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Abstract. Suppose that Ω lies in the Hardy space H1 of the unit circle S1 in R2. We
use the Calderón–Zygmund method of rotations and the uniform boundedness of the
bilinear Hilbert transforms to show that the bilinear singular operator with the rough
kernel p.v. Ω(x/|x|)|x|−2 is bounded from Lp(R) × Lq(R) to Lr(R), for a large set of
indices satisfying 1/p+ 1/q = 1/r. We also provide an example of a function Ω in Lq(S1)
with mean value zero to show that the singular integral operator given by convolution
with p.v. Ω(x/|x|)|x|−2 is not bounded from Lp1(R)× Lp2(R) to Lp(R) for 1/2 < p < 1,
1 < p1, p2 <∞, 1/p1 + 1/p2 = 1/p, 1 ≤ q <∞, and 1/p + 1/q > 2.

1. INTRODUCTION AND MAIN RESULTS

Suppose that Sn−1 denotes the unit sphere of Rn, equipped with normalized Lebesgue
measure dσ(x′) for some n ≥ 2. Let Ω be an integrable function on Sn−1 that satisfies∫

Sn−1

Ω(x′) dσ(x′) = 0.

We introduce the kernel

KΩ(x) =
Ω(x/|x|)
|x|n

, x 6= 0,

which is homogeneous of degree −n, and the distribution WΩ in S
′
(Rn) by setting

< WΩ, φ >= lim
ε→0

∫
|x|≥ε

KΩ(x)φ(x) dx = lim
ε→0

∫
ε≤|x|≤ε−1

KΩ(x)φ(x) dx

for φ in the Schwartz class S (Rn). The singular integral operator TΩ is defined by

TΩf(x) = p.v.

∫
Rn

Ω(y/|y|)
|y|n

f(x− y) dy

for f ∈ S (Rn). Calderón and Zygmund [1] first studied the Lp boundedness of the operator
TΩ. They also introduced the “method of rotations” (see [2]) to show that TΩ is bounded
on Lp(Rn) if the function Ω is in L logL(Sn−1). The basic idea of the method of rotations
is to write Ω as a sum of an odd and an even function, reduce the even part to the
odd using the Riesz transform identity −I = R2

1 + · · · + R2
n, and express the operator

corresponding to the odd part of Ω as an average of the directional Hilbert transforms.
This result was extended to functions Ω ∈ H1(Sn−1) by Connett [7] and independently by
Ricci and Weiss [18]. Here H1(Sn−1) denotes the Hardy space on the sphere which, defined
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in terms of its atomic decomposition as in Coifman and Weiss [6]; for a variety of useful
characterizations of H1(Sn−1) one may consult the article of Stefanov [20]. We summarize
the results concerning TΩ in two statements:

Theorem A [2] Suppose that Ω has vanishing integral and is an odd function in L1(Sn−1).
Then TΩ is bounded from Lp to itself for 1 < p <∞.

Theorem B [18] Suppose that Ω is an even function in H1(Sn−1) (thus it has integral
zero). Then TΩ is bounded from Lp to itself for 1 < p <∞.

In this article, we consider bilinear versions of TΩ. To define these operators we start
with a complex-valued integrable function Ω on the unit sphere S2n−1 with mean value
zero with respect to the surface measure. The bilinear Calderón-Zygmund singular integral
operator T 2

Ω associated with Ω is defined by

(1.1) T 2
Ω(f, g)(x) = p.v.

∫
Rn

∫
Rn

KΩ(x− y1, x− y2)f(y1)g(y2)dy1dy2,

for Schwartz functions f, g on Rn, where the kernel KΩ is given by

KΩ(x1, x2) = KΩ(x) =
Ω(x/|x|)
|x|2n

, x = (x1, x2).

