
MAXIMAL BILINEAR SINGULAR INTEGRAL OPERATORS
ASSOCIATED WITH DILATIONS OF PLANAR SETS

GEOFF DIESTEL AND LOUKAS GRAFAKOS

Abstract. We obtain square function estimates and bounds for maximal singular integral
operators associated with bilinear multipliers given by characteristic functions of dyadic
dilations of certain planar sets. As as consequence, we deduce pointwise almost everywhere
convergence for lacunary partial sums of bilinear Fourier series with respect to methods
of summation determined by the corresponding planar sets.

1. Introduction

We denote by f̂(ξ) =
∫

f(x)e2πiξ·xdx the Fourier transform of a function f on R. We
will use the notation f∨(ξ) = f̂(−ξ) for the inverse Fourier transform of f . If A ⊂ R2, we
denote by χA the characteristic function of the set A and by nA the set {nx : x ∈ A}.
For a bounded function m, Tm will denote the bilinear operator with multiplier m, i.e. the
operator

(1.1) Tm(f, g)(x) =
∫

R

∫
R

f̂(ξ)ĝ(η)m(ξ, η)e2πix(ξ+η)dξ dη , x ∈ R.

Bilinear transference results (see Fan and Sato [4], Blasco and Villaroya [1], and Grafakos
and Honźık [6]), relate the issue of norm (resp. almost everywhere) convergence as n →∞
of the bilinear Fourier series ∑

(j,k)∈(nA)∩Z2

f̂(j)ĝ(k)e2πi(j+k)x(1.2)

for 1-periodic functions f and g on the line, to boundedness properties of the bilinear
multiplier operator (resp. maximal bilinear multiplier operator) with multiplier χA; here
A is an open subset of R2 that contains the origin. An example of interest is given by the
quadrilateral

A = {(ξ, η) ∈ R2 : |ξ + αη| < 1, |η − ξ| < 1}, α ∈ R \ {1,−1},

in which case (1.2) converges in Lr([0, 1]) for functions f ∈ Lp([0, 1]) and g ∈ Lq([0, 1]) when
1 < p, q ≤ ∞ and 0 < 1/r = 1/p + 1/q < 3/2, as the operator Tm in (1.1) with m = χA is
bounded from Lp(R)×Lq(R) → Lr(R) for this range of p, q, r. This is a consequence of the
boundedness of the bilinear Hilbert transform on the line, established by Lacey and Thiele
[10], [11]. Another interesting example is provided by the unit disc

A = {(ξ, η) ∈ R2 : ξ2 + η2 < 1},
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for which the series in (1.2) converges in Lr([0, 1]) for f ∈ Lp([0, 1]) and g ∈ Lq([0, 1]) when
2 ≤ p, q < ∞ and 1/2 ≤ 1/p + 1/q < 1, as the associated bilinear multiplier χA was proved
by Grafakos and Li [7] to be bounded from Lp(R)× Lq(R) → Lr(R) for these indices.

When A = P ⊂ R2 is an open polygon containing the origin, the pointwise almost every-
where convergence of the bilinear series in (1.2) can be deduced from a theorem of Muscalu,
Tao and Thiele [12] on the maximal bilinear multiplier with symbol the characteristic func-
tion of a polygon (a consequence of the boundedness of the bi-Carleson operator). If any
part of the boundary of P is parallel to the anti-diagonal ξ + η = 0, the pointwise almost
everywhere convergence holds for f ∈ Lp(R), g ∈ Lq(R), 1 < p, q ≤ ∞ and 1/p + 1/q < 1.
Otherwise, the indices can be extended to the range 1/p + 1/q < 3/2.

