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Abstract

We obtain sharp weighted Lp estimates in the Rubio de Francia extrapolation the-
orem in terms of the Ap characteristic constant of the weight. Precisely, if for a given
1 < r < ∞ the norm of a sublinear operator on Lr(w) is bounded by a function of the
Ar characteristic constant of the weight w, then for p > r it is bounded on Lp(v) by
the same increasing function of the Ap characteristic constant of v, and for p < r it is
bounded on Lp(v) by the same increasing function of the r−1

p−1 power of the Ap char-
acteristic constant of v. For some operators these bounds are sharp, but not always.
In particular, we show that they are sharp for the Hilbert, Beurling, and martingale
transforms.

1 Introduction

1.1 Extrapolation

A positive locally integrable function on Rn is called a weight. A weight w is said to
be of class Ap, for 1 < p < ∞, if

sup
Q

(
1
|Q|

∫
Q

w

)(
1
|Q|

∫
Q

w
− 1

p−1

)p−1

< ∞ ,
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where the supremum is taken over all cubes Q in Rn with sides parallel to the axes
(Q will always denote such cubes). The quantity above is called the Ap-characteristic
constant of the weight w and will be denoted by ‖w‖Ap .

A weight w is said to be of class A1 if there is a constant C > 0 such that

Mw ≤ Cw a.e.,

where M is the (uncentered) Hardy-Littlewood maximal function, i.e.

Mf(x) = sup
x∈Q

1
|Q|

∫
Q
|f(y)|dy .

The smallest possible C is denoted by ‖w‖A1 .
For an operator T bounded from a Banach space X into itself (T ∈ B(X)) we will

denote by ‖T‖X its operator norm. When 1 < q < ∞, q′ shall stand for the dual
exponent of q, i.e. 1

q + 1
q′ = 1. Given a weight v on Rn, Lp(v) denotes the space of

complex functions on Rn such that
∫

Rn |f |p v is finite.
The following result is the celebrated extrapolation theorem of Rubio de Francia.

Theorem (E) Assume we are given a sublinear1 operator

T :
⋃

w∈Aq
1≤q<∞

Lq(w) −→ {all measurable complex−valued functions} .

Suppose there is 1 ≤ r < ∞ such that T ∈ B(Lr(u)) for all weights u ∈ Ar, with
bounds depending only on ||u||Ar . Then T ∈ B(Lp(w)) for all 1 < p < ∞ and all
weights w ∈ Ap, with bounds depending only on ||w||Ap. More precisely, suppose for
each B > 1 there is a constant Nr(B) > 0 such that we have

‖T‖Lr(u) ≤ Nr(B) for all u ∈ Ar with ‖u‖Ar ≤ B. (1)

Then for any 1 < p < ∞ and B > 1 there is Np(B) > 0 such that for all weights
w ∈ Ap with ‖w‖Ap ≤ B,

‖T‖Lp(w) ≤ Np(B). (2)

This result first appeared in [R]. Different proofs can be found in the books [GC-RF]
and [Gr].

Muckenhoupt proved in [M] that for 1 < p < ∞ the maximal function is bounded
on Lp(w) if and only if the weight w belongs to the class Ap. Hunt, Muckenhoupt and
Wheeden proved in [HMW] that the Ap condition also characterizes the boundedness
of the Hilbert transform

Hf(x) = p.v.
1
π

∫
f(y)
x− y

dy

1it turns out that T does not need to be sublinear, just well-defined on its domain, see [Gr, Sec. 9.5.b].
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in Lp(w). Coifman and Fefferman [CF] extended the theory to general Calderón-
Zygmund operators.

In 1993, Buckley [Bu] obtained the following result concerning the Hardy-Littlewood
maximal function2 (1 < p < ∞):

‖M‖Lp(w) ≤ C(p)‖w‖p′/p
Ap

, (3)

where the constant C(p) depends only on p (and the underlying dimension n). These
bounds are sharp, i.e. ||w||p

′/p
Ap cannot be replaced by ϕ(||w||Ap) for any function ϕ :

R+ → R+ that grows slower than the p′/p –th power. This can be easily seen by using
power functions and power weights. Taking w ≡ 1 we see that the constants C(p) must
blow up as p → 1.

In this note we use Buckley’s estimate (3) to improve Theorem (E) as follows.

Theorem 1. With the notation and hypotheses as in Theorem (E), assume that Nr(B)
denotes the smallest constant that satisfies inequality (1). Then for any 1 < p < ∞
and all B > 1 there is a constant Np(B) such that (2) holds for all weights w in Ap

satisfying ‖w‖Ap ≤ B. Moreover,

Np(B) ≤

 2
1
r Nr(2C(p′)

p−r
p−1 B) if p > r

2
r−1

r Nr

(
2r−1(C(p)p−rB)

r−1
p−1
)

if p < r .

