BEST CONSTANTS FOR TWO NON-CONVOLUTION INEQUALITIES

Michael Christ* and Loukas Grafakos*
University of California, Los Angeles and Washington University

Abstract

The norm of the operator which averages $|f|$ in $L^{p}\left(\mathbb{R}^{n}\right)$ over balls of radius $\delta|x|$ centered at either 0 or x is obtained as a function of n, p and δ. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in \mathbb{R}^{1}. Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on $L^{p}\left(\mathbb{R}^{n}\right)$ is given.

0. Introduction

A classical result of Hardy [HLP] states that if f is in $L^{p}\left(\mathbb{R}^{1}\right)$ for $p>1$, then

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x}|f(t)| d t\right)^{p} d x\right)^{1 / p} \leq \frac{p}{p-1}\left(\int_{0}^{\infty}|f(t)|^{p} d t\right)^{1 / p} \tag{0.1}
\end{equation*}
$$

and the constant $p /(p-1)$ is the best possible. By considering two-sided averages of f instead of one-sided, (0.1) can be equivalently formulated as:

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}\left(\frac{1}{2|x|} \int_{-|x|}^{|x|}|f(t)| d t\right)^{p} d x\right)^{1 / p} \leq \frac{p}{p-1}\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{1 / p} \tag{0.2}
\end{equation*}
$$

We denote by $D(a, R)$ the ball of radius R in \mathbb{R}^{n} centered at a. Let $(T f)(x)$ be the average of $|f| \in L^{p}\left(\mathbb{R}^{n}\right)$ over the ball $D(0,|x|)$. The analogue of (0.2) for \mathbb{R}^{n} is the inequality:

$$
\begin{equation*}
\|T f\|_{L^{p}} \leq C_{p}(n)\|f\|_{L^{p}} \tag{0.3}
\end{equation*}
$$

[^0]for some constant $C_{p}(n)$ which depends a priori on p and n. Our first result is that the best constant $C_{p}(n)$ which satisfies (0.3) for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$ is $p^{\prime}=p /(p-1)$, the same constant as in dimension one. Another version of Hardy's inequality in \mathbb{R}^{n} with the best possible constant can be found in $[\mathrm{F}]$.

Next we consider a similar problem. An equivalent formulation of (0.1) and (0.2) is

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}\left(\frac{1}{2|x|} \int_{x-|x|}^{x+|x|}|f(t)| d t\right)^{p} d x\right)^{1 / p} \leq \frac{2^{-\frac{1}{p}} p}{p-1}\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{1 / p} \tag{0.4}
\end{equation*}
$$

where f is in $L^{p}\left(\mathbb{R}^{1}\right)$. Let $(S f)(x)$ be the average of $|f| \in L^{p}\left(\mathbb{R}^{n}\right)$ over the ball $D(x,|x|)$. We compute the operator norm $c_{p, n}$ of S on $L^{p}\left(\mathbb{R}^{n}\right)$ as a function of n and p. The precise value of the constant $c_{p, n}$ is given in Theorem 2.

In section 3 a lower bound for the operator norm of the Hardy-Littlewood maximal function on $L^{p}\left(\mathbb{R}^{n}\right)$ is given. Finally, in section 4 the norm on $L^{p}\left(\mathbb{R}^{n}\right)$ of the operator which averages f over the ball of radius $\delta|x|$ centered at either 0 or $|x|$ is given as a function of δ, p and n, for any $\delta>0$.

Throughout this note, ω_{n-1} will denote the area of the unit sphere S^{n-1} and v_{n} the volume of the unit ball in \mathbb{R}^{n}.

1. Hardy's inequality on \mathbb{R}^{n}.

In this section we will prove inequality (0.3) with constant $C_{p}(n)=p^{\prime}=p /(p-1)$. We denote by $|A|$ the Lebesgue measure of the set A and by χ_{A} its characteristic function.

Theorem 1. Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$, where $1<p<\infty$. The following inequality holds

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left(\frac{1}{|D(0,|x|)|} \int_{D(0,|x|)}|f(y)| d y\right)^{p} d x\right)^{1 / p} \leq \frac{p}{p-1}\left(\int_{\mathbb{R}^{n}}|f(y)|^{p} d y\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

and the constant $p^{\prime}=p /(p-1)$ is the best possible.