Motivated by the study of the convergence of bilinear Fourier series with respect to
various types of summation, in this article, we obtain bounds for dyadic (bilinear) maximal
operators associated with dilations of certain planar sets. A useful tool in the study of the
boundedness of these operators are bilinear square functions, analogs of the classical (linear)
Littlewood-Paley square functions, that measure the orthogonality of bilinear operators on
certain Lp spaces. The results of this paper can be summarized as follows: In section 2
we discuss some preliminary orthogonality results concerning bilinear operators. In section
3, we give a simple proof of the boundedness of the maximal bilinear multiplier operator
formed by lacunary dilations of a polygon in R2. Our proof avoids using the results in [12]
and is based on a vector-valued estimate found in [3] and a geometric observation about
dilations of planar polygons. In section 4, we prove estimates for sums of signed bilinear
operators with multipliers dyadic dilates of planar polygons, uniformly in all choices of signs.
In section 5, we give lacunary pointwise almost everywhere convergence and Littlewood-
Paley type results in the local L2 case for planar sets with a smooth boundary; we focus our
attention to a specific figure of a square with rounded corners. These results are obtained
using the orthogonality estimates in section 2.

2. Preliminary Results

The following vector-valued result provides a multilinear version of a classical theorem
of Marcinkiewicz and Zygmund and can be found in Grafakos and Martell [8].

Proposition 1. Suppose 0 < p, q, r < ∞, 1/p + 1/q = 1/r and let

T : Lp(Rn)× Lq(Rn) → Lr(Rn)

be a bounded bilinear operator. Then T admits `2-valued extension. This means that there
is a constant C(p, q) < ∞ such that for all sequences fk ∈ Lp(R) and gj ∈ Lq(R) we have∥∥∥∥∥(∑

k

∑
j

∣∣T (fk, gj)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q)

∥∥∥∥∥(∑
k

∣∣fk

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥(∑
j

∣∣gj

∣∣2)1/2
∥∥∥∥∥

q

(2.3)

and in particular∥∥∥∥∥(∑
j

∣∣T (fj , gj)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q)

∥∥∥∥∥(∑
j

∣∣fj

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥(∑
j

∣∣gj

∣∣2)1/2
∥∥∥∥∥

q

.(2.4)

The following corollary was proved in Diestel [3]; it is a consequence of Proposition 1.

Corollary 1. Let T be a bounded bilinear operator with symbol m(ξ, η). If Tj,k has symbol
m(ξ−cj , η−dk) for real sequences {cj}j∈Z and {dk}k∈Z, then there is a constant C(p, q) < ∞
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such that ∥∥∥∥∥(∑
k

∑
j

∣∣Tj,k(fk, gj)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q)

∥∥∥∥∥(∑
k

∣∣fk

∣∣2)1/2
∥∥∥∥∥

p

∥∥∥∥∥(∑
j

∣∣gj

∣∣2)1/2
∥∥∥∥∥

q

.(2.5)

Moreover, if supp (m(ξ − cj , η − dk)) ⊂ [2j , 2j+1] × [2k, 2k+1] and 1 < p, q < ∞ such that
1/p + 1/q = 1/r < 2, then∥∥∥∥∥(∑

k

∑
j

∣∣Tj,k(f, g)
∣∣2)1/2

∥∥∥∥∥
r

≤ Cp,q‖f‖p‖g‖q.(2.6)

We will also make use of the following orthogonality lemma for the local L2 case, i.e. the
case when 2 ≤ p, q < ∞ and 1 < r ≤ 2. In the sequel all intervals will be finite. Recall that
the Littlewood-Paley operators ∆j associated with a family of intervals Ij are the operators
∆j(f) = (f̂χIj )

∨.

Lemma 1. Let 2 ≤ p, q < ∞, 1 ≤ r ≤ 2 and 1/p + 1/q = 1/r. Suppose that {Tj}j∈Z is
a family of uniformly bounded bilinear operators mapping Lp(R) × Lq(R) into Lr(R) such
that

(2.7) Tj(f, g)(x) = Tj(∆1
j (f),∆2

j (g))

where ∆1
j are Littlewood-Paley operators associated with a family of pairwise disjoint in-

tervals {Aj}j and ∆2
j are Littlewood-Paley operators associated with a family of pairwise

disjoint intervals {Bj}j. Then, there is a constant C(p, q) < ∞ such that∥∥∥∥∥(∑
j

∣∣Tj(f, g)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q)‖f‖q‖g‖q(2.8)

for all f ∈ Lp(R) and g ∈ Lq(R).