We are going to use a modification of the linear method of rotations to obtain the
boundedness of the operator T 2

Ω from Lp(R) × Lq(R) to Lr(R), whenever n = 1 for a
certain range of indices. In the bilinear case, the role of the directional Hilbert transforms
is played by the bilinear Hilbert transforms and their uniform boundedness (Grafakos and
Li [10], Li [16]) is crucial in our approach. We recall that if the function Ω is smooth
then the boundedness of the bilinear Calderón–Zygmund operator follows from the results
of Coifman and Meyer [4], [5], Kenig and Stein [13], and Grafakos and Torres [12] for
more general multilinear operators. Therefore our results are most relevant in the case the
function Ω lacks smoothness.

When Ω ∈ L1(S2n−1) is an odd function, Grafakos and Torres [12] expressed T 2
Ω as an

average of the bilinear Hilbert transforms; so, when n = 1, the Lp boundedness of T 2
Ω is a

consequence of the uniform boundedness of the bilinear Hilbert transforms; see [10]. This
provides an analog of Theorem A in the bilinear setting. Motivated by this observation, we
pursue a result parallel to Theorem B in the case where Ω is an even function, also in the
case n = 1.

We denote by H the set of all triples (1/p1, 1/p2, 1/p) such that 1 < p1, p2, p < ∞,
1/p1 + 1/p2 = 1/p, and

(1.2)
∣∣∣ 1

p1
− 1

p2

∣∣∣ < 1

2
,

∣∣∣ 1

p1
− 1

p′

∣∣∣ < 1

2
,

∣∣∣ 1

p2
− 1

p′

∣∣∣ < 1

2
.

This set is an open hexagon in the (1/p1, 1/p2, 1/p) plane which is a proper superset of the
set of indices indices (1/p1, 1/p2, 1/p) in the local L2 case, i.e., the case 2 ≤ p1, p2, p

′ < ∞
and 1/p1 + 1/p2 = 1/p.

For a function Ω, we set Ωe(x
′) = 1

2

(
Ω(x′) + Ω(−x′)

)
and Ωo(x

′) = 1
2

(
Ω(x′) − Ω(−x′)

)
.

Then Ωe is even, Ωo is odd and Ω = Ωe + Ωo. The theorems below are the main results of
this article.

Theorem 1.1. Let Ω be a complex-valued integrable function on the sphere S1 with mean
value zero such that the even part Ωe lies in H1(S1). Then the operator T 2

Ω is bounded from
Lp(R)× Lq(R) to Lr(R), whenever (1/p, 1/q, 1/r) ∈ H.
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We extend a little the set of p and q where the Theorem 1.1 is valid for functions Ω with
slightly better integrability.

Proposition 1.1. Let Ω be a complex-valued function on the sphere S1 with mean value
zero such that Ω ∈ Ls(S1), s > 1. Then there is an ε > 0 such that the operator T 2

Ω is
bounded from Lp(R) × Lq(R) to Lr(R) for indices (1/p, 1/q, 1/r) in some open hexagon
H′ with the following properties: (i) the vertices (1/2, 1/2, 1), (1/2, 0, 1/2), (0, 1/2, 1/2)
of H are also vertices of H′; (ii) the remaining three vertices of H′ are ε away from the
corresponding vertices of H; (iii) H′ strictly contains H.

Theorem 1.2. Let 1/2 < p < 1, 1 ≤ q <∞, and 2 < 1
p + 1

q . Then there is a sequence Ωε

with mean value 0 such that ‖Ωε‖Lq(S1) = cq <∞ such that ‖T 2
Ωε
‖Lp1 (R)×Lp2 (R)→Lp(R) →∞

as ε→ 0, when 1
p = 1

p1
+ 1

p2
and 1 < p1, p2 <∞.

2. PREREQUISITE MATERIAL

We introduce some well known operators. We define the Fourier transform of an inte-
grable function f on Rn by

f̂(ξ) = F (f)(ξ) =

∫
Rn

f(x)e−2πix·ξ dx

and by F−1(f)(x) = f̂(−x) the inverse Fourier transform.

Definition 2.1. The bilinear Hilbert transform in the direction (α1, α2) is given by

Hα1,α2(f1, f2)(x) = p.v.
1

π

∫
R
f1(x− α1t)f2(x− α2t)

dt

t
, x, α1, α2 ∈ R.

