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Abstract. For any two real-valued continuous-path martingales X = {Xt}t≥0 and
Y = {Yt}t≥0, with X and Y being orthogonal and Y being differentially subordinate
to X, we obtain sharp Lp inequalities for martingales of the form aX + bY with a, b
real numbers. The best Lp constant is equal to the norm of the operator aI + bH
from Lp to Lp, where H is the Hilbert transform on the circle or real line. The
values of these norms were found by Hollenbeck, Kalton and Verbitsky [15]. We also
give applications of our martingale inequalities to Riesz transforms and some discrete
operators.

1. Introduction

The research on martingale inequalities was initiated in 1966 by Burkholder [7] and
was further pursued in [8], [9] and [10], where techniques for sharp estimates for them
were developed. Martingale inequalities nowdays find applications in probability and
analysis and their impact is quite far-reaching.

Based on the Burkholder’s method, Bañuelos and Wang [4] obtained sharp inequal-
ities for martingales under the assumption of differential subordination and orthogo-
nality, and used them to provide probabilistic proofs to the results of Pichorides [20]
concerning the norm of the Hilbert transform on Lp(R) and of Iwaniec and Martin [16]
about the norm of the Riesz transforms on Lp(Rn), 1 < p < ∞. We refer the reader to
[1], [3] and [19] for more on orthogonal martingales and applications.

We describe the pertinent framework for this paper. Let (Ω,F , P ) be a probability
space and F = (Ft)t≥0 be a nondecreasing family of sub-σ-fields of F . LetX = (Xt)t≥0

and Y = (Yt)t≥0 be two real-valued martingales with respect to F . We say that X is
orthogonal to Y if ⟨X, Y ⟩t = 0 for all t ≥ 0, where ⟨X, Y ⟩t is the predictable quadratic
covariation between X and Y . We also say that Y is differentially subordinate to X
(see [4]) if |Y0| ≤ |X0| and ⟨X⟩t−⟨Y ⟩t is a nondecreasing and nonnegative function of t
for t ≥ 0, where ⟨X⟩t is the predictable quadratic variation of X. For continuous-path
martingales, ⟨X⟩t is the same as the quadratic variation [X]t. We assume throughout
the paper that Y0 = 0, this assumption is natural since all applications to Hilbert
transform, Riesz transforms and discrete Hilbert transform fit it (see [4, 2]).
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For continuous-path real-valued martingale X = (Xt)t≥0, 1 < p < ∞, define

∥X∥p = sup
t≥0

∥Xt∥p,

where ∥Xt∥p = (E|Xt|p)1/p. For 1 < p < ∞, define the constant np = cot(π/(2p∗)),
where p∗ = max(p, p/(p−1)). In [4], Bañuelos and Wang obtained the following result:

Theorem A. ([4]) Let X and Y be two real-valued continuous-path martingales such
that X and Y are orthogonal and Y is differentially subordinate to X. Then for 1 <
p < ∞,

(1.1) ∥Y ∥p ≤ np∥X∥p
and

(1.2) ∥(X2 + Y 2)1/2∥p ≤ Ep∥X∥p,

where Ep = (1 + n2
p)

1/2. The constants are best possible.
The same authors later generalized the previous result to continuous-time martin-

gales which may or may not have continuous paths([5]) under [X, Y ]t = 0, which is a
stronger condition than orthogonal.

It is well known that the constant np is exactly the operator norm of Hilbert trans-
form H on Lp(R) and of the conjugate function HT on Lp(T), where T is the unit circle
(see Pichorides [20]). These operators are given by

Hf(x) =
1

π
p.v.

∫
R

f(t)

x− t
dt, HTf(x) =

1

2π
p.v.

∫ π

−π

f(x) cot
x− t

2
dt.

The constant np is also the operator norm of Riesz transform Rj on Lp(Rn) (see Iwaniec
and Martin [16]). So the results of Theorem A can be seen as the martingale analogues
of the results of Pichorides [20], Iwaniec and Martin [16], and Essén [13].

The main purpose of this paper is to construct sharp inequalities for linear combina-
tions of orthogonal martingales. The linear combination case was initially mentioned
in [6] by Birman as a problem on the exact value of the operator norm ∥I −Π∥Lp(R+),
1 < p < ∞, where Π is the re-expansion operator: for x > 0

Πf(x) =
1

π
p.v.

