipses when

p−1
1 + p−1

2 = p−1 and 2 ≤ p1, p2, p
′ < ∞ (see [4]). Here p′ = p/(p − 1). It is still an open

question whether the results of this paper hold if n = 1 . In this work we show that this is
not the case for the characteristic function of the ball in R2n if 1/p+1/q = 1/r and exactly
one of p, q, or r′ is less than 2. We will construct a counterexample when n = 2 and r > 2.
The general result will follow from duality and a multilinear version of de Leeuw’s theorem
[1].
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2. Bilinearization of Fefferman’s Counterexample for Mp,q,r(R2)

For a rectangle R in R2, let R′ be the union of the two copies of R adjacent to R in the
direction of its longest side. Hence, R ∪R′ is a rectangle three times as long as R with the
same center. Key to this argument is the following geometric lemma whose proof can be
found in [9], page 435 or [3], page 738.

Lemma 1. Let δ > 0 be given. Then there exists a measurable subset E of R2 and a finite
collection of rectangles Rj in R2 such that

(1) The Rj are pairwise disjoint.

(2) We have 1/2 ≤ |E| ≤ 3/2.

(3) We have |E| ≤ δ
∑

j

|Rj |.

(4) For all j we have |R′j ∩ E| ≥ 1
12 |Rj |.

Let δ > 0 and let E and Rj be as in Lemma 1. The proof of Lemma 1 implies that there
are 2k rectangles Rj of dimenstion 2−k×3 log(k+2). Here, k is chosen so that k+2 ≥ e1/δ.
Let vj be the unit vector in R2 parallel to the longest side of Rj and in the direction of the
set E relative to Rj .

Proposition 1. Let R be a rectangle in R2 and let v be a unit vector in R2 parallel to the
longest side of R. Let R′ be as above. Consider the half space Hv of R4 defined by

Hv = {(ξ, η) ∈ R2 × R2 : (ξ + η) · v ≥ 0}

Then the following estimate is valid for all x ∈ R2:

(2.2)
∣∣∣∣ ∫

R2

∫
R2

χHv(ξ, η)χ̂R(ξ)χ̂R(η)e2πix·(ξ+η)dξdη

∣∣∣∣ ≥ 1
10

χR′(x) .

Proof. We introduce a rotation (i.e. orthogonal matrix) O of R2 such that O(v) = (1, 0).
Setting ξ = (ξ1, ξ2), η = (η1, η2) we can write the expression on the left in (2.2) as∣∣∣∣ ∫∫

O−1(ξ+η)·v≥0

χ̂R(O−1ξ)χ̂R(O−1η)e2πix·O−1(ξ+η)dξdη

∣∣∣∣
=

∣∣∣∣ ∫∫
ξ1+η1≥0

χ̂O[R](ξ)χ̂O[R](η)e2πiOx·(ξ+η)dξdη

∣∣∣∣ .

Now the rectangle O[R] has sides parallel to the axes, say O[R] = I1 × I2. Assume that
|I1| > |I2|, i.e. its longest side is horizontal. Let H be the classical Hilbert transform on
the line. Setting Ox = (y1, y2) we can write the last displayed expression as∣∣∣∣χI2(y2)2

∫
ξ1∈R

χ̂I1(ξ1)e2πiy1ξ1

∫
η1≥−ξ1

χ̂I1(η1)e2πiy1η1dη1 dξ1

∣∣∣∣
= χI2(y2)

∣∣∣∣ ∫
ξ1∈R

χ̂I1(ξ1)
1
2
(I + iH)

[
χI1(·)e2πiξ1(·)](y1)dξ1

∣∣∣∣
= χI2(y2)

∣∣∣∣12(I + iH)(χI1)(y1)
∣∣∣∣ =

∣∣∣∣[χξ1≥0 χ̂I1×I2(ξ1, ξ2)
]∨(y1, y2)

∣∣∣∣ .
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Using the result from [3] (Proposition 10.1.2) or [9] (estimate (33), page 453) we deduce
that the previous expression is at least

1
10

χ(I1×I2)′(y1, y2) =
1
10

χ(O[R])′(Ox) =
1
10

χR′(x) .