Here C(p) is the constant appearing in (3).

This result, applied to the Beurling and martingale transforms for r = 2, N2(B) =
CB and p > 2, was first observed in [PetV]. In this case, a careful extrapolation for
p > 2 yields Np(B) ≤ CpB. That is, the linear dependence on the constant when p = 2
is preserved also for p > 2. However, this is not the case when p < 2, which motivates
a more careful examination of the problem.

1.2 Sharp Bounds

The linear bounds for the Beurling transform in Lp(w) in terms of ‖w‖Ap for p ≥ 2 have
important consequences in the theory of quasiconformal mappings. The connection is
very well explained in the paper by Astala, Iwaniec and Saksman [AIS] who were
interested in finding the minimal q < 2 for which all solutions to the Beltrami equation
∂̄f = µ · ∂f that belong to the Sobolev space W 1,q

loc still self-improve to belonging to
W 1,2

loc , i.e. are quasiregular. Here µ is a bounded function with ||µ||∞ = k < 1. A
deep result of Astala [A] says that q > 1 + k suffices. On the other hand, Iwaniec and
Martin [IM] found examples showing that the result could in general not be true for

2Buckley actually obtained this result for the centered maximal function M0. However, the uncentered
maximal function M, the centered one M0, and the dyadic maximal function Md are comparable modulo
dimensional constants, so (3) holds for either one.

3



q < 1 + k. In [AIS] the borderline case q = 1 + k was addressed; it was pointed out
by the authors that quasiregularity would be a consequence of the linear dependence
of the norm of the Beurling transform on weighted spaces Lp(w) for p ≥ 2 in terms
of the Ap characteristic of the weight w. This linear dependence was settled in [PetV]
and later in [DV] for p ≥ 2, the only range for which it is true.

For the maximal function, the bound for ‖M‖L2(w) is also linear in ‖w‖A2 , see (3).
If 1 < p < 2, extrapolation yields sharp dependence of ‖M‖Lp(w) on ‖w‖Ap . However,
for p > 2, extrapolation only gives linear growth on ‖w‖Ap , when the sharp growth

is ‖w‖p′/p
Ap

. In [Bu], Buckley considers two more examples were the same phenomena
occur. He shows that a parametric class of Marcinkiewicz integral operators is uni-
formly bounded on Lp(w) by ‖w‖Ap for all 1 < p < ∞ and these linear estimates are
sharp [Bu, Theorem 2.15]. In particular, extrapolating from the sharp linear estimate
at p = 2 yields the right sharp linear estimate for p > 2, but for p < 2 it yields a
worse estimate. Buckley also shows that a parametric class of averaging operators is
uniformly bounded on Lp(w) by ‖w‖1/p

Ap
for all 1 < p < ∞ [Bu, Lemma 2.18]. In this

case, starting from the estimates on Lr(w) for any 1 < r < ∞, extrapolation yields an
estimate that is worse than the sharp estimate for all p 6= r. Therefore the estimates
of Theorem 1 may not be sharp for some operators even when the initial estimate
is sharp. However, the theorem itself is sharp, as we will show that for a variety of
classical operators that have a sharp linear norm estimate in L2(w), the extrapolated
bounds are also sharp for all 1 < p < ∞.

Buckley [Bu] also showed that the Hilbert transform –and for that matter convolu-
tion singular integral operators with Calderón-Zygmund kernels– are bounded on Lp(w)
with an operator norm which is at most a multiple of ‖w‖α

Ap
, where max{1, p′/p} 6

α 6 p′. In particular, for p = 2 he showed that the dependence on ‖w‖A2 was at least
linear, and at most quadratic.

Recently there has been renewed interest in computing the exact dependence of
the operator norms on the Ap characteristic constant of the weight. Sharp linear
dependence on ||w||A2 was obtained by Hukovic, Treil, and Volberg [Huk], [HukTV]
for the dyadic square function on L2(w) and for the martingale transform, a dyadic
model for singular integral operators, by Wittwer [W1, W2]. As we already mentioned,
analogous results were recently obtained for the Beurling transform by Petermichl
and Volberg [PetV], and later by Dragičević and Volberg [DV]. Petermichl and Pott
[PetPot] very elegantly showed that α ≤ 3/2 for the Hilbert transform. Petermichl
[Pet] improved this estimate to α = 1 when p ≥ 2. The difficulty in [Pet] was to obtain
linear dependence of ‖H‖L2(w) on ‖w‖A2 ; extrapolation then gave the same dependence
for p > 2. Using Theorem 1 we obtain that the norms of these operators on Lp(w) are
bounded by at most a multiple of ‖w‖α

Ap
, α = max{1, p′/p}, for all 1 < p < ∞.

