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Abstract. The norm of the operator which averages |f | in Lp(Rn) over balls of radius δ|x|
centered at either 0 or x is obtained as a function of n, p and δ. Both inequalities proved are

n-dimensional analogues of a classical inequality of Hardy in R1. Finally, a lower bound for

the operator norm of the Hardy-Littlewood maximal function on Lp(Rn) is given.

0. Introduction

A classical result of Hardy [HLP] states that if f is in Lp(R1) for p > 1, then

(0.1)
( ∫ ∞

0

(
1
x

∫ x

0

|f(t)| dt
)p
dx

)1/p

≤ p

p− 1

( ∫ ∞
0

|f(t)|p dt
)1/p

and the constant p/(p − 1) is the best possible. By considering two-sided averages of f

instead of one-sided, (0.1) can be equivalently formulated as:

(0.2)
( ∫ ∞
−∞

(
1

2|x|

∫ |x|
−|x|
|f(t)| dt

)p
dx

)1/p

≤ p

p− 1

( ∫ ∞
−∞
|f(t)|p dt

)1/p

.

We denote by D(a,R) the ball of radius R in Rn centered at a. Let (Tf)(x) be the average

of |f | ∈ Lp(Rn) over the ball D(0, |x|). The analogue of (0.2) for Rn is the inequality:

(0.3) ‖Tf‖Lp ≤ Cp(n)‖f‖Lp
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for some constant Cp(n) which depends a priori on p and n. Our first result is that the

best constant Cp(n) which satisfies (0.3) for all f ∈ Lp(Rn) is p′ = p/(p − 1), the same

constant as in dimension one. Another version of Hardy’s inequality in Rn with the best

possible constant can be found in [F].

Next we consider a similar problem. An equivalent formulation of (0.1) and (0.2) is

(0.4)
( ∫ ∞
−∞

(
1

2|x|

∫ x+|x|

x−|x|
|f(t)| dt

)p
dx

)1/p

≤ 2−
1
p p

p− 1

( ∫ ∞
−∞
|f(t)|p dt

)1/p

,

where f is in Lp(R1). Let (Sf)(x) be the average of |f | ∈ Lp(Rn) over the ball D(x, |x|).
We compute the operator norm cp,n of S on Lp(Rn) as a function of n and p. The precise

value of the constant cp,n is given in Theorem 2.

In section 3 a lower bound for the operator norm of the Hardy-Littlewood maximal

function on Lp(Rn) is given. Finally, in section 4 the norm on Lp(Rn) of the operator

which averages f over the ball of radius δ|x| centered at either 0 or |x| is given as a

function of δ, p and n, for any δ > 0.

Throughout this note, ωn−1 will denote the area of the unit sphere Sn−1 and vn the

volume of the unit ball in Rn.

1. Hardy’s inequality on R
n.

In this section we will prove inequality (0.3) with constant Cp(n) = p′ = p/(p− 1). We

denote by |A| the Lebesgue measure of the set A and by χA its characteristic function.

Theorem 1. Let f ∈ Lp(Rn), where 1 < p <∞. The following inequality holds

(1.1)
( ∫

Rn

(
1

|D(0, |x|)|

∫
D(0,|x|)

|f(y)| dy
)p
dx

)1/p

≤ p

p− 1

( ∫
Rn

|f(y)|p dy
)1/p

,

and the constant p′ = p/(p− 1) is the best possible.

Proof Fix f ∈ Lp(Rn). Without loss of generality, assume that f is nonnegative and

continuous. Let R+ denote the multiplicative group of positive real numbers with Haar
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measure dt
t . The function tn/p

′
χ[0,1] is in L1(R+, dtt ) with norm p′/n. For a fixed θ in

the unit sphere Sn−1, the function t → f(tθ)tn/p is in Lp(R+, dtt ). The group inequality

‖g ∗K‖Lp ≤ ‖g‖Lp‖K‖L1 gives:

(1.2)
∫ ∞
r=0

( ∫ 1

0

f(rtθ)(rt)
n
p t

n
p′
dt

t

)p
dr

r
≤

( ∫ ∞
r=0

(
f(rθ)r

n
p )p

dr

r

) (
p′

n

)p
.

Note that equality holds in (1.2) if and only if equality holds in ‖g ∗K‖Lp ≤ ‖g‖Lp‖K‖L1 .

This happens in the limit by the sequence gε,N = χ[ε,N ]. Since g(t) = f(tθ)tn/p, we

conclude that equality is attained in (1.2) in the limit by the sequence

(1.3) fε,N (tθ) = t−n/pχε≤t≤N as ε→ 0 and N →∞.