∫
R+

2xf(t)

x2 − t2
dt.

This problem has its origin in scattering by unbounded obstacles in the plane which
was solved in the work of Hollenbeck, Kalton and Verbitsky [15] by considering the
operator norm of ∥I −H∥Lp(R).
For a, b ∈ R, 1 < p < ∞, define the constant

(1.3) Bp = max
x∈R

|ax− b+ (bx+ a) tan γ|p + |ax− b− (bx+ a) tan γ|p

|x+ tan γ|p + |x− tan γ|p
,

where γ = π
2p
. By changing variables, Bp can be equivalently defined as

(1.4) Bp = (a2 + b2)p/2 max
0≤θ≤2π

| cos(θ + θ0)|p + | cos(θ + θ0 +
π
p
)|p

| cos θ|p + | cos(θ + π
p
)|p

,
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and

(1.5) Bp = (a2 + b2)p/2 max
0≤ϑ≤2π

| cos(ϑ− θ0)|p + | cos(ϑ− θ0 +
π
p
)|p

| cosϑ|p + | cos(ϑ+ π
p
)|p

,

where tan θ0 = b/a. These constants appeared in the work of Hollenbeck, Kalton and
Verbitsky [15] who showed that the norm of aI + bHT from Lp(T) to Lp(T) is equal to
B

1/p
p , where I is the identity operator and HT is the conjugate function operator on the

circle. The same assertion is also true for the norm of aI + bH from Lp(R) to Lp(R),
where H is the Hilbert transform on real line, through a dilation argument known as
“blowing up the circle” (see [22], Chapter XVI, Theorem 3.8). Recently, the authors
[11] provided a direct proof of the sharp Lp(R) inequality for aI + bH by an argument
that uses an explicit formula for a crucial subharmonic majorant.

In this work, we construct sharp inequalities for linear combination martingales
aX + bY , where X and Y are two real-valued continuous-path martingales with or-
thogonal and differentially subordinate assumptions and a, b are arbitrary real num-
bers. Motivated by the usefulness of the explicit formula of the crucial subharmonic
majorant G in [11], we find a new property of G in this paper, that is, we derive two al-
ternative explicit expressions for this function centered around two points respectively
(Lemma 2.2). This property of G is new for linear combination cases since it did not
occur on a = 0 (when a = 0, two alternative expressions goes to one), and we use it
appropriately in the proof of the main estimate (1.6) below.

Theorem 1.1. Let X and Y be two real-valued continuous-path martingales such that
X and Y are orthogonal. Let Bp be given by (1.5). If Y is differentially subordinate to
X and Y0 = 0, then for a, b ∈ R and 1 < p < ∞

(1.6) ∥aX + bY ∥p ≤ B1/p
p ∥X∥p.

The constant B
1/p
p is the best possible in this inequality.

Remarks. Inequality (1.6) is the martingale analogue of that in Hollenbeck et al. [15]
for analytic functions in the unit disc. If X and Y are continuous-time martingales
which may or may not have continuous paths, this inequality also holds for the same
assumption using quadratic variation instead of predictable quadratic variation.

We now turn to the proof of this theorem. Without loss of generality, we assume
that a = cos θ0, b = sin θ0, so that a2 + b2 = 1.

2. Some Lemmas

In this section we discuss some crucial lemmas in the proof of the main theorem. The
first lemma is a version of Lemma 4.2 in [15], in which we derive an explicit formula
for a subharmonic function G that plays a crucial role in the proof.

Lemma 2.1. [11, Lemma 3.2] Let 1 < p < ∞, Bp be given by (1.5), T = {reit :
r > 0, t0 < t < t0 +

π
p
}, where t0 is the value that makes right part of (1.5) attain

its maximum, and take ε > 0 such that t0 − ε < t0 < t0 + π/p < t0 + π − ε. Let
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z = reit, z0 = reit0 , G(z) = G(reit) be π-periodic in t and when t0 − ε < t < t0 + π − ε:

G(z) =


Bp|Rez0|p−1sgn(Rez0)Re[(

z
z0
)pz0]− |aRez0 + bImz0|p−1

× sgn(aRez0 + bImz0)(aRe[(
z
z0
)pz0] + bIm[( z

z0
)pz0]), if z ∈ T

Bp|Rez|p − |aRez + bImz|p, if z /∈ T.