As mentioned earlier, using power weights and power functions, Buckley [Bu]
showed that for convolution operators with Calderón-Zygmund kernels the power is
at least max{1, p′/p}. Hence in the cases of Hilbert and Beurling transform, Theorem
1 provides the sharp bounds. If we could prove linear bounds for all convolution oper-
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ators with CZ-kernels, then by extrapolation we will obtain the same sharp bounds in
Lp(w) as for the Hilbert and the Beurling transform. Obtaining the linear bounds in
L2(w) can be very difficult. For instance, it is not yet known to the authors whether
there is a bound for the first-order Riesz transforms on L2(w) depending linearly on
‖w‖A2 .

We will show that the bounds obtained by extrapolation for the martingale trans-
form are also sharp for all 1 < p < ∞. We can show that the extrapolated bounds
for the square function are sharp for p < 2. It is not clear yet that the linear bound
obtained by extrapolation for p > 2 is sharp, so far we can show that it must be at
least of the order ‖w‖p′/p

Ap
. We can summarize all these results in the following theorem.

Theorem 2. Let T be any of the Hilbert transform, the Beurling transform, the mar-
tingale transform, or the dyadic square function. Then for any 1 < p < ∞ there exist
positive constants Cp such that for all weights w in Ap we have

‖T‖Lp(w) ≤ Cp‖w‖α
Ap

, (4)

where α = max{1, p′/p}. The exponent α in this estimate is sharp for the Hilbert,
Beurling and martingale transforms for all 1 < p < ∞. For the dyadic square function
the exponent is sharp for 1 < p ≤ 2.

All results establishing the linear bounds for the above operators on L2(w) have been
obtained using the technique of Bellman functions introduced by Nazarov, Treil and
Volberg [NTV] in the harmonic analysis context; see [NT] for an extensive introduction
to this technique. The linear upper bound in Theorem 2 for p > 2 was previously known
for the martingale, Hilbert and Beurling transforms.

Unfortunately, extrapolation does not preserve the nature of the initial estimate on
Lr(w) for all 1 < p < ∞, only for p > r. Therefore sharpness at the given r does not
automatically transfer to all other p ∈ (1,∞). One has to check sharpness by other
means for each p 6= r. In all the examples discussed we search for a function and a
weight (or a family of functions and weights) that will provide a lower bound estimate
of the same order of the upper bound, therefore showing that the estimate is indeed
sharp.

Acknowledgement The authors would like to thank the referee for some very
useful suggestions that improved the presentation.

2 Some Lemmata

The first two lemmata below correspond to IV.5.16 and IV.5.17 in [GC-RF]. The case
r = 2 and p > 2 was carefully calculated in [PetV].

Lemma 1. Take p, s > 1, w ∈ Ap and u ∈ Ls(w). Let

S(u) =
(
w−1M(|u|s/p′w)

)p′/s
. (5)
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(a) Then S is bounded in Ls(w), moreover,

‖S‖Ls(w) ≤ C(p′)p′/s‖w‖p′/s
Ap

.

(b) Let p, s be such that r := p/s′ ∈ [1,∞). Take a nonnegative function u ∈ Ls(w).
If r > 1, then the pair (uw, S(u)w) belongs to the class Ar. Furthermore,

sup
Q

(
1
|Q|

∫
Q

uw

)(
1
|Q|

∫
Q

(
S(u)w

)− 1
r−1

)r−1

≤ ‖w‖1− p′
s

Ap
.

If r = 1, the A1 condition on the pair (uw, S(u)w) also holds and translates into

M(uw) ≤ S(u)w .

Proof: (a) Estimating directly the norm we obtain

‖Su‖Ls(w) =
(∫ [

w−1M(|u|s/p′w)
]p′

w

) 1
s

=
(∫ [

M(|u|s/p′w)
]p′

w1−p′
) 1

s

≤ ‖M‖p′/s

Lp′ (w1−p′ )
‖|u|s/p′w‖p′/s

Lp′ (w1−p′ )
= ‖M‖p′/s

Lp′ (w1−p′ )
‖u‖Ls(w).