One may express the bilinear Hilbert transform Hα1,α2 in multiplier form as

Hα1,α2(f1, f2)(x) = −i
∫
R

∫
R
f̂1(ξ1)f̂2(ξ2)e2πi(ξ1+ξ2)xsgn(α1ξ1 + α2ξ2) dξ1ξ2 ,

where sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0, and sgn(0) = 0.
We recall that Lacey and Thiele [14], [15] proved that this operator is bounded from

Lp(R) × Lq(R) to Lr(R) whenever 1 < p, q ≤ ∞, 2/3 < r < ∞, and 1/p + 1/q = 1/r.
Grafakos and Li [10] showed that if 2 < p, q, r′ < ∞, the boundedness of this operator
is uniform in α1 and α2. Li [16] proved the boundedness of Hα1,α2 from Lp × Lq to Lr,
whenever 1 < p, q < 2, 2/3 < r < 1, uniformly in α1, α2 satisfying |α1/α2 − 1| ≥ c0 (with
constant depending only on c0 > 0). Interpolation between these these results yields the
uniform boundedness of Hα1,α2 from Lp × Lq to Lr, whenever (1/p, 1/q, 1/r) ∈ H. This
theorem provides the main tool needed to prove the results of this article.

Theorem 2.1. [16] Let (1/p1, 1/p2, 1/p) ∈ H. Then there is a constant C = C(p1, p2) such
that for all f1, f2 Schwartz functions on R,

sup
α1,α2∈R

‖Hα1,α2(f1, f2)‖p ≤ C‖f1‖p1‖f2‖p2 .

The uniform boundedness of Hα1,α2 in the range of the indices of Theorem 2.1 clearly
implies uniform (in α, β) boundedness of the bilinear Fourier projection

(2.1) Pα,β(f, g)(x) =

∫
R

∫
R
f̂(ξ)ĝ(η)e2πi(ξ+η)xχ{arg(ξ,η)∈[α,β)}(ξ, η) dξdη,

on the cone centered at the origin and determined by the angles α and β. Here arg(ξ, η) is
the unique number γ in [0, 2π) such that ξ = |(ξ, η)| cos γ and η = |(ξ, η)| sin γ.
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Lemma 2.1. [9] Let Ω ∈ L1(S1) have mean value zero. Then the Fourier transform of the
distribution WΩ = p.v.KΩ, is the function

ŴΩ(ν) =

∫
S1

Ω(θ)

(
log

1

|ν · θ|
− iπ

2
sgn (ν · θ)

)
dθ ,(2.2)

which is a.e. finite.

Using this identity, we may express

(2.3) T 2
Ω(f, g)(x) =

∫
R

∫
R
f̂(η)ĝ(ξ)e2πi(η+ξ)x ŴΩ(ξ, η) dξdη.

3. PROOF OF THE RESULTS

We prove Theorem 1.1.

Proof. We set B(ν) = ŴΩ(ν) and we split this function in two parts: the even part

M(ν) =

∫
S1

Ω(θ) log
1

|θ · ν|
dθ =

∫
S1

Ωe(θ) log
1

|θ · ν|
dθ

and the odd part

N(ν) = − iπ
2

∫
S1

Ω(θ) sgn(θ · ν) dθ = − iπ
2

∫
S1

Ωo(θ) sgn(θ · ν) dθ ,

ν ∈ R2. All symbols B,M,N are homogeneous of degree zero.
The function ν → arg(ν) maps the unit circle S1 onto the interval [0, 2π). For a function

F on circle S1 we define another function F̃ on [0, 2π) by setting F̃ (α) = F (cosα, sinα).
If we have θ, ν ∈ S1, we obtain θ · ν = cos(argθ − argν). Therefore, identity (2.2) may be
written in convolution form (on the circle group T = [0, 2π)) as

B̃(argν) = B(ν) = N(ν) +M(ν) = K ∗ Ω̃o(argν) + L ∗ Ω̃e(argν),

where K(t) = − iπ
2 sgn(cos t) and L(t) = − log(| cos t|). We use this expression to compute

the distributional derivative ∂B̃/∂t where t ∈ [0, 2π). We get

∂B̃

∂t
=
∂K

∂t
∗ Ω̃o +

∂L

∂t
∗ Ω̃e,

where
∂K

∂t
= iπ(δπ

2
− δ 3π

2
)

(δ is the Dirac distribution) and
∂L

∂t
= tan t.