Note that Tf is a radial function. Expressing all integrals in polar coordinates, we reduce

(1.1) to a convolution inequality on the multiplicative group R+. We have

‖Tf‖pLp(Rn) = ωn−1

∫ ∞
r=0

(
1

vnrn

∫ r

t=0

∫
θ∈Sn−1

f(tθ)tn−1 dθdt

)p
rn−1 dr

=
ωn−1

vpn

∫ ∞
r=0

( ∫
Sn−1

∫ 1

t=0

f(rtθ)(rt)
n
p t

n
p′
dt

t
dθ

)p
dr

r
.(1.4)

We apply Hölder’s inequality with exponents 1
p + 1

p′ = 1 to the functions 1 and

θ →
∫ 1

t=0
f(rtθ)(rt)n/ptn/p

′ dt
t and then Fubini’s theorem to interchange the integrals in θ

and r. We obtain that (1.4) is bounded above by

(1.5)
ωn−1

vpn
ω
p
p′
n−1

∫
Sn−1

∫ ∞
r=0

( ∫ 1

t=0

f(rtθ)(rt)
n
p t

n
p′
dt

t

)p
dr

r
dθ.

Note that if f is a radial function then (1.4) and (1.5) are identical. We now apply (1.2)

to majorize (1.5) by

ωpn−1

vpn

(
p′

n

)p ∫
Sn−1

∫ ∞
r=0

f(rθ)prn
dr

r
dθ =

(
p

p− 1

)p
‖f‖pLp(Rn)

using the fact that ωn−1 = nvn. We have now obtained the inequality ‖Tf‖Lp ≤ p′‖f‖Lp .
Equality holds when the family of functions (1.3) is radial. Therefore the extremal family

for inequality (1.1) is |x|−n/pχε≤|x|≤N , as ε→ 0 and N →∞.
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2. A variant of Hardy’s inequality on R
n.

The derivation of the n-dimensional analogue of (0.4) is more subtle. Let B(s, t) denote

the usual beta-function
∫ 1

0
xt(1− x)s dx. Our second result is

Theorem 2. Let 1 < p < ∞ and cp,n = p′ ωn−2
ωn−1

2
n
p′−1

B( 1
2 ( np′ − 1), n−3

2 ). The following

inequality holds for all f in Lp(Rn):

(2.1)
( ∫

Rn

(
1

|D(x, |x|)|

∫
D(x,|x|)

|f(y)| dy
)p
dx

)1/p

≤ cp,n
( ∫

Rn

|f(y)|p dy
)1/p

and the constant cp,n is the best possible.

Proof. We use duality. Fix f and g positive and continuous with ‖f‖Lp(Rn) ≤ 1 and

‖g‖Lp′ (Rn) ≤ 1. We will show that
∫
g(x)(Sf)(x) dx ≤ cp,n. We express both g and Sf in

polar coordinates by writing x = rφ and y = tθ. The relation |x − y| ≤ |x| is equivalent

to θ · φ ≥ t/2r. We obtain∫
Rn

g(x)(Sf)(x) dx =
∫
Rn

∫
Rn

1
vn|x|n

f(y)g(x)χD(x,|x|)(y) dx dy

=
1
vn

∫∫
(Sn−1)2

∫ ∞
r=0

∫ 2r

t=0

f(tθ)g(rφ)χφ·θ≥t/2r tn
dt

t

dr

r
dφ dθ

=
2
n
p′

vn

∫∫
(Sn−1)2

∫ ∞
r=0

g(rφ)r
n
p′

( ∫ 1

t=0

f(2rtθ)(2rt)
n
p χφ·θ≥t t

n
p′
dt

t

)
dr

r
dφ dθ

≤2
n
p′

vn

∫∫
(Sn−1)2

G(φ)
[ ∫ ∞

r=0

( ∫ 1

t=0

f(2rtθ)(2rt)
n
p χφ·θ≥t t

n
p′
dt

t

)p
dr

r

]1/p

dφ dθ,

(2.2)

where G(φ) =
( ∫∞

r=0
g(rφ)p

′
rn dr

r

)1/p′ . The bracketed expression in (2.2) is the Lp norm

of the group (R+, dtt ) convolution of the function t→ f(tθ)t
n
p with the kernel χ[0,θ·φ](t)t

n
p′

at 2r. We therefore estimate (2.2) by

(2.3)
2
n
p′

vn

∫∫
(Sn−1)2

G(φ)F (θ)
( ∫ θ·φ

0

t
n
p′
dt

t

)
dφ dθ,

where F (θ) =
( ∫∞

0
f(rθ)prn dr

r

)1/p. Let K(φ · θ) =
∫ θ·φ
0

tn/p
′ dt
t = p′

n [(φ · θ)+]n/p
′
, where

N+ denotes the positive part of the number N . Next, we need the following:
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Lemma. For any F,G ≥ 0 measurable on Sn−1 and K ≥ 0 measurable on [−1, 1],

(2.4)
∫∫

(Sn−1)2
F (θ)G(φ)K(θ · φ) dφ dθ ≤ ‖F‖Lp(Sn−1)‖G‖Lp′ (Sn−1)

∫
Sn−1

K(θ · φ) dφ.