It only remains to insert Buckley’s sharp (3) estimate and to recall that w ∈ Ap implies
w1−p′ ∈ Ap′ , moreover

‖w1−p′‖Ap′ = ‖w‖
1

p−1

Ap
= ‖w‖p′/p

Ap
. (6)

All together, these facts imply

‖M‖Lp′ (w1−p′ ) ≤ C(p′)‖w1−p′‖(p′)′/p′

Ap′
= C(p′)

(
‖w‖p′/p

Ap

)p/p′ = C(p′)‖w‖Ap .

Thus, ‖S‖Ls(w) ≤ C(p′)p′/s‖w‖p′/s
Ap

, as claimed.

(b) If s = p′, we have r = 1, then S(u)w = M(uw). Automatically the two-weight
A1 condition, M(uw) ≤ S(u)w, holds.

If s > p′ > 1, then p > s′ > 1 and r > 1. Note that (r − 1) = (p− 1)(1− p′

s ) and,
by definition of the maximal function,〈

us/p′w
〉

Q
≤ sup

x∈Q
M(us/p′w)(x) .
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Here 〈f〉Q denotes the mean of the function f over the cube Q. Consequently,

〈uw〉Q
〈

[S(u)w
] −1

r−1

〉r−1

Q

= 〈uw〉Q
〈

[(w−1M(us/p′w))p′/sw
] −1

r−1

〉r−1

Q

=
〈
u wp′/sw1−p′/s

〉
Q

〈
[M(us/p′w)

] p′
s

−1
r−1 w

−1
p−1

〉r−1

Q

≤
〈
us/p′w

〉p′/s

Q
〈w〉1−

p′
s

Q

〈
us/p′w

〉− p′
s

Q

〈
w

−1
p−1

〉(p−1)(1− p′
s

)

Q

=
[
〈w〉Q

〈
w

−1
p−1

〉p−1

Q

]1− p′
s

≤ ‖w‖1− p′
s

Ap

Taking supremum on the left-hand-side, over all cubes Q with sides parallel to the axis,
we obtain the desired inequality. �

Lemma 2. Let p, s, r and w be as in the previous lemma. Then for each u ≥ 0,
u ∈ Ls(w), there exists v ∈ Ls(w) such that

(a) u(x) ≤ v(x) a.e. and ‖v‖Ls(w) ≤ 2‖u‖Ls(w)

(b) vw ∈ Ar, moreover, ‖vw‖Ar ≤ 2C(p′)p′/s‖w‖Ap.

Proof: Define v via the following convergent Neumann series:

v =
∞∑

n=0

Sn(u)
2n‖S‖n

= u +
S(u)
2‖S‖

+ · · · ,

where ‖S‖ = ‖S‖Ls(w). Then (a) is clearly satisfied.

(b) It follows from the definition of v and the sublinearity of S that

Sv 6 2||S||(v − u) 6 2||S||v .

Suppose r > 1. By the previous lemma, the pair (vw, S(v)w) lies in Ar with its Ar-

constant bounded by ‖w‖1− p′
s

Ap
. Also recall that ‖S‖ ≤ C(p′)p′/s‖w‖p′/s

Ap
. We can now

estimate ‖vw‖Ar :

〈vw〉Q
〈
(vw)

−1
r−1

〉r−1

Q
≤ 〈vw〉Q

〈
(S(v)w)

−1
r−1

〉r−1

Q
2‖S‖

≤ ‖w‖1− p′
s

Ap
2C(p′)p′/s‖w‖p′/s

Ap
= 2C(p′)p′/s‖w‖Ap .
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Taking supremum on the left hand side, over all cubes Q with sides parallel to the axis,
we obtain the desired estimate for ‖vw‖Ar , r > 1.

When r = 1, then s = p′ and ‖S‖ ≤ C(p′)‖w‖Ap , furthermore

M(vw) ≤ S(v)w ≤ 2‖S‖vw ≤ 2C(p′)‖w‖Apvw.

We conclude that ‖vw‖A1 ≤ 2C(p′)‖w‖Ap , as claimed. �

The next lemma appears as IV.5.18 in [GC-RF]; see also Lemma 9.5.4 in [Gr] for a
slightly different method for part (b) which yields the same bounds as here. Attention
was paid to the constants in [Gr] but Buckley’s sharp estimate for ‖M‖Lp(w) was
missing; with this additional information, the constants in [Gr] would be of the same
order as the ones obtained here.

Lemma 3. Fix r satisfying 1 ≤ r < ∞.

(a) Let 1 ≤ r < p < ∞ and s = (p/r)′. Let w ∈ Ap, then for every u ≥ 0, u ∈ Ls(w),
there exists v ≥ 0, v ∈ Ls(w), such that u(x) ≤ v(x) and ‖v‖Ls(w) ≤ 2‖u‖Ls(w).