This proves the required conclusion. �

Next we have the following result concerning bilinear operators on R2 of the form

Tm(f, g)(x) =
∫

R2

∫
R2

m(ξ1, ξ2, η1, η2)f̂(ξ1, ξ2)ĝ(η1, η2)e2πix·(ξ1+η1,ξ2+η2)dξ1dξ2dη1dη2 .

Lemma 2. Let v1, v2, ..., vj , ... be a sequence of unit vectors in R2. Define a sequence of
half-spaces Hvj in R4 as in Proposition 1. Let B, B∗1, B∗2 be the following sets in R4

B = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |η|2 ≤ 1}
B∗1 = {(ξ, η) ∈ R2 × R2 : |ξ + η|2 + |η|2 ≤ 1}
B∗2 = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |ξ + η|2 ≤ 1} .

Assume that one of TχB , TχB∗1
, TχB∗2

lies in Mp,q,r(R2) and has norm C = C(p, q, r).
Then we have the following vector-valued inequality∥∥∥∥∥( ∑

j

∣∣TχHvj
(fj , gj)

∣∣2)1/2
∥∥∥∥∥

r

≤ C

∥∥∥∥∥( ∑
j

∣∣fj

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥( ∑
j

∣∣gj

∣∣2)1/2
∥∥∥∥∥

q

.

for all functions fj and gj.

Proof. We begin with the assumption that TχB lies in Mp,q,r(R2) for some p, q, r > 0. Set
ξ = (ξ1, ξ2) and η = (η1, η2) ∈ R2. For ρ > 0 we define sets

Bρ = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |η|2 ≤ 2ρ2}
Bj,ρ = {(ξ, η) ∈ R2 × R2 : |ξ − ρvj |2 + |η − ρvj |2 ≤ 2ρ2}.

Note that bilinear multiplier norms are translation and dilation invariant. Easy computa-
tions give that

‖χBj,ρ‖Mp,q,r(R2) ≤ ‖χBρ‖Mp,q,r(R2) = C.

The important observation is that χBj,ρ → χHvj
pointwise as ρ →∞ and that the multiplier

norms of the functions χBj,ρ are bounded above by C.
Moreover, by the bilinear version of a theorem of Marcinkiewicz and Zygmund ([5],

section 9), we have the following inequality for all ρ > 0.∥∥∥∥∥( ∑
j

∣∣TχBρ
(fj , gj)

∣∣2)1/2
∥∥∥∥∥

r

≤ C

∥∥∥∥∥( ∑
j

∣∣fj

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥( ∑
j

∣∣gj

∣∣2)1/2
∥∥∥∥∥

q

.

Since χBj,ρ → χHvj
pointwise as ρ →∞, we can deduce that

lim
ρ→∞

TχBj,ρ
(f, g)(x) = TχHvj

(f, g)(x)

for all x ∈ R2 and suitable functions f and g. We note that the curvature of the ball B is
used here. By Fatou’s lemma we conclude

(2.3)

∥∥∥∥∥( ∑
j

∣∣TχHvj
(fj , gj)

∣∣2)1/2
∥∥∥∥∥

r

≤ lim inf
ρ→∞

∥∥∥∥∥( ∑
j

∣∣TχBj,ρ
(fj , gj)

∣∣2)1/2
∥∥∥∥∥

r

.
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Now, observe the following identity:

TχBj,ρ
(f, g)(x) = e4πiρvj ·xTχBρ

(e−2πiρvj ·(·)f, e−2πiρvj ·(·)g)(x).