Then G(z) is subharmonic on C and satisfies

(2.1) |aRez + b Imz|p ≤ Bp|Rez|p −G(z).

for all z ∈ C.

In the next lemma, we provide two other explicit formulas for G centered around
the points t0 and u0 = t0 + π/p, respectively.

Lemma 2.2. Let 1 < p < ∞, Bp, T and t0, ε be as in Lemma 2.1. Let z = reit, z0 =
reit0. Then for z = reit ∈ T , G(z) in Lemma 2.1 has the following equivalent expres-
sions:

(2.2) G(z) = rp
[
Bp

| cos t0|p

cos t0
cos(p(t− t0)+ t0)−

| cos(t0 − θ0)|p

cos(t0 − θ0)
cos(p(t− t0)+ t0−θ0)

]
and

(2.3) G(z) = rp
[
Bp

| cosu0|p

cosu0

cos(p(t−u0)+u0)−
| cos(u0−θ0)|p

cos(u0−θ0)
cos(p(t−u0)+u0−θ0)

]
,

where u0 = t0 + π/p, tan θ0 = b/a, G(z) is π-periodic in t and t0 − ε < t < t0 + π − ε.

Proof. Expression (2.2) is just the one given in Lemma 3.2 in [11]. We now prove
(2.3). In the proof of Lemma 3.2 in [11], using the notation in that reference, we have

(2.4) h(x) = f̃(p̃t̃0) cos(x− p̃t̃0) + f̃ ′
+(p̃t̃0) sin(x− p̃t̃0),

where p̃ = p/2, t̃0 = 2t0 and

(2.5) f̃(t) = Bp| cos(t/p)|p − |a cos(t/p) + b sin(t/p)|p,
if we can prove

(2.6) h(x) = f̃(p̃t̃0 + π) cos(x− p̃t̃0 − π) + f̃ ′
+(p̃t̃0 + π) sin(x− p̃t̃0 − π),

then following the proof of Lemma 3.2 in [11], we deduce (2.3) when z ∈ T .
To obtain (2.6), in view of (2.4), it is sufficient to show that

(2.7) f̃(p̃t̃0) + f̃(p̃t̃0 + π) = 0

and

(2.8) f̃ ′
+(p̃t̃0) + f̃ ′

+(p̃t̃0 + π) = 0.

In fact,

f̃(p̃t̃0 + π) = f̃(pt0 + π) = Bp| cos(t0 + π/p)|p − |a cos(t0 + π/p) + b sin(t0 + π/p)|p,
by

(2.9) Bp = (a2 + b2)p/2
| cos(t0 − θ0)|p + | cos(t0 − θ0 +

π
p
)|p

| cos t0|p + | cos(t0 + π
p
)|p

,
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where tan θ0 = b/a, we have

Bp| cos(t0 + π/p)|p − |a cos(t0 + π/p) + b sin(t0 + π/p)|p
= −Bp| cos t0|p + |a cos t0 + b sin t0|p = −f̃(pt0) = −f̃(p̃t̃0),

so we get (2.7).

For (2.8), note that for 1 < p < ∞, f̃(t) is pπ-periodic and continuously differen-

tiable. By (1.5), g(t) = f̃(t) + f̃(t+ π) ≥ 0 and g(t) has a minimum at p̃t̃0, so

f̃ ′
+(p̃t̃0) + f̃ ′

+(p̃t̃0 + π) = g′(p̃t̃0) = 0,

Thus the lemma is proved. □
The preceding lemma indicates that the function G has some symmetry properties

in terms of t0 and u0.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the techniques of Burkholder; also see [4]. We
choose the appropriate function for Theorem 1.1 to be the opposite of function G in
Lemma 2.1 and use the explicit formulas for G obtained by Lemma 2.2.
For x, y ∈ R, 1 < p < ∞, set

V (x, y) = |ax+ by|p −Bp|x|p,
where x = r cos t, y = r sin t, and 0 < t < 2π. Define

U(x, y) = −G(x+ iy) = −G(z),

where z = reit and G(z) is the function in Lemma 2.1. Then by Lemma 2.1, we have

(3.1) V ≤ U.