The derivative of L is the kernel cot t of the classical conjugate function operator shifted by
π/2. Since the conjugate function maps H1(T) to L1(T), under the assumption of Theorem

1.1 that Ω̃e lies in the Hardy space H1(T), we have that ∂L
∂t ∗ Ω̃e lies in L1(T). Obviously,

∂K
∂t ∗ Ω̃o is also an integrable function on [0, 2π). We conclude that ∂B̃

∂t ∈ L
1([0, 2π)).

For θ ∈ R2 we express the function B as

B(θ) = B̃(argθ) =

∫ argθ

0
B̃′(α) dα =

∫ 2π

0
Aα(θ)B̃′(α) dα ,

where
Aα = χ{(ξ,η) : arg(ξ,η)/∈[0,α)}.
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In view of this, we are able to write the bilinear operator T 2
Ω as

(3.1) T 2
Ω(f, g) =

∫ 2π

0
B̃′(α)Rα(f, g) dα ,

where

Rα(f, g)(x) =

∫
R

∫
R
f̂(ξ)ĝ(η)e2πi(ξ+η)xAα(ξ, η) dξdη

is the bilinear multiplier operator whose symbol is the exterior of the cone formed by turning
the positive ξ axis counterclockwise and stopping at the half line starting at the origin and
passing through the point (cosα, sinα). That is, using the notation introduced in (2.1), we
have that

Rα(f, g) = fg − P0,α(f, g) .

In view of Theorem 2.1, one obtains the uniform boundedness in α of the operator Rα from
Lp(R) × Lq(R) to Lr(R) for (1/p, 1/q, 1/r) ∈ H. The integral formula (3.1) then yileds
boundedness for T 2

Ω in the same range of indices. This concludes the proof of Theorem
1.1. �

The key ingredient of the proof of Theorem 1.1 is the uniform boundedness of the bilinear
Hilbert transforms. Analysis of the original proof of Lacey and Thiele shows that for r > 2/3
and 1/p+ 1/q = 1/r there is an M > 0 and C > 0 such that for f ∈ Lp and g ∈ Lq we have

‖Pα(f, g)‖r = Cd−M‖f‖p‖g‖q,
where d = dist(α, {0, π/2, 3π/4, π, 3π/2, 7/4π}). In other words, the norm of the bilinear
Hilbert transform blows up polynomialy near the critical directions. This fact together
with bilinear interpolation allows us to extend the set of p and q where the Theorem 1.1 is
valid a little bit for functions Ω with better integrability.

We now prove Proposition 1.1.

Proof. We use the formula (3.1) again. We observe that since Ω ∈ Ls(S1), we have B̃′ lies
in Ls(T). Due to the results of Lacey and Thiele we just mentioned, we have

‖Rα(f, g)‖r ≤ Cd−M‖f‖p‖g‖q,
whenever 1 < p, q ≤ ∞, 2/3 < r < ∞, and 1/p + 1/q = 1/r, where d = dist(α,D),
D = {0, π/2, 3π/4, π, 3π/2, 7/4π}. We also have

‖Rα(f, g)‖r ≤ C‖f‖p‖g‖q
for (1/p, 1/q, 1/r) ∈ H. We introduce bilinear operators

(3.2) T0 =

∫
{α : dist(α,D)>1/2}

B̃′(α)Rα dα

and

(3.3) Tj =

∫
{α : 2−j≥dist(α,D)>2−j−1}

B̃′(α)Rα dα

for j ≥ 1. Using Hölder’s inequality, we obtain that∫
{α : 2−j≥dist(α,D)>2−j−1}

|B̃′(α)| dα ≤ C2−j
s−1
s ‖B̃′‖s.