Using (2.3) and the previous identity gives∥∥∥∥∥( ∑
j

∣∣TχHj
(fj , gj)

∣∣2)1/2
∥∥∥∥∥

r

≤ lim inf
ρ→∞

∥∥∥∥∥( ∑
j

∣∣e4πiρvj ·(·)TχBρ
(e−2πiρvj ·(·)fj , e

−2πiρvj ·(·)gj)
∣∣2)1/2

∥∥∥∥∥
r

≤ lim inf
ρ→∞

∥∥∥χBρ

∥∥∥
Mp,q,r

∥∥∥∥∥( ∑
j

∣∣e−2πiρvj ·(·)fj

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥( ∑
j

∣∣e−2πiρvj ·(·)gj

∣∣2)1/2
∥∥∥∥∥

q

= C

∥∥∥∥∥( ∑
j

∣∣fj

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥( ∑
j

∣∣gj

∣∣2)1/2
∥∥∥∥∥

q

,

where the last equality follows from the dilation invariance of bilinear multiplier norms.
The proof of the analogous statements for TB∗1 and TB∗2 is as follows. We introduce sets

B∗1
ρ = {(ξ, η) ∈ R2 × R2 : |ξ + η|2 + |η|2 ≤ ρ2}

B∗1
j,ρ = {(ξ, η) ∈ R2 × R2 : |ξ − ρvj + η|2 + |η|2 ≤ ρ2}

B∗2
ρ = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |ξ + η|2 ≤ ρ2}

B∗2
j,ρ = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |ξ + η − ρvj |2 ≤ ρ2}.

Note that both B∗1
j,ρ and B∗2

j,ρ converge to Hvj as ρ →∞. Using the identities

Tχ
B∗1

j,ρ

(f, g)(x) = e2πiρvj ·xTχ
B∗1ρ

(e−2πiρvj ·(·)f, g)(x)

Tχ
B∗2

j,ρ

(f, g)(x) = e2πiρvj ·xTχ
B∗2ρ

(f, e−2πiρvj ·(·)g)(x),

we obtain a similar conclusion for the bilinear operators TχB∗1
and TχB∗2

. �

The next ingredient that we will need is a multilinear version of de Leeuw’s theorem.
For 1 ≤ j ≤ k we will consider ξj ∈ Rn, ηj ∈ Rm. Then the pairs (ξj , ηj) ∈ Rn+m. Also for
a function f on Rn and g on Rm we introduce another function f ⊗ g on Rn+m by setting
(f ⊗ g)(ξ, η) = f(ξ)g(η).

Proposition 2. Suppose that m(ξ1, η1, ξ2, η2, ..., ξk, ηk) ∈ Mp1,p2,...,pk,p(Rn+m) for some
1 < p < ∞. Then for almost every (ξ1, ..., ξk) ∈ (Rn)k the function m(ξ1, ·, ξ2, ·, ..., ξk, ·)
lies in Mp1,p2,...,pk,p(Rm), with norm

‖m(ξ1, ·, ξ2, ·, ..., ξk, ·)‖Mp1,p2,...,pk,p(Rm) ≤ ‖m‖Mp1,p2,...,pk,p(Rn+m).

Proof. In the proof that follows for simplicity we take k = 2. The case of a general k
does not present any complications, only notational changes. We also assume that m is
continuous. This assumption may be easily removed by considering convolutions of m in
each variable with smooth approximate identities.

Fix f1, g1, h1 ∈ S(Rn) and f2, g2, h2 ∈ S(Rm) with ‖f2‖p1 = ‖g2‖p2 = ‖h2‖p′ = 1. Let

M(ξ1, ξ2) =
∫

Rm

∫
Rm

∫
Rm

m(ξ1, η1, ξ2, η2)f̂2(η1)ĝ2(η2)e2πi(η1+η2)·x2dη1dη2h2(x2)dx2
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If we can show that M ∈ Mp1,p2,p(Rn), then by Proposition 4 (vi) in [6], we can deduce
that ‖M‖∞ ≤ ‖M‖Mp1,p2,p . Then, by duality, it will follow that ‖Tm(f2, g2)‖p ≤ ‖M‖∞ ≤
‖M‖Mp1,p2,p . We have∣∣〈TM (f1, g1), h1