Proof. ∥∥∥∥∥(∑
j

∣∣Tj(f, g)
∣∣2)1/2

∥∥∥∥∥
r

r

=
∫

R

(∑
j

∣∣Tj(∆1
j (f),∆1

j (g))(x)
∣∣2)r/2

dx

≤
∑

j

∫
R

∣∣Tj(f, g)(x)
∣∣rdx, (r ≤ 2)

≤ C(p, q)
∑

j

∥∥∆1
j (f)

∥∥r

p

∥∥∆2
j (g)

∥∥r

q

≤ C(p, q)

(∑
j

∥∥∆1
j (f)

∥∥p

p

)r/p(∑
j

∥∥∆2
j (g)

∥∥q

q

)r/q

≤ C(p, q)

∥∥∥∥∥(∑
j

∣∣∆1
j (f)

∣∣2)1/2
∥∥∥∥∥

r

p

∥∥∥∥∥(∑
j

∣∣∆2
j (g)

∣∣2)1/2
∥∥∥∥∥

r

q

, (p, q ≥ 2)

≤ C(p, q)‖f‖p‖g‖q, (by Rubio de Francia’s theorem [13]).

�
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3. Square Function Estimates and Dyadic Pointwise Convergence I

Suppose that P is a planar polygon. It is an easy geometric observation that there
exists a positive integer M so that for i = 1, 2, · · · ,M there are one-sided cones Ci and an
appropriate choice of signs εi = ±1 such that

χP (ξ, η) =
M∑
i=1

εiχCi(ξ, η).

So to study the characteristic function of a planar polygon as a bilinear multiplier, it will
suffice to study multipliers given by characteristic functions of one-sided planar cones. A
very interesting geometric property that cones possess is the following: the dilation (about
the origin) of a one-sided cone is another one-side cone that can be obtained from the first
one by a translation. Therefore, we can express the characteristic function of the dilation
nP of the planar polygon P as

χnP (ξ, η) =
M∑
i=1

εiχCi(ξ − ai(n), η − bi(n))

for some choice of real numbers ai(n) and bi(n) that naturally depend on n.
Figure 1 illlustrates the dilation of a triangle P whose characteristic function can be

written as the sum of the characteristic functions of two cones minus the characteristic
function of another cone.

P

nP

Figure 1. Dilation of a triangle via translations of cones

The idea of identifying dilations with translations of an appropriate set of cones for
bilinear polygonal multipliers leads to a lacunary pointwise convergence theorem for bilinear
Fourier series associated with lattice points contained in dyadic dilates of polygons. This
will be a consequence of bilinear transference and of the following result.

Theorem 1. Let 1 < p, q < ∞ and 1/p + 1/q = 1/r < 3/2. Suppose P is a polygon with
no sides parallel to the anti-diagonal ξ + η = 0 such that [−1, 1]2 ⊂ P ⊂ [−2, 2]2. Then, for
all f ∈ Lp(R) and g ∈ Lq(R) we have the bound∥∥∥ sup

j

∣∣Tχ
2jP

(f, g)
∣∣∥∥∥

r
≤ C(p, q, P )‖f‖p‖g‖q.

As a consequence we obtain for f ∈ Lp(R) and g ∈ Lq(R) that

lim
n→∞

Tχ2nP
(f, g)(x) = f(x)g(x)

for almost all x ∈ R. If r > 1, P may have sides parallel to the anti-diagonal ξ + η = 0.
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Proof. Since

sup
j

∣∣Tχ
[−2j ,2j ]2

(f, g)(x)
∣∣ ≤ sup

j

∣∣(f̂χ[−2j ,2j ])
∨(x)

∣∣ sup
k

∣∣(ĝχ[−2k,2k])
∨(x)

∣∣,
the Carleson-Hunt theorem [2], [9] and Hölder’s inequality imply that∥∥∥ sup

j

∣∣Tχ
[−2j ,2j ]2

(f, g)
∣∣∥∥∥

r
≤ C0(p, q)‖f‖p‖g‖q.

Therefore, it suffices to show that∥∥∥ sup
j

∣∣(Tχ
2jP

− Tχ
[−2j ,2j ]2

)(f, g)
∣∣∥∥∥

r
≤ C(p, q,M)‖f‖p‖g‖q.