Moreover, vw ∈ Ar and ‖vw‖Ar ≤ 2C(p′)
p−r
p−1 ‖w‖Ap.

(b) Let 1 < p < r and s = p
r−p . Let w ∈ Ap, then for every u ≥ 0, u ∈ Ls(w), there

exists v ≥ 0, v ∈ Ls(w) such that, u(x) ≤ v(x), and ‖v‖Ls(w) ≤ 2r−1‖u‖Ls(w).

Moreover, v−1w ∈ Ar and ‖v−1w‖Ar ≤ 2r−1(C(p)r−p‖w‖Ap)
r−1
p−1 .

Here C(p) denotes the constant in (3).

Proof:
(a): Clearly r ≥ 1 implies s′ ≤ p, and we can now use Lemma 2 after observing

that p′

s = p−r
p−1 .

(b): Take p, r and s as in the formulation of the lemma. (Notice that everything
that is being said still holds if 0 < s < 1.) Now the dual exponents satisfy the opposite
inequality, r′ < p′, and if we define s∗ := (p′/r′)′ > 1, then s∗ = s(r − 1).

We apply the previous case with p′, r′ and w1−p′ ∈ Ap′ instead of p, r and w ∈ Ap,
respectively. If u ≥ 0, u ∈ Ls(w), then u0 = us/s∗wp′/s∗ ∈ Ls∗(w1−p′) and by (a) there
exists v0 ∈ Ls∗(w1−p′) such that

u0 ≤ v0 a.e., ‖v0‖Ls∗ (w1−p′ ) ≤ 2‖u0‖Ls∗ (w1−p′ ), and

v0w
1−p′ ∈ Ar′ , ‖v0w

1−p′‖Ar′ ≤ 2C(p)
p′−r′
p′−1 ‖w1−p′‖Ap′ = 2C(p)

r−p
p−1 ‖w‖

1
p−1

Ap
.

Define v so that v0 = vs/s∗wp′/s∗ , that is, v = v
s∗/s
0 w−p′/s. Then clearly

u(x) < v(x) a.e., ‖v‖Ls(w) ≤ 2r−1‖u‖Ls(w),
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and furthermore, v−1w =
(
v0w

1−p′
)1−r ∈ Ar, and this time,

‖v−1w‖Ar = ‖
(
v0w

1−p′
)1−r‖Ar = ‖v0w

1−p′‖
1

r′−1

Ar′
≤ 2r−1(C(p)r−p‖w‖Ap)

r−1
p−1 .

�

3 Proof of the Extrapolation Theorem 1

As in [GC-RF], Theorem 1 is a consequence of Lemma 3.

Proof of Theorem 1:
Case 1: Assume 1 ≤ r < p, w ∈ Ap, and 1

s = 1− r
p , i.e. s′ = p/r. Then(∫

|Tf(x)|pw(x)dx

)r/p

= ‖|Tf |r‖Ls′ (w) = sup
u>0

‖u‖Ls(w)61

∫
|Tf(x)|ru(x)w(x)dx. (7)

For each such u, by Lemma 3(a), there is v ∈ Ls(w) such that u ≤ v, ‖v‖Ls(w) ≤
2‖u‖Ls(w) = 2, vw ∈ Ar and ‖vw‖Ar ≤ 2C(p′)

p−r
p−1 ‖w‖Ap . Then∫

|Tf(x)|ru(x)w(x)dx ≤
∫
|Tf(x)|rv(x)w(x)dx ≤ ‖T‖r

Lr(vw)‖f‖
r
Lr(vw)

≤ ‖T‖r
Lr(vw)

∫
|f(x)|rv(x)w

r
p (x)w1− r

p (x)dx

≤ ‖T‖r
Lr(vw)

(∫
|f(x)|pw(x)dx

)r/p(∫
vs(x)w(x)dx

)1/s

= ‖T‖r
Lr(vw)‖f‖

r
Lp(w)‖v‖Ls(w) ≤ 2‖T‖r

Lr(vw)‖f‖
r
Lp(w) .

Now we use the hypothesis, ‖T‖Lr(vw) ≤ Nr(‖vw‖Ar), and the fact that Nr is an

increasing function3 and ‖vw‖Ar ≤ 2C(p′)
p−r
r−1 ‖w‖Ap , to conclude that∫

|Tf(x)|ru(x)w(x)dx ≤ 2N r
r (2C(p′)

p−r
r−1 ‖w‖Ap)||f ||rLp(w) .