Therefore for j ≥ 1, we have the estimates

‖Tj(f, g)‖r ≤ C2−j
s−1
s ‖B̃′‖s‖f‖p‖g‖q
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for (1/p, 1/q, 1/r) ∈ H and

‖Tj(f, g)‖r ≤ C2−j
s−1
s

+jM‖B̃′‖s‖f‖p‖g‖q
for 1 < p, q < ∞ and r > 2/3. Now we use standard bilinear interpolation between these
two estimates to establish the ε-improvement claimed by the proposition. �

We end this section by mentioning that an alternate proof of Theorem 1.1 has recently
been obtained by Diestel [8] who showed that T 2

Ω is bounded from Lp1 × Lp2 → Lp for an
open set of triples (1/p1, 1/p2, 1/p), using the assumption that Ω lies in L logL(S1).

4. THE COUNTEREXAMPLE

Calderón and Zygmund obtained weak type (1, 1) bounds for the operator TΩ whenever
Ω is sufficiently smooth; Christ and Rubio de Francia [3], and Seeger [19] extended this
result to the case Ω ∈ L logL; see also Tao [21]. While the Calderón-Zygmund method was
successfully extended to the multilinear setting to yield weak type (1, 1, 1/2) bounds for

certain bilinear singular integrals (i.e., bounds from L1×L1 to weak L1/2), these results only
apply to the case where Ω is a Lipschitz function on the sphere; see for instance Grafakos
and Torres [12]. It is not clear if bilinear endpoint results of this sort are possible when Ω
lacks smoothness. In this section, we describe another limitation, provided by the example
claimed in Theorem 1.2.

Proof. Let B(x, r) be the ball with radius r centered at x in R2. We pick two points
a+ = ( 1√

2
, 1√

2
), a− = −a+ on the circle S1 and we define sets S+ = S1

⋂
B(a+, ε) and

S− = S1
⋂
B(a−, ε). Fix ε > 0 a small number (say smaller than 1/100) and define the

function
Ωε(ν) = ε−1/q(χS+ − χS−)(ν), for ν ∈ S1.

It is obvious that Ω is an odd function with integral zero over S1 that satisfies: ‖Ωε‖q = cq.

Consider the functions f = ε−1/p1χB(0,ε′), g = ε−1/p2χB(0,ε′), where ε′ = ε/100. These
functions satisfy ‖f‖p1 = ‖g‖p2 = c′ where c′ is a constant.

Let us fix an x ∈ R such that 11/10 < x < 12/10. Then we have

|T 2
Ωε(f, g)(x)| ≥ ε−

1
p

∫
|y1|<ε′

∫
|y2|<ε′

Ω
( (x−y1,x−y2)
|(x−y1,x−y2)|

)
|(x− y1, x− y2)|2

dy1 dy2

The integral is over the set of all (y1, y2) in (−ε′, ε′)× (−ε′, ε′) such that the projection of
the point (x− y1, x− y2) onto the circle S1 lies in S+ or S−. Since we are considering an
x such that 11/10 < x < 12/10, this projection will only intersect the circular cap S+. We
obtain

|T 2
Ωε(f, g)(x)| ' ε−

1
p ε
− 1
q

∣∣∣{(y1, y2) ∈ (−ε′, ε′)2 :
∣∣∣ (x− y1, x− y2)

|(x− y1, x− y2)|
− a+

∣∣∣ < ε
}∣∣∣

Since ε′ is small compared to ε, it follows that the set displayed above is the entire cube
(−ε′, ε′)2. So, we get

|T 2
Ωε(f, g)(x)| ' ε−

1
p
− 1
q

+2
.

It follows that

‖T 2
Ωε(f, g)‖pp >

∫
11/10<x<12/10

|T 2
Ωε(f, g)(x)|p dx ' ε(2−1/p−1/q)p

and the latter tends to infinity as ε→ 0 if 2− 1/p− 1/q < 0. �
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