Denoting by Uxx, Uyy the second order partial derivatives of U(x, y), we need only to
show that for all h, k ∈ R,
(3.2) Uxx(x, y)h

2 + Uyy(x, y)k
2 ≤ −c(x, y)(h2 − k2)

for (x, y) ∈ Si, where Si, i ≥ 1 is a sequence of open connected sets such that the union
of the closure of Si is R2, and c(x, y) ≥ 0 that is bounded on 1/δ ≤ r ≤ δ for any δ > 1.
In fact, for continuous-path martingales we use Proposition 1.2 with Remark 1.1 in [4]
(for continuous-time martingales, using Proposition 1 with its Remark in [5]), by (3.2),
we can get

EV (Xt, Yt) ≤ EU(Xt, Yt) ≤ EU(X0, Y0) ≤ 0,

the last inequality is due to Lemma 4.3 in [15] and Y0 = 0. Thus

E|aXt + bYt|p ≤ BpE|Xt|p,
then we get (1.6).

To show (3.2),we split the argument into two cases. First, for z = x + iy /∈ T we
have

U(x, y) = |ax+ by|p −Bp|x|p,
and by a direct calculation we obtain from this that

(3.3) Uxx(x, y) = p(p− 1)

(
|ax+ by|p−2a2 −Bp|x|p−2

)
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except on the lines {z : x = 0} and {z : ax+ by = 0}, and
(3.4) Uyy(x, y) = p(p− 1)|ax+ by|p−2b2

except on the line {z : ax+ by = 0}. Then

(3.5)
Uxx(x, y)h

2 + Uyy(x, y)k
2 = p(p− 1)

(
|ax+ by|p−2 −Bp|x|p−2

)
h2

−p(p− 1)|ax+ by|p−2b2(h2 − k2).

By the property of G(z), we have (see [15])

(3.6) |ax+ by|p−2 ≤ Bp|x|p−2

in this region. So by (3.5) and (3.6) we get

(3.7) Uxx(x, y)h
2 + Uyy(x, y)k

2 ≤ −p(p− 1)|ax+ by|p−2b2(h2 − k2).

Then (3.2) holds with obvious choice of c(x, y).
We now consider the second case where z ∈ T . Recall that t0 − ε < t < t0 + π − ε.

We use the expression (2.2) for G(z), then

U(x, y) = rp[
| cos(t0 − θ0)|p

cos(t0 − θ0)
cos(p(t− t0) + t0 − θ0)−Bp

| cos t0|p

cos t0
cos(p(t− t0) + t0)].

Since
rx = cos t, ry = sin t,

tx = −1

r
sin t, ty =

1

r
cos t,

we get

Uxx(x, y) = p(p− 1)rp−2

(
| cos(t0 − θ0)|p

cos(t0 − θ0)
cos(2t− p(t− t0)− (t0 − θ0))

−Bp
| cos t0|p

cos t0
cos(2t− p(t− t0)− t0)

)
,

where x = r cos t, y = r sin t, tan θ0 = b/a, and

Uyy(x, y) = −Uxx(x, y).

Then

(3.8) Uxx(x, y)h
2 + Uyy(x, y)k

2 = Uxx(x, y)(h
2 − k2).

We claim that

(3.9) Uxx(x, y) ≤ 0

for z ∈ T , where z = x+ iy. In fact,

Uxx(re
it0) = p(p− 1)rp−2

(
| cos(t0 − θ0)|p

cos(t0 − θ0)
cos(t0 + θ0)−Bp

| cos t0|p

cos t0
cos t0

)
,

we know from [15, p.249] that

(3.10) |a cos t0 + b sin t0|p−2 ≤ Bp| cos t0|p−2,

which, since a = cos θ0, b = sin θ0, is equivalent to

(3.11) | cos(t0 − θ0)|p−2 ≤ Bp| cos t0|p−2.
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Combining (3.11) with the fact that

(3.12) cos(t0 − θ0) cos(t0 + θ0) ≤ cos2 t0,

we have

(3.13) Uxx(re
it0) ≤ 0.