We can split the operator in question as a sum of four parts as follows:

Tχ
2jP

− Tχ
[−2j ,2j ]2

=
4∑

i=1

T i
j ,

where the multiplier of T i
j is mi

j defined below:

m1
j (ξ, η) = χ2jP (ξ, η)χ[2j ,2j+1](ξ)χ[−2j ,2j+1](η)

m2
j (ξ, η) = χ2jP (ξ, η)χ[−2j+1,2j ](ξ)χ[2j ,2j+1](η)

m3
j (ξ, η) = χ2jP (ξ, η)χ[−2j+1,−2j ](ξ)χ[−2j+1,2j ](η)

m4
j (ξ, η) = χ2jP (ξ, η)χ[−2j ,2j+1](ξ)χ[−2j+1,−2j ](η).

See Figure 2 for a geometric description of this decomposition.

4
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1

support of m0
3

support of m0

support of m0

support of m

2

1
0

Figure 2. Decomposition of χP − χ[−1,1]2

Now, we must show that∥∥∥ sup
j

∣∣T i
j (f, g)

∣∣∥∥∥
r
≤ Ci(p, q)‖f‖p‖g‖q

for each i. Since the arguments for different i’s are similar, we only consider i = 1. Notice
that the m1

j ’s are characteristic functions of dyadic dilations of a fixed polygon and hence
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(by the discussion in the introduction of this section) finite sums of characteristic functions
of translations of fixed one-sided cones by amounts depending on j. By the results of
Lacey and Thiele [10], [11], characteristic functions of one-sided cones are bounded bilinear
multipliers. Moreover, letting ∆j(f) = (f̂χ[2j ,2j+1])∨, it follows that

T 1
j (f, g)(x) = T 1

j (∆j(f), g)(x).

Let g0 = g and gk = 0 for all k 6= 0. Now, letting T 1
j,k = T 1

j for all k, we have set up matters
in the framework of Corollary 1.∥∥∥ sup

j

∣∣T 1
j (f, g)

∣∣∥∥∥
r

≤

∥∥∥∥∥(∑
j

∣∣T 1
j (f, g)

∣∣2)1/2
∥∥∥∥∥

r

=

∥∥∥∥∥(∑
j

∣∣T 1
j (∆j(f), g)

∣∣2)1/2
∥∥∥∥∥

r

=

∥∥∥∥∥(∑
j

∑
k

∣∣T 1
j,k(∆j(f), gk)

∣∣2)1/2
∥∥∥∥∥

r

≤ C1(p, q, P )

∥∥∥∥∥(∑
j

∣∣∆j(f)
∣∣2)1/2

∥∥∥∥∥
p

∥∥∥∥∥(∑
k

∣∣gk

∣∣2)1/2
∥∥∥∥∥

q

, (by Corollary 1)

= C1(p, q, P )

∥∥∥∥∥(∑
j

∣∣∆j(f)
∣∣2)1/2

∥∥∥∥∥
p

‖g‖q

≤ C1(p, q, P )‖f‖p‖g‖q,

by the Littlewood-Paley theorem. Putting everything together, it follows that∥∥ sup
j
|Tχ

2jP
(f, g)|

∥∥
r
≤ cr

(
C0(p, q) + 4 sup

1≤i≤4
Ci(p, q, P )

)
‖f‖p‖g‖q.

Of course, if P contains sides parallel to the anti-diagonal, the same result holds with
the added restriction that r > 1. �

Using similar arguments to those used in the proof of Theorem 1, the following square
function estimate for the tiling of R2 into the regions 2jP \ 2j−1P follows.∥∥∥∥∥(∑

j∈Z

∣∣Tχ
2jP\2j−1P

(f, g)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q, P )‖f‖p‖g‖q.

More generally, the following theorem can be proven.

Theorem 2. Let 1 < p, q < ∞, 1/p + 1/q = 1/r < 3/2, and Q be a polygon with no edges
parallel to the anti-diagonal whose boundary is contained in the set [−2, 2]2 \ [−1/2, 1/2]2.
Then for f ∈ Lp(R) and g ∈ Lq(R) we have∥∥∥∥∥(∑

j∈Z

∣∣Tχ
2jQ

(f, g)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q,Q)‖f‖p‖g‖q.