Proof. We may assume that all three quantities on the right hand side of (2.4) are

finite. Since K depends only on the inner product θ · φ, the integral
∫
Sn−1 K(θ · φ) dφ is

independent of θ. Hölder’s inequality applied to the functions F and 1 with respect to the

measure K(θ · φ) dθ gives

(2.5)
∫
Sn−1

F (θ)K(θ · φ) dθ ≤
( ∫

Sn−1
F (θ)pK(θ · φ) dθ

)1/p( ∫
Sn−1

K(θ · φ) dθ
)1/p′

.

We will now use (2.5) to prove (2.4). The left hand side of (2.4) is trivially estimated by( ∫
Sn−1

( ∫
Sn−1 F (θ)K(θ · φ) dθ

)p
dφ

)1/p‖G‖Lp′ (Sn−1). Applying (2.5) and Fubini’s theorem

we bound this last expression by ‖F‖Lp(Sn−1)‖G‖Lp′ (Sn−1)

∫
Sn−1 K(θ · φ) dφ. The lemma

is now proved. Observe that equality is attained in (2.4) if and only if both F and G are

constants.

We now continue with the proof of Theorem 2. Applying the lemma and using the

fact that F and G have norm one, we estimate (2.3) by p′

n
2
n
p′

vn

∫
Sn−1

(
(θ · φ)+

) n
p′ dθ. To

compute this integral, we slice the sphere in the direction transverse to φ. For convenience

we may take φ = e1 = (1, 0, · · · , 0). The area of the slice cut by the hyperplane φ1 = s is

ωn−2(1− s2)
n−2

2 and the weight of this slice is (1− s2)− 1
2 . We get

∫
Sn−1

(
(θ · φ)+

) n
p′ dθ = ωn−2

∫ 1

s=0

s
n
p′ (1− s2)n−3

2 ds = ωn−2
1
2 B

(
1
2 ( np′ − 1), n−3

2

)
.

We now use that nvn = ωn−1 to get the final estimate cp,n in (2.2) which completes the

proof of (2.1). It remains to establish that the constant cp,n is the best possible. For any

y ∈ Rn, let A(y) be the spherical cap {θ ∈ Sn−1 : |θ−y| ≤ |y|}. This cap is nonempty if and

only if |y| ≥ 1/2. For such y, the Lebesgue measure |A(y)| is ωn−2

∫ 1

1/2|y|(1−s2)
n−3

2 ds. Let

G(t) = χ[0,1](t) tn/p
′ ∫ 1

t
(1 − s2)n−3

2 ds. An easy computation shows that ‖G‖L1(R+, dtt ) =
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(
p′

n

) ∫ 1

0
(1 − s2)n−3

2 s
n
p′ ds. Let h = hε,N be an element of the family |x|−n/pχε≤|x|≤N

normalized to have Lp norm one. We have

‖Sh‖pLp(Rn) =
∫ ∞
r=0

∫
φ∈Sn−1

(
1

vnrn

∫
D(rφ,r)

h(y) dy
)p
rn−1 dφ dr

=
∫ ∞
r=0

∫
φ∈Sn−1

(
1

vnrn

∫ 2r

t=0

∫
θ∈Sn−1

tθ∈D(rφ,r)

h(tθ)tn−1 dθdt

)p
rn−1 dφ dr

=
∫ ∞
r=0

∫
φ∈Sn−1

(
1

vnrn

∫ 2r

t=0

|A((r/t)φ)|h(t)tn dt
t

)p
rn dφ

dr

r

= ωpn−2

2np−n

vpn
ωn−1

∫ ∞
r=0

( ∫ 1

t=0

h(2rt)(2rt)
n
pG(t)

dt

t

)p
rn
dr

r
.(2.7)

The convolution inequality ‖g ∗ L‖Lp ≤ ‖g‖Lp‖L‖L1 in the group (R+, dtt ) written as

(2.8)
∫ ∞
r=0

( ∫ 1

t=0

h(2rt)(2rt)
n
pG(t)

dt

t

)p
dr

r
≤

( ∫ ∞
r=0

h(r)prn
dr

r

)
‖G‖p

L1(R+, dtt )

becomes an equality as ε→ 0 and N →∞. Inserting (2.8) in (2.7) we obtain

‖Sh‖pLp(Rn) ≤ ω
p
n−2

2np−n

vpn

(
p′

n

)p( ∫ 1

s=0

(1− s2)n−3
2 s

n
p′ ds

)p
ωn−1

∫ ∞
r=0

h(r)prn−1dr = cpp,n

since ‖h‖Lp = 1, and equality is attained as ε→ 0 and N →∞. Theorem 2 is now proved.