Now we use the expression (2.3) for G(z) to get

U(x, y) = rp
[
| cos(u0 − θ0)|p

cos(u0 − θ0)
cos(p(t−u0)+u0− θ0)−Bp

| cosu0|p

cosu0

cos(p(t−u0)+u0)

]
,

where u0 = t0 + π/p, then

Uxx(x, y) = p(p− 1)rp−2

(
| cos(u0 − θ0)|p

cos(u0 − θ0)
cos(2t− p(t− u0)− (u0 − θ0))

−Bp
| cosu0|p

cosu0

cos(2t− p(t− u0)− u0)

)
,

where x = r cos t, y = r sin t, tan θ0 = b/a, so

Uxx(re
iu0) = p(p− 1)rp−2

(
| cos(u0 − θ0)|p

cos(u0 − θ0)
cos(u0 + θ0)−Bp

| cosu0|p

cosu0

cosu0

)
,

where u0 = t0 + π/p. We know from [15, p.249] that

(3.14) |a cosu0 + b sinu0|p−2 ≤ Bp| cosu0|p−2,

which is equivalent to

(3.15) | cos(u0 − θ0)|p−2 ≤ Bp| cosu0|p−2.

Combining (3.15) with

(3.16) cos(u0 − θ0) cos(u0 + θ0) ≤ cos2 u0,

we have

(3.17) Uxx(re
i(t0+π/p)) ≤ 0.

Write Uxx(re
it) = p(p− 1)rp−2u(t), where

u(t) = A cos |p− 2|t+ sgn(2− p)B sin |p− 2|t,

and

A =
| cos(t0 − θ0)|p

cos(t0 − θ0)
cos

(
(p− 1)t0 + θ0

)
−Bp

| cos t0|p

cos t0
cos(p− 1)t0,

B = Bp
| cos t0|p

cos t0
sin(p− 1)t0 −

| cos(t0 − θ0)|p

cos(t0 − θ0)
sin

(
(p− 1)t0 + θ0

)
.

Then u(t) is a |p− 2|-trigonometric function, thus also |p− 2|-trigonometrically convex
for t0 < t < t0+π/p (see [18, p.54]). We have Uxx(re

it) = p(p− 1)rp−2u(t) is harmonic
thus subharmonic within the angle {z = reit : r > 0, t0 < t < t0 + π/p} via a direct
computation. Then, by (3.13) and (3.17), we can use the Phragmén-Lindelöf theorem
for subharmonic functions (see [18, p.49]), to get

(3.18) Uxx(x, y) = Uxx(re
it) ≤ 0



8 YONG DING, LOUKAS GRAFAKOS, AND KAI ZHU1

for z ∈ T . We can also use the maximum principle for harmonic functions directly to
deduce (3.18). This proves (3.9). Then (3.2) holds with c(x, y) = −Uxx(x, y). This
completes the proof of (1.6). □

Remarks. (a) The key property thatG has two expressions centered around two points
so that we can use the Phragmén-Lindelöf theorem is new for linear combination cases,
which do not occur on a = 0 case.

(b) When a = 0, b = 1, the function U = −G becomes the function U2(x, y)
in [4](p > 2) and the function used in [20] and [14](1 < p < 2). In a = 0 case the
function only have one expression and one just need to simply compute its second-order
derivatives.

4. The sharpness of the constant B
1/p
p

To show that the constant Bp is sharp, we apply a similar argument as in [4]. Let
f(z) = u(z) + iv(z) be analytic in the unit disc D with f(0) = 0 and Bt be Brownian
motion in D killed upon leaving D. Consider the martingales Xt = u(Bt) and Yt =
v(Bt), we have ⟨X, Y ⟩t = 0 and ⟨X⟩t−⟨Y ⟩t = 0 (see [12]). So X and Y are orthogonal
with equal quadratic variations. Then the inequality in Theorem 1.1 exactly reduces
to the inequality in Theorem 4.1 in [15].

Since B
1/p
p is already the best constant in Theorem 4.1 of [15], we conclude that the

constant B
1/p
p cannot be improved in Theorem 1.1.

5. Examples and applications

In this section, we give some applications of Theorem 1.1 to Riesz transforms and
operators related to discrete versions of the Hilbert transform.

The Riesz transforms Rj, j = 1, 2, ..., n are defined by (see [21, p.57])

Rjf(x) =
Γ((n+ 1)/2)

π(n+1)/2
p.v.

∫
Rn

xj − yj
|x− y|n+1

f(y)dy

for f ∈ Lp(Rn). It has been shown that the Lp norm for Rj is the same as the one
for 1-dimensional Hilbert transform, np, by using the method of rotations applicable
to singular integrals with odd kernels (see [16]). But in the linear combination case
aI + bRj, a, b ∈ R, the classical method of rotations could not be used to obtain its Lp

norm. Our martingale inequalities for linear combination case provide a possible way
to solve this problem. We have the following corollary of Theorem 1.1.