Moreover, if Q has edges parallel to the anti-diagonal, the same estimate holds for r > 1.
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Proof. Follow the same reasoning as in the proof of Theorem 1 with few minor modifications;
for instance one needs the following definition of the Littlewood-Paley operators ∆j(f) =
(f̂χ[2j−1,2j+1])∨ since ∂Q is a subset of [−2, 2]2\[−1/2, 1/2]2 and not of [−2, 2]2\[−1, 1]2. �

4. Sums of Certain Families of Bilinear Operators

Consider a family of bounded bilinear operators {Tj}j∈Z. What properties must these
operators possess to insure that

∑
j Tj is also a bounded bilinear operator? In this section

we will consider operators Tj = Tχ
2jQ

, where Q is a planar polygon. Throughout this
section we fix Littlewood-Paley operators ∆1

j associated with a family of disjoint intervals
and another sequence of Littlewood-Paley operators ∆2

j associated with another family of
disjoint intervals. The following proposition makes use of orthogonality properties of certain
polygons.

Proposition 2. Let 1 < p, q < ∞, 1/p + 1/q = 1/r and Q be a planar polygon such that
for all j ∈ Z
(4.9)

〈
Tχ

2jQ
(f, g), h

〉
=
〈
Tχ

2jQ
(∆1

j (f), g),∆2
j (h)

〉
or

(4.10)
〈
Tχ

2jQ
(f, g), h

〉
=
〈
Tχ

2jQ
(f,∆1

j (g)),∆2
j (h)

〉
for all Schwartz functions f, g, h. Then for 1 < r < ∞ we have

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(f, g)
∥∥∥

r
≤ C(p, q,Q)‖f‖p‖g‖q

for all f ∈ Lp(R) and g ∈ Lq(R). Moreover, if no edge of Q is parallel to the anti-diagonal
and 2/3 < r ≤ 1, we have

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(f, g)
∥∥∥

Hr(R)
≤ C(p, q,Q)‖f‖p‖g‖q.

Proof. Let 1 < p, q, r < ∞ and 1/p + 1/q = 1/r. Assume that (4.9) holds. A variation of
the following argument works under assumption (4.10). Let εj ∈ {−1, 1}. Then

sup
‖h‖r′=1

∣∣∣∣∣〈∑
j

εjTχ
2jQ

(f, g), h
〉∣∣∣∣∣

= sup
‖h‖r′=1

∣∣∣∣∣∑
j

〈
εjTχ

2jQ
(∆1

j (f), g),∆2
j (h)

〉∣∣∣∣∣
≤ sup

‖h‖r′=1

∫
R

(∑
j

∣∣Tχ
2jQ

(∆1
j (f), g)(x)

∣∣2)1/2(∑
j

∣∣∆2
j (h)(x)|2

)1/2
dx

≤ C(p, q,Q)‖f‖p‖g‖q,

where the last inequality follows from Hölder’s Inequality, Theorem 2, and the Littlewood-
Paley theorem. Since εj were arbitrary, we obtain the desired result.

Using (4.9) one may prove that ∆2
jT2kQ = 0 whenever j 6= k and that ∆2

kT2kQ = T2kQ

for all k, j ∈ Z. Indeed, to see the validity of these statements, act these bilinear operators
on a pair of functions (f, g) and take the inner product with a third function h. We obtain:

〈∆2
j (T2kQ(f, g)), h〉 = 〈T2kQ(f, g),∆2

j (h)〉 = 〈T2kQ(∆2
k(f), g),∆2

k∆
2
j (h)〉 = 0
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as ∆2
k∆

2
j = 0 when j 6= k. Likewise

〈∆2
k(T2kQ(f, g)), h〉 = 〈T2kQ(f, g),∆2

k(h)〉 = 〈T2kQ(∆2
k(f), g),∆2

k∆
2
k(h)〉

= 〈T2kQ(∆2
k(f), g),∆2

k(h)〉 = 〈T2kQ(f, g), h〉.