〉∣∣
=

∫
Rn

∫
Rn

∫
Rn

M(ξ1, ξ2)f̂1(ξ1)ĝ1(ξ2)e2πi(ξ1+ξ2)·x1dξ1dξ2h1(x1)dx1

=
∫

Rn

∫
Rn

∫
Rn

∫
Rm

∫
Rm

∫
Rm

m(ξ1, η1, ξ2, η2)f̂2(η1)ĝ2(η2)e2πi(η1+η2)·x2dη1dη2h2(x2)dx2

f̂1(ξ1)ĝ1(ξ2)e2πi(ξ1+ξ2)·x1dξ1dξ2h1(x1)dx1

=
∫

Rn+m

∫
Rn+m

∫
Rn+m

m(ξ1, η1, ξ2, η2)f̂1(ξ1)f̂2(η1)ĝ1(ξ2)ĝ2(η2)e2πi((ξ1,η1)+(ξ2,η2))·(x1,x2)

d(ξ1, η1)d(ξ2, η2)h1(x1)h2(x2)d(x1, x2)
=

∣∣〈Tm(f1 ⊗ f2, g1 ⊗ g2), h1 ⊗ h2

〉∣∣
≤ ‖m‖Mp1,p2,p(Rn+m)‖f1 ⊗ f2‖p1‖g1 ⊗ g2‖p2‖h1 ⊗ h2‖p′

= ‖m‖Mp1,p2,p(Rn+m)‖f1‖p1‖f2‖p1‖g1‖p2‖g2‖p2‖h1‖p‖h2‖p′

= ‖m‖Mp1,p2,p(Rn+m)‖f1‖p1‖g1‖p2‖h1‖p′ ,

where the inequality follows from the boundedness of Tm. �

The following is the main result of this article.

Theorem 1. Let n > 1 and 1/p + 1/q = 1/r with exactly one of p, q, or r′ less than 2. Let
B be the unit ball in R2n. Then χB /∈Mp,q,r(Rn).

Proof. Using Proposition 2 and considering the two dual operators TχB∗1
and TχB∗2

of
TχB , it suffices to show that all of these operators are not in Mp,q,r(R2) for p, q, r > 2.
Therefore, we fix n = 2 and p, q, r satisfying p−1 + q−1 = r−1 < 1/2. We suppose that χB

is in Mp,q,r(R2) with norm C.
Suppose that δ > 0 is given. Let E and Rj be as in Lemma 1. Let vj be the the unit

vector parallel to the longest side of Rj and pointing in the direction of the set E relative
to Rj . In the spirit of Fefferman’s argument, we estimate

∑
j

∫
E

∣∣Tj(χRj , χRj )(x)
∣∣2dx from

above and below and arrive to a contradiction. We have

∑
j

∫
E

∣∣THvj
(χRj , χRj )(x)

∣∣2dx

≤ |E|
r−2

r

∥∥∥∥∥( ∑
j

∣∣THvj
(χRj , χRj )|2

)1/2
∥∥∥∥∥

2

r

(Hölder’s inequality with r > 2)

≤ C |E|
r−2

r

∥∥∥∥∥( ∑
j

∣∣χRj

∣∣2)1/2
∥∥∥∥∥

2

p

∥∥∥∥∥( ∑
j

∣∣χRj

∣∣2)1/2
∥∥∥∥∥

2

q

(by Lemma 2)

= C |E|
r−2

r

( ∑
j

|Rj |
)2/r

(by the disjointness of the Rjs)

≤ C δ
r−2

r
∑

j

∣∣Rj

∣∣ (Lemma 1).
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For the reverse inequality we argue as follows:∑
j

∫
E

∣∣THvj
(χRj , χRj )(x)

∣∣2dx ≥
∑

j

∫
E

(
1
10χR′

j
(x)

)2
dx (Proposition 1)

= 1
100

∑
j

∣∣E ∩R′j
∣∣

≥ 1
1200

∑
j

∣∣Rj

∣∣ . (Lemma 1)

Putting these two estimates together, we obtain that

1
1200

∑
j

|Rj | ≤ C δ
r−2

r
∑

j

|Rj |

and therefore
1

1200 ≤ C δ
r−2

r

for any δ > 0. This is a contradiction since r > 2.
�

The authors would like to thank Maria Carmen Reguera-Rodŕıguez for pointing out an
oversight in an earlier version of this manuscript.
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