Corollary 5.1. For any j = 1, 2, ..., n, a, b ∈ R and 1 < p < ∞,

(5.1) ∥(aI + bRj)f∥p ≤ B1/p
p ∥f∥p,

where Bp is given by (1.5). The constant B
1/p
p is the best possible in this inequality.

We give a sketch proof of Corollary 5.1. Using the same connection between martin-
gale transforms and Riesz transforms in [4, p.592] involving linear combinations with

the identity operator, and Theorem 1.1, we can get (5.1). The constant B
1/p
p is the best

possible follows from the fact that aI + bRj are extensions, in the Fourier multiplier
sense, of aI + bH, where H is the Hilbert transform; see the proof of (47) in [16, p.37]
for the full details.
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Consider the following discrete version of the Hilbert transform

(5.2) (Da)n :=
1

π

∑
k ̸=0

an−k

k
,

where k runs over all the non-zero integers in Z and a = (an)n. Recently, Bañuelos and
Kwaśnicki [2] proved that the operator norm ofD on ℓp(Z) is equal to the operator norm
of the continuous Hilbert transform H on Lp(R). The proof in [2] is based on Theorem
A and uses two auxiliary operators J [defined in (5.3)] and K which satisfies KJ = D.
We find out some interesting relationship between K and the identity operator I (see
(5.13)) and apply Theorem 1.1 to obtain the following results concerning J and K.

Proposition 5.1. Let e = (en)n be a sequence in ℓp(Z), 1 < p < ∞. Let (J e)n =∑
m∈Z

Jmen−m, where

(5.3) Jn =
1

πn

(
1 +

∫ ∞

0

2y3

(y2 + π2n2) sinh2 y
dy

)
for n ̸= 0, and J0 = 0. Then for a, b ∈ R,
(5.4) ∥(aI + bJ )e∥p ≤ B1/p

p ∥e∥p,
where Bp is given by (1.5) and I is the identity operator: the convolution with kernel

I0 = 1, In = 0 for n ̸= 0. The constant B
1/p
p is the best possible in this inequality.

Proof. We use the notation in [2]. We only need to redefine the operator in (2.5) in
[2], so that let

(5.5) (JAe)n = E(x0,y0)

(
a∥A∥Mζ− + bA ⋆ Mζ−|Zζ− = (2πn, 0)

)
.

Since the conditional expectation is a contraction on Lp, 1 < p < ∞, it follows from
(1.6) in Theorem 1.1 that

(5.6) ∥JAe∥p ≤ B1/p
p ∥A∥∥e∥p.

Let

H =

[
0 −1
1 0

]
,

we have

(5.7) ∥JHe∥p ≤ B1/p
p ∥e∥p.

Notice that E(x0,y0)

(
Mζ−|Zζ− = (2πn, 0)

)
= (Ie)n, where I is the identity operator,

then following the same proof in [2], we deduce (5.4).
The sharpness of the constant is due to the sharpness of Proposition 5.2, which is

new and will be proved later, and the fact that

(5.8) ∥(aK + bD)e∥p ≤ ∥(aI + bJ )e∥p
for any sequence a ∈ ℓp(Z), 1 < p < ∞ and a, b ∈ R. □

Proposition 5.2. Let e = (en)n be a sequence in ℓp(Z), 1 < p < ∞, D be defined in
(5.2). Let K be the convolution operator in Section 2.3 in [2] with kernel (Kn) such
that Kn ≥ 0 for all n and the sum of all Kn is equal to 1. Then for a, b ∈ R,
(5.9) ∥(aK + bD)e∥p ≤ B1/p

p ∥e∥p,
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where Bp is given by (1.5). The constant B
1/p
p is the best possible in this inequality.

Proof. By Section 2.3 in [2],

(De)n = (KJ e)n,

then by Proposition 5.1, we have

(5.10) ∥(aK + bD)e∥p = ∥K(aI + bJ )e∥p ≤ B1/p
p ∥e∥p.