For 2/3 < r ≤ 1, use the Littlewood-Paley characterization of Hr(R), see [5], to obtain∥∥∥∑
j∈Z

εjTχ
2jQ

(f, g)
∥∥∥

Hr(R)
≈

∥∥∥∥∥(∑
j

∣∣∆2
j

(∑
k

εkTχ
2kQ

(f, g)
)
(x)
∣∣2)1/2

∥∥∥∥∥
r

=

∥∥∥∥∥(∑
j

∣∣∆2
j

(
εjTχ

2jQ
(f, g)

)
(x)
∣∣2)1/2

∥∥∥∥∥
r

=

∥∥∥∥∥(∑
j

∣∣Tχ
2jQ

(f, g)(x)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q,Q)‖f‖p‖g‖q,

where the last inequality follows from Theorem 2. �

The following corollaries can be proved using duality. Corollary 2 is of particular interest
as the operators there have kernels that resemble singular versions of paraproducts.

Corollary 2. Let 1 < p, q < ∞. Let Q be a planar polygon such that for all j ∈ Z

(4.11)
〈
Tχ

2jQ
(f, g), h

〉
=
〈
Tχ

2jQ
(∆1

j (f), g),∆2
j (h)

〉
for all Schwartz functions f, g, h. Then, if no edge of Q is parallel to the vertical axis in
R2, we have

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(b, g)
∥∥∥

q
≤ C(p, q,Q)‖b‖BMO‖g‖q

for all b ∈ BMO(R) and g ∈ Lq(R). Similarly, if Q is a polygon such that for all j ∈ Z

(4.12)
〈
Tχ

2jQ
(f, g), h

〉
=
〈
Tχ

2jQ
(f,∆1

j (g)),∆2
j (h)

〉
for all Schwartz functions f, g, h, then, if no edge of Q is parallel to the horizontal axis in
R2, we have

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(f, b)
∥∥∥

p
≤ C(p, q,Q)‖f‖p‖b‖BMO

for all b ∈ BMO(R) and f ∈ Lp(R).

Proof. The first bilinear adjoint of the operator Tχ
2jQ

(f, g) in (4.11) satisfies (4.9) (which
is the same identity with the roles of f and h reversed.) Likewise, the second bilinear
adjoint of the operator Tχ

2jQ
(f, g) in (4.12) satisfies (4.10). Also, the condition that no

side of Q is parallel to the anti-diagonal is equivalent to the condition that no side of the
transformation of Q under the first adjoint operator is parallel to the vertical axis ξ = 0.
A similar statement holds for the second adjoint operator and the other coordinate axis.
Therefore, the proof of the corollary follows by Proposition 2 and the H1-BMO norming
duality. �
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Corollary 3. Let 1 < p, q, r < ∞, 1/p + 1/q = 1/r and Q be a polygon such that〈
Tχ

2jQ
(f, g), h

〉
=
〈
Tχ

2jQ
(∆1

j (f),∆2
j (g)), h

〉
for all f, g, h Schwartz functions. Then, for f ∈ Lp(R) and g ∈ Lq(R) we have

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(f, g)
∥∥∥

r
≤ C(p, q,Q)‖f‖p‖g‖q.

Moreover, if no edge of Q is parallel to the coordinate axes,

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(f, b)
∥∥∥

p
≤ C(p, Q)‖f‖p‖b‖BMO

and

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(b, g)
∥∥∥

q
≤ C(q, Q)‖g‖q‖b‖BMO.

Proof. As in the proof of Corollary 2, the operators Tχ
2jQ

(f, g) are the bilinear transposes
of bilinear operators satisfying Proposition 2. Therefore, the proof follows from duality. �

Theorem 2 can now be improved in the range 1 < p, q, r < ∞.

Theorem 3. Let 1 < p, q, r < ∞ and let Q be a polygon whose boundary ∂Q is contained
in the set [−2, 2]2 \ [−1, 1]2. Then for f ∈ Lp(R) and g ∈ Lq(R) we have

sup
εj∈{−1,1}

∥∥∥∑
j∈Z

εjTχ
2jQ

(f, g)
∥∥∥

r
≤ C(p, q,Q)‖f‖p‖g‖q.