Taking the supremum over all admissible u we obtain the desired inequality,

‖T‖Lp(w) ≤ 21/rNr(2C(p′)
p−r
p−1 ‖w‖Ap).

3If Nr(B) denotes the smallest constant with the property that ‖w‖Ar
≤ B =⇒ ‖Tf‖Lr(w) ≤

Nr(B)‖f‖Lr(w), then Nr(B) is increasing in B. Indeed, suppose that B ≤ B′. Take ‖w‖Ar
≤ B. Then

‖w‖Ar
≤ B′ and the above norm inequality holds with Nr(B′) in place of Nr(B). Since Nr(B) is the smallest

constant with this property, it follows that Nr(B) ≤ Nr(B′). Note that if it is known that Nr is an increasing
function the argument goes through without requiring Nr(B) to be the smallest constant.

9



In particular, if ‖T‖Lr(vw) ≤ C‖vw‖Ar , then for p > r we get

‖T‖Lp(w) ≤ C 2
r+1

r C(p′)
p−r
p−1 ‖w‖Ap .

Case 2: Assume 1 < p < r and write s = p
r−p . For f ∈ Lp(w) define u = |f |r−p.

Then u ∈ Ls(w) and ‖u‖Ls(w) = ‖f‖r−p
Lp(w). By Lemma 3(b) there is a function v

such that u 6 v, ‖v‖Ls(w) 6 2r−1‖u‖Ls(w) = 2r−1‖f‖r−p
Lp(w), v−1w ∈ Ar and, moreover,

‖v−1w‖Ar 6 2r−1(C(p)r−p‖w‖Ap)
r−1
p−1 . Now, using Hölder’s inequality in the first line

with q = r/p > 1, q′ = r
r−p and q′/q = s, we obtain

‖Tf‖r
Lp(w) ≤ ‖v‖Ls(w)

∫
|Tf(x)|rv−1(x)w(x)dx

≤ 2r−1‖f‖r−p
Lp(w)N

r
r (‖v−1w‖Ar)

∫
|f(x)|rv−1(x)w(x)dx

≤ 2r−1‖f‖r−p
Lp(w)N

r
r

(
2r−1(C(p)r−p‖w‖Ap)

r−1
p−1
) ∫

|f(x)|r|f(x)|p−rw(x)dx

= 2r−1N r
r

(
2r−1(C(p)r−p‖w‖Ap)

r−1
p−1
)
‖f‖r

Lp(w).

We conclude that

‖T‖Lp(w) ≤ 2
r−1

r Nr

(
2r−1(C(p)r−p‖w‖Ap)

r−1
p−1
)
.

In particular, if we know that ‖T‖Lr(u) ≤ C‖u‖Ar for all u ∈ Ar, then for 1 < p < r
we have

‖T‖Lp(w) ≤ C2
r2−1

r C(p)
(r−p)(r−1)

p−1 ‖w‖
r−1
p−1

Ap
.

Specializing further, when r = 2 and ‖T‖L2(u) ≤ C‖u‖A2 , then

‖T‖Lp(w) ≤ C ′(p)‖w‖α
Ap

, (8)

where α = max{1, p′/p} and

C ′(p) = 2
√

2C ×

 C(p′)
p−2
p−1 if p > 2

C(p)
2−p
p−1 if 1 < p 6 2 .

�

4 Sharp weighted Lp bounds

Proof of Theorem 2: It has been proven in [Pet], [PetV], [D], [HTV], [W1] and [W2]
that the Hilbert transform, the Beurling transform, the dyadic square function, the
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martingale transforms, and the continuous square function are bounded in L2(v) with
bounds linearly depending on the A2-characteristic constant of the weight v. That is,
if T denotes any of the above operators, then there exists constant C > 0 such that

‖T‖L2(v) ≤ C‖v‖A2

for all v ∈ A2. These results are known to be sharp for all these operators.
The line (8) says that

‖T‖Lp(v) ≤ C ′(p)‖v‖α
Ap

, α = max{1, p′/p}. (9)

Buckley [Bu] showed that if w(x) = |x|(1−δ)(p−1), f(x) = xδ−1χ[0,1], 0 < δ < 1,
then ‖w‖Ap ∼ δ1−p, ‖f‖Lp(w) = δ−1/p, furthermore, for the Hilbert transform H,

‖Hf‖Lp(w) ≥ δ−1‖f‖Lp(w) ∼ ‖w‖p′/p
Ap

‖f‖Lp(w). This shows the estimate (9) is sharp for
p < 2. An argument by duality (using the fact that the Hilbert transform is essentially
self-adjoint) shows that so is the estimate for p > 2.