Denote by ∥ · ∥p,p the operator norm from Lp to Lp (or ℓp to ℓp). To deduce the
sharpness, we define the dilation operators Tε for any ε > 0 and 1 < p < ∞ by
(Tεf)(x) = ε1/pf(εx), then ∥Tε∥p,p = 1 for all ε > 0. Notice that K is a convolution
operator with kernel (Kn) such that Kn ≥ 0 for all n and

∑
n∈ZKn = 1 (see [2]).

Because of Theorem 4.2 in [17], now we can work on the real line and replace D and
K by

(5.11) (MDf)(x) = p.v.
1

π

∑
m ̸=0

f(x−m)

m

and

(5.12) (MKf)(x) =
∑
m∈Z

Kmf(x−m),

respectively. It is known by [17] that

lim
ε→0

(T1/εMDTεf)(x) = (Hf)(x),

where H is the Hilbert transform. We claim that

(5.13) lim
ε→0

(T1/εMKTεf)(x) = (If)(x),

for a.e. x ∈ R and f ∈ Lp(R), where I is the identity operator such that (If)(x) = f(x).
In fact, for any f ∈ S(R) (Schwartz function), we have

lim
ε→0

(T1/εMKTεf)(x)

= lim
ε→0

∑
|m|≤N Kmf(x− εm) + lim

ε→0

∑
|m|>N Kmf(x− εm)

=
∑

|m|≤N Kmf(x) + lim
ε→0

∑
|m|>N Kmf(x− εm)

for any N > 0. Then∣∣f(x)− lim
ε→0

(T1/εMKTεf)(x)
∣∣

=
∣∣∑

m∈ZKmf(x)−
∑

|m|≤N Kmf(x)− lim
ε→0

∑
|m|>N Kmf(x− εm)

∣∣
=

∣∣∑
|m|>N Kmf(x)− lim

ε→0

∑
|m|>N Kmf(x− εm)

∣∣
≤ lim

ε→0

∑
|m|>N Km

∣∣f(x)− f(x− εm)
∣∣

≤ C(f)
∑

|m|>N Km

for any N > 0. Since Kn ≥ 0 for all n and
∑

n∈ZKn = 1, letting N → ∞, we get

lim
ε→0

(T1/εMKTεf)(x) = f(x)

for x ∈ R, f ∈ S(R). For f ∈ Lp(R), we can get (5.13) for a.e. x ∈ R by replacing
absolute value to Lp norm.
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Then, by Fatou’s lemma and ∥Tε∥p,p = 1,

∥aI + bH∥p,p ≤ sup
ε

∥T1/ε(aMK + bMD)Tε∥p,p ≤ ∥aMK + bMD∥p,p.

By Theorem 4.2 in [17],

∥aMK + bMD∥p,p = ∥aK + bD∥p,p,

so, using (5.10) and the fact that ∥aI + bH∥p,p = B
1/p
p (see [15]), we get the sharpness

∥aK + bD∥p,p = ∥aI + bH∥p,p = B1/p
p .

□
From the proof above, we abstract a proposition for convolution operators:

Proposition 5.3. Let K be the convolution operator defined by

Kf(n) =
∑
k∈Z

Kkf(n− k)

for f ∈ ℓp(Z), with kernel (Kn) such that Kn ≥ 0 for all n and
∑

n∈ZKn = 1. Then
∥K∥p,p = 1.

For the operator aI + bD, a, b ∈ R, applying the method in [17, Lemma 4.3], we
immediately obtain

∥aI + bD∥p,p ≥ ∥aI + bH∥p,p = B1/p
p .

We conjecture that ∥aI+bD∥p,p = ∥aK+bD∥p,p = B
1/p
p . The solution of this conjecture

may require additional ideas as I and D are natural projections of nonorthogonal
martingales.

Another discrete Hilbert transform is defined by

(5.14) (D1/2a)n = p.v.
1

π

∑
k∈Z

an−k

k + 1/2
.

More generally, consider the operator defined for α ∈ (0, 1) by

(5.15) (Dαa)n = p.v.
sin πα

π

∑
k∈Z

an−k

k + α
.

A natural conjecture is that for 1 < p < ∞ and α ∈ (0, 1), the norms ∥Dα∥p,p coincide

with the norms ∥ cos παI + sin παH∥p,p = B
1/p
p ; see Conjecture 5.7 in [17]. It could be

observed that our martingale inequalities have some relationship with this conjecture.
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