Proof. By decomposing [−2, 2]2 \ [−1, 1]2 into the sets

Q1 =
(
[−2, 2]2 \ [−1, 1]2

)
∩ [1/2, 2]2

Q2 =
(
[−2, 2]2 \ [−1, 1]2

)
∩
(
[−1/2,−1/2]× [1, 2]

)
Q3 =

(
[−2, 2]2 \ [−1, 1]2

)
∩
(
[−2,−1/2]× [1/2, 2]

)
Q4 =

(
[−2, 2]2 \ [−1, 1]2 ∩

(
[−2,−1]× [−1/2, 1/2]

)
Q5 =

(
[−2, 2]2 \ [−1, 1]2 ∩ [−2,−1/2]2

Q6 =
(
[−2, 2]2 \ [−1, 1]2 ∩

(
[−1/2, 1/2]× [−2,−1]

)
Q7 =

(
[−2, 2]2 \ [−1, 1]2 ∩

(
[1/2, 2]× [−2,−1/2]

)
Q8 =

(
[−2, 2]2 \ [−1, 1]2 ∩

(
[1, 2]× [−1/2, 1/2]

)
,

it follows that

Tχ
2jQ

=
8∑

i=1

Tχ
2jQi

.

For each i, the family {Tχ
2jQi

}j∈Z satisfies either Proposition 2 or Corollary 3. Since
1 < p, q, r < ∞, the proof is complete. �
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5. Square Function Estimates and Dyadic Pointwise Convergence II

In this section, we prove results analogous to those in Theorem 1 and Theorem 2 for the
characteristic functions of a certain sets with smooth boundaries. Let TχD be the bilinear
disc operator with multiplier χD = χ{ξ2+η2<1}. Grafakos and Li [7] showed that TχD is
bounded from Lp(R)×Lq(R) into Lr(R) for 2 ≤ p, q < ∞, 1 < r ≤ 2 and 1/p + 1/q = 1/r.
Using a multilinear transference theorem, Grafakos and Honźık [6] deduced the Lr([0, 1])
convergence of the bilinear Fourier series∑

|(j,k)|<N

f̂(j)ĝ(k)e2πi(j+k)x → f(x)g(x) as N →∞

for 1-periodic functions f ∈ Lp(R) and g ∈ Lq(R).
There are no results known concerning the almost everywhere convergence of bilinear

Fourier series with respect to circular summation. However, with the use of Lemma 1, a
partial result can be obtained concerning a set S = P ∪R1 ∪R2 ∪R3 ∪R4 obtained by the
unit square (−1, 1)2 by rounding off its corners as in Figure 3.

P

R

R 3

4

R 2

R 1

Figure 3. Decomposition of the set S = P ∪R1 ∪R2 ∪R3 ∪R4

As usually, let Tχ2nS
be the bilinear operator with symbol χ2nS for n ∈ Z. Since S is

the union of a twelve-sided cross (dodecagon) with sides parallel to the coordinate axes
and four quarter-discs with straight sides parallel to the coordinate axes, {Tχ2nS

}n∈Z forms
a family of uniformly bounded bilinear operators mapping Lp(R) × Lq(R) into Lr(R) for
2 ≤ p, q < ∞, 1 < r ≤ 2 and 1/p + 1/q = 1/r. This follows from the boundedness of the
bilinear disc operator [7] and the dilation invariance of multipliers. Moreover, the boundary
of 2nS is smooth and 2nS converges to R2 as n tends to infinity. The next theorem concerns
the dyadic dilates of the set S.