For the sake of completeness, here is the duality argument. Suppose we can show
that for a given operator T and some 1 < p 6 2 there exists a constant Cp such that

‖T‖Lp(w) 6 Cp‖w‖p′/p
Ap

for all weights w ∈ Ap. The adjoint operator T ∗ is bounded on the dual space
(Lp(w))∗ = Lp′(w1−p′) with the same bound, i.e. ‖T‖Lp(w) = ‖T ∗‖Lp′ (w1−p′ ). We
can combine these estimates with (6) to arrive at

||T ∗||Lp′ (u) ≤ Cp ||u||Ap′

for all u ∈ Ap′ . The consideration above also shows that if T ∗ = eiϕ T , it suffices to
prove sharpness of the estimates for T either for 1 < p 6 2 or p > 2.

For example, Hilbert, Beurling or martingale transforms are essentially selfadjoint
operators, i.e. T ∗ = eiφT , therefore it is sufficient to consider the case p < 2.

For the Beurling and the martingale transform an example similar to the one given
by Buckley for the Hilbert transform will work, hence the bounds given by extrapolation
from the sharp linear bound in L2(v) to Lp(w), give the correct rate in terms of the
Ap characteristic of the weight w for these operators as well. For p = 2, the details of
the example for the Beurling transform are in Dragičević’s PhD Thesis [D], where he
shows that if w(z) = |z|α, |α| < 2, and f(z) = |z|−αχE , where E = {(r, θ) : 0 < r <
1, 0 < θ < π/2}, then the growth must be linear.

The martingale transform is defined below and we demonstrate the estimate of its
norm from below. The martingale transform is self-adjoint hence it suffices to prove
sharpness for p < 2. The same example will also work for the dyadic square function
and p < 2, but this time we can not use the duality argument to guarantee sharpness
of the linear estimate for p > 2. We do not know yet if the linear bound for p > 2 is
indeed the sharp bound for the dyadic square function, the best we can say is that it
is between p′/p and 1.

11



4.1 The dyadic square function

The dyadic square function is defined formally by

Sdf(x) =

(∑
I∈D

|〈f, hI〉|2χI(x)
|I|

) 1
2

,

where D denotes the family of all dyadic intervals, χI is the characteristic function of
the interval I, hI = |I|−1/2

(
χIr − χIl

)
is the Haar function associated to the interval

I, and Ir, Il denote the right and the left halves of I, respectively.
Take 0 < δ < 1 and let w(x) = |x|(1−δ)(p−1), f(x) = xδ−1χ[0,1](x). Then ‖w‖Ap ∼

δ1−p and ‖f‖Lp(w) = δ−1/p. We will show that for x > 2,

Sdf(x) ∼ 1
δx

, (10)

which in turn implies that∫
R
|Sdf(x)|pw(x)dx ≥ Cp

δp

∫ ∞

2
x−px(1−δ)(p−1)dx =

Cp

δp

∫ ∞

2
xδ(1−p)−1dx

=
Cp 2δ(1−p)

δp+1(p− 1)
∼ Cp(p)‖w‖p′

Ap
‖f‖p

Lp(w).

Taking p–th roots we get
‖Sd‖Lp(w) > C(p)‖w‖p′/p

Ap

where C(p) ∼ 1
p−1 when p is near 1. This proves that ϕ(x) = xp′/p is the best function

for the estimate ||Sd||Lp(w) 6 C(p) ϕ(||w||Ap) when 1 < p ≤ 2. However, for p > 2 it
only shows that xp′/p ≺ ϕ (asymptotically when x →∞) and ϕ ≺ x by extrapolation.

We obtain (10) by a direct calculation. Notice that 〈f, hI〉 6= 0 implies I∩ [0, 1] 6= ∅.
If, in addition, we require that I ∩ (2,∞) 6= ∅, i.e. if our dyadic I is to contain some
x > 2, then it must be I = Ik = [0, 2k) where x < 2k. For each x > 2 there is a unique
n(x) ∈ N such that 2n(x) ≤ x < 2n(x)+1. That means that the only contributions to
Sdf(x) come from the intervals Ik with k > n(x). For those intervals,

〈f, hIk
〉 = −2−k/2δ−1.