3. A lower bound for the operator norm of the Hardy-Littlewood maximal

function on Lp(Rn).

Let M(f)(x) = supr>0(vnrn)−1
∫
|y−x|≤r |f(y)| dy be the usual Hardy-Littlewood max-

imal function on Rn. The family of functions fε,N (x) = |x|−n/pχε≤|x|≤N is extremal for

Theorems 1 and 2. Let Ap,n be the operator norm of M on Lp(Rn). By computing

‖M(fε,N )‖Lp/‖fε,N‖Lp and letting ε→ 0 and N →∞ we obtain a lower bound for Ap,n.

Proposition. For 1 < p <∞, let Ap,n be the best constant C that satisfies the inequality

‖Mf‖Lp(Rn) ≤ C‖f‖Lp(Rn) for all f in Lp. Then

(3.1) Ap,n ≥ p′
ωn−2

ωn−1
sup
δ>1

1
δn

∫ 1

−1

(√
1− s2

)n−3(
s+

√
s2 + δ2 − 1

) n
p′ ds
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and the supremum above is attained for some δ = δn,p always less than 2.

Proof. The following is only a sketch. Since |x|−n/p is in L1
loc(R

n), we can calculate

M(|x|−n/p) instead. Observe that M(|x|−n/p) = c |x|−n/p where c = M(|x|−n/p)(e1) and

e1 = (1, 0, . . . , 0). Also note that the supremum of the averages of |x|−n/p over balls of

radius r centered at e1 is attained for some r = 1 + γ where γ > 0. We therefore find that

(3.2) c = sup
γ>0

1
vn(1 + γ)n

∫ 2+γ

r=0

rn−
n
pAr

dr

r
,

where Ar = |{θ ∈ Sn−1 : |rθ − e1| < 1 + γ}|. Calculation gives that Ar = ωn−1 for r ≤ γ
and Ar = ωn−2

∫ 1

(r2−γ2−2γ)/2r
(1− s2)n−3

2 ds for 2 + γ > r > γ. We plug these values into

(3.2) and we interchange the integration in r and s:

∫ 2+γ

r=γ

∫ 1

s= r2−γ2−2γ
2r

r
n
p′ (1− s2)n−3

2 ds
dr

r
=

∫ 1

−1

∫ s+
√
s2+γ2+2γ

r=γ

r
n
p′ (1− s2)n−3

2
dr

r
ds.

We now let δ = γ + 1 and obtain (3.1). Note that the constant on the right hand side of

(3.1) reduces to the constant cp,n of Theorem 2 when δ = 1.

4. Final Remarks.

We end with a couple of remarks. Let cn,p be the constant of Theorem 2. We observe that

cn,p ≤ p
p−1 . This can be shown directly or via the following inequality which can be found

in [HLP]:

(4.1)
∫
Rn

f(x)g(x) dx ≤
∫
Rn

f̃(x)g̃(x) dx,

where f and g are integrable and f̃ denotes the symmetric decreasing rearrangement of

any function f . Let T and S be the operators of Theorems 1 and 2. The nonsymmetric

decreasing rearrangement of the kernel of S is the kernel of T . Taking g to be the kernel

of S and f in Lp∩L1 in (4.1), we obtain the pointwise inequality Sf ≤ T f̃ . It follows that

cn,p ≤ p
p−1 .
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For any δ > 0, we define variants Tδ of T and Sδ of S as follows:

(Tδf)(x) =
1

|D(0, δ|x|)|

∫
D(0,δ|x|)

f(y) dy and (Sδf)(x) =
1

|D(x, δ|x|)|

∫
D(x,δ|x|)

f(y) dy.

Since (Tδf)(x) = (Tf)(δx) it is immediate that the operator norm of Tδ on Lp(Rn) is
p
p−1δ

−n/p.

To compute the operator norm of Sδ on Lp(Rn), we repeat the proof of Theorem 2

verbatim. We obtain the following result:

Theorem.

A. For δ > 1, the operator norm of Sδ on Lp(Rn) is

p′
ωn−2

ωn−1

1
δn

∫ 1

−1

(1− s2)n−3
2

(
s+

√
s2 + δ2 − 1

) n
p′ ds

B. For δ < 1, the operator norm of Sδ on Lp(Rn) is

p′
ωn−2

ωn−1

1
δn

∫ 1

s=
√

1−δ2
(1− s2)n−3

2

[(
s+

√
s2 + δ2 − 1

) n
p′ −

(
s−

√
s2 + δ2 − 1

) n
p′

]
ds.

(3.1) is of course subsumed in conclusion A above.

The second author would like to thank Professor Al Baernstein for stimulating his

interest in these problems and also for many useful conversations.
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