Theorem 4. Let 2 ≤ p, q < ∞, 1 < r ≤ 2 and 1/p+1/q = 1/r. Then we have the estimate∥∥∥ sup
n∈Z+

∣∣Tχ2nS
(f, g)

∣∣∥∥∥
r
≤ C(p, q)‖f‖p‖g‖q

for all f ∈ Lp(R) and g ∈ Lq(R). Consequently, for such functions we have

Tχ2nS
(f, g)(x) → f(x)g(x)

for almost all x ∈ R as n tends to infinity.
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Proof. Write

χS = χP +
4∑

i=1

mi,

where P is the closed eight-sided polygon with sides parallel to the coordinate axes of Figure
3 and mi = χRi , where Ri are the sets of Figure 3 whose analytic description is

R1 = {(ξ, η) ∈ R2 : (ξ − 1/2)2 + (η − 1/2)2 ≤ 1/4} ∩ (1/2, 1)2

R2 = {(ξ, η) ∈ R2 : (ξ − 1/2)2 + (η + 1/2)2 ≤ 1/4} ∩ (1/2, 1)× (−1,−1/2)
R3 = {(ξ, η) ∈ R2 : (ξ + 1/2)2 + (η + 1/2)2 ≤ 1/4} ∩ (−1,−1/2)2

R4 = {(ξ, η) ∈ R2 : (ξ + 1/2)2 + (η − 1/2)2 ≤ 1/4} ∩ (−1,−1/2)× (1/2, 1).

Dilating by 2n we can write,

χ2nS = χ2nP +
4∑

i=1

mi(2n(·)).

It follows that∥∥∥ sup
n∈Z+

∣∣Tχ2nS
(f, g)

∣∣∥∥∥
r
≤
∥∥∥ sup

n∈Z+

∣∣Tχ2nP
(f, g)

∣∣∥∥∥
r
+

4∑
i=1

∥∥∥ sup
n∈Z+

∣∣Tmi(2n(·))(f, g)
∣∣∥∥∥

r
.

Using the Carleson-Hunt theorem [2], [9], we obtain that∥∥∥ sup
n∈Z+

∣∣Tχ2nP
(f, g)

∣∣∥∥∥
r
≤ C(p, q)‖f‖p‖g‖q

because 2nP can be split into five rectangles with sides parallel to the coordinate axes. If
it can be shown that for each i ∈ {1, 2, 3, 4} we have

(5.13)
∥∥∥ sup

n∈Z+

∣∣Tmi(2n(·))(f, g)
∣∣∥∥∥

r
≤ C(p, q)‖f‖q‖g‖q,

the proof will be complete. Since the families {Tmi(2n(·))}n∈Z+ satisfy the hypotheses of
Lemma 1 for i = 1, 2, 3 and 4, we have∥∥∥ sup

n∈Z+

∣∣Tmi(2n(·))(f, g)
∣∣∥∥∥

r
≤

∥∥∥∥∥( ∑
n∈Z+

∣∣Tmi(2n(·))(f, g)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q, r)‖f‖q‖g‖q .

Thus (5.13) holds and the proof of the theorem is complete. �

Similar techniques yield the following Littlewood-Paley type theorem.

Theorem 5. Under the same hypotheses as in Theorem 4, we have∥∥∥∥∥(∑
j

∣∣Tχ
2jS\2j−1S

(f, g)
∣∣2)1/2

∥∥∥∥∥
r

≤ C(p, q)‖f‖p‖g‖q.

Proof. Just notice that 2jS \ 2j−1S is the union of four rectangles, four quarter circles, and
four squares with quarter circles removed. The square function of the quarter circles and the
four squares with quarter circles removed can be controlled with the use of Lemma 1. The
square function related to the each of the four rectangles can be controlled using Proposition
1 by the same methods used in the proof of Theorems 1 and 2. Just use orthogonality and
dilate the rectangles by translating the cones used in that construction. �



12 GEOFF DIESTEL AND LOUKAS GRAFAKOS

As a consequence of Theorem 4 and the bilinear transference theorem for maximal op-
erators of Grafakos and Honźık [6], we obtain the following.

Corollary 4. Let S be the square with rounded corners defined in section 4 and let f ∈
Lp(R), g ∈ Lq(R) be 1-periodic functions where the indices p, q satisfy 2 ≤ p, q < ∞ and
1/2 ≤ 1/p + 1/q < 1. Then the bilinear Fourier series∑

(j,k)∈(2nS)∩Z2

f̂(j)ĝ(k)e2πi(j+k)x

converges to f(x)g(x) as n →∞ for almost all x ∈ [0, 1].
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