That is, for x > 2 we have

Sdf(x) =

 ∑
k>n(x)

|〈f, hIk
〉|2

|Ik|

1/2

=

 ∑
k>n(x)

2−2kδ−2

1/2

=
δ−1

2n(x)
√

3
∼ 1

δx
.
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4.2 Martingale transforms

The martingale transform is formally given by

Tσf(x) =
∑
I∈D

σI〈f, hI〉hI(x),

where σ = {σI = ±1 : I ∈ D}, is the symbol of the operator.
Wittwer [W1] showed that

sup
σ
‖Tσ‖L2(w) ≤ C‖w‖A2 .

This result is sharp. One way to see that is to resort to [DV]. There the Ahlfors-Beurling
operator T was represented as the result of certain averaging process for (planar)
martingale transforms associated to the Haar basis in L2(C). The same reasoning
works for arbitrary p ∈ (1,∞). Indeed, without any change we obtain operators T ′n
as in [DV, p. 431]. Since Lp(w) is a reflexive space, the closed unit ball in B(Lp(w))
is compact in weak operator topology. This justifies existence of weak limit T ′ of a
subsequence of operators T ′n for arbitrary p. As in [DV] we show that T ′ is (a multiple
of) the Ahlfors-Beurling operator. Now it is clear that the sharpness of the estimates
for T on Lp(w) implies the same for supσ ||Tσ||. Moreover, one can show by examining
[W1] that this extends to martingale transforms on the line.

One can also prove sharpness directly. The same example that works for the Hilbert
transform and p < 2 will work in this case, then the duality implies the case of p > 2.

Thus take x > 2 and let δ, w, f , Ik and n(x) be as in the previous section. We have

〈f, hIk
〉hIk

(x) =


2−kδ−1 if x ∈ [0, 2k−1)

−2−kδ−1 if x ∈ [2k−1, 2k)
0 otherwise

=
1
δ


2−k if k > n(x) + 1

−2−[n(x)+1] if k = n(x) + 1
0 if k < n(x) + 1 .

Then

|Tσf(x)| =
∣∣∣ ∞∑

k=n(x)+1

σIk
〈f, hIk

〉hIk
(x)
∣∣∣ = 1

δ

∣∣∣σIn(x)+1

2n(x)+1
−

∑
k>n(x)+1

σIk

2k

∣∣∣.
We can now estimate ‖Tσf‖Lp(w) from below:

‖Tσf‖p
Lp(w) ≥

∫ ∞

2
|Tσf(x)|px(p−1)(1−δ)dx

=
1
δp

∞∑
n=1

∫ 2n+1

2n

∣∣∣σIn+1

2n+1
−
∑

k>n+1

σIk

2k

∣∣∣px(p−1)(1−δ)dx

≥ 1
δp

∞∑
n=1

∣∣∣σIn+1

2n+1
−
∑

k>n+1

σIk

2k

∣∣∣p2n(p−1)(1−δ) 2n .
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So far this was true for any σ. Now choose σIk
= (−1)k. We get

‖Tσf‖p
Lp(w) ≥ 1

δp

∞∑
n=1

∣∣∣(−1)n+1

2n+1
−
∑

k>n+1

(−1)k

2k

∣∣∣p2n(p+δ−pδ)

=
2p

(3δ)p

∑
n≥1

2−n(p−1)δ =
2p

(3δ)p(2(p−1)δ − 1)

∼ 1
δp+1(p− 1)

∼ C ′(p)‖w‖p′

Ap
‖f‖p

Lp(w) .

Taking p–th roots we conclude that

sup
σ
‖Tσ‖Lp(w) ≥ C ′′(p)‖w‖p′/p

Ap
.

Thus ϕ(x) = xp′/p is sharp for p < 2, and by duality ϕ(x) = x is sharp for p > 2. �

4.3 The dyadic paraproduct

A locally integrable function b is said to be in dyadic BMOd, if the average oscillation
of b is uniformly bounded on dyadic intervals. More precisely, if

‖b‖BMOd = sup
J∈D

1
|J |

∫
J
|b(x)− 〈b〉I | dx < ∞.

For each function b ∈ BMOd the dyadic paraproduct πb is defined by

πbf(x) =
∑
I∈D

〈f〉I 〈b, hI〉hI(x) .

It is known that the dyadic paraproduct is bounded in Lp(w) whenever w ∈ Ap; see
[KPer]. The following quadratic estimate can be shown to hold [PerPet]

‖πbf‖L2(w) ≤ K(‖b‖BMO)‖w‖2
A2
‖f‖L2(w).

(We do not think this is sharp, we believe the sharp estimate should be linear as for
all other operators studied in this paper.) Theorem 1 then gives the upper bound

‖πbf‖Lp(w) ≤ Kp(‖b‖BMO)‖w‖2α
Ap
‖f‖Lp(w),

where α = max{1, p′/p}.
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