Proof Fix $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Without loss of generality, assume that f is nonnegative and continuous. Let \mathbb{R}^{+}denote the multiplicative group of positive real numbers with Haar
measure $\frac{d t}{t}$. The function $t^{n / p^{\prime}} \chi_{[0,1]}$ is in $L^{1}\left(\mathbb{R}^{+}, \frac{d t}{t}\right)$ with norm p^{\prime} / n. For a fixed θ in the unit sphere S^{n-1}, the function $t \rightarrow f(t \theta) t^{n / p}$ is in $L^{p}\left(\mathbb{R}^{+}, \frac{d t}{t}\right)$. The group inequality $\|g * K\|_{L^{p}} \leq\|g\|_{L^{p}}\|K\|_{L^{1}}$ gives:

$$
\begin{equation*}
\int_{r=0}^{\infty}\left(\int_{0}^{1} f(r t \theta)(r t)^{\frac{n}{p}} t^{\frac{n}{p^{\prime}}} \frac{d t}{t}\right)^{p} \frac{d r}{r} \leq\left(\int_{r=0}^{\infty}\left(f(r \theta) r^{\frac{n}{p}}\right)^{p} \frac{d r}{r}\right)\left(\frac{p^{\prime}}{n}\right)^{p} \tag{1.2}
\end{equation*}
$$

Note that equality holds in (1.2) if and only if equality holds in $\|g * K\|_{L^{p}} \leq\|g\|_{L^{p}}\|K\|_{L^{1}}$. This happens in the limit by the sequence $g_{\epsilon, N}=\chi_{[\epsilon, N]}$. Since $g(t)=f(t \theta) t^{n / p}$, we conclude that equality is attained in (1.2) in the limit by the sequence

$$
\begin{equation*}
f_{\epsilon, N}(t \theta)=t^{-n / p} \chi_{\epsilon \leq t \leq N} \quad \text { as } \epsilon \rightarrow 0 \text { and } N \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Note that $T f$ is a radial function. Expressing all integrals in polar coordinates, we reduce (1.1) to a convolution inequality on the multiplicative group \mathbb{R}^{+}. We have

$$
\begin{align*}
\|T f\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} & =\omega_{n-1} \int_{r=0}^{\infty}\left(\frac{1}{v_{n} r^{n}} \int_{t=0}^{r} \int_{\theta \in S^{n-1}} f(t \theta) t^{n-1} d \theta d t\right)^{p} r^{n-1} d r \\
& =\frac{\omega_{n-1}}{v_{n}^{p}} \int_{r=0}^{\infty}\left(\int_{S^{n-1}} \int_{t=0}^{1} f(r t \theta)(r t)^{\frac{n}{p}} t^{\frac{n}{p^{\prime}}} \frac{d t}{t} d \theta\right)^{p} \frac{d r}{r} \tag{1.4}
\end{align*}
$$

We apply Hölder's inequality with exponents $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ to the functions 1 and $\theta \rightarrow \int_{t=0}^{1} f(r t \theta)(r t)^{n / p} t^{n / p^{\prime}} \frac{d t}{t}$ and then Fubini's theorem to interchange the integrals in θ and r. We obtain that (1.4) is bounded above by

$$
\begin{equation*}
\frac{\omega_{n-1}}{v_{n}^{p}} \omega_{n-1}^{\frac{p}{p^{\prime}}} \int_{S^{n-1}} \int_{r=0}^{\infty}\left(\int_{t=0}^{1} f(r t \theta)(r t)^{\frac{n}{p}} t^{\frac{n}{p^{\prime}}} \frac{d t}{t}\right)^{p} \frac{d r}{r} d \theta \tag{1.5}
\end{equation*}
$$

Note that if f is a radial function then (1.4) and (1.5) are identical. We now apply (1.2) to majorize (1.5) by

$$
\frac{\omega_{n-1}^{p}}{v_{n}^{p}}\left(\frac{p^{\prime}}{n}\right)^{p} \int_{S^{n-1}} \int_{r=0}^{\infty} f(r \theta)^{p} r^{n} \frac{d r}{r} d \theta=\left(\frac{p}{p-1}\right)^{p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}
$$

using the fact that $\omega_{n-1}=n v_{n}$. We have now obtained the inequality $\|T f\|_{L^{p}} \leq p^{\prime}\|f\|_{L^{p}}$. Equality holds when the family of functions (1.3) is radial. Therefore the extremal family for inequality (1.1) is $|x|^{-n / p} \chi_{\epsilon \leq|x| \leq N}$, as $\epsilon \rightarrow 0$ and $N \rightarrow \infty$.

2. A variant of Hardy's inequality on \mathbb{R}^{n}.

The derivation of the n-dimensional analogue of (0.4) is more subtle. Let $B(s, t)$ denote the usual beta-function $\int_{0}^{1} x^{t}(1-x)^{s} d x$. Our second result is

THEOREM 2. Let $1<p<\infty$ and $c_{p, n}=p^{\prime} \frac{\omega_{n-2}}{\omega_{n-1}} 2^{\frac{n}{p^{\prime}}-1} B\left(\frac{1}{2}\left(\frac{n}{p^{\prime}}-1\right), \frac{n-3}{2}\right)$. The following inequality holds for all f in $L^{p}\left(\mathbb{R}^{n}\right)$:

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left(\frac{1}{|D(x,|x|)|} \int_{D(x,|x|)}|f(y)| d y\right)^{p} d x\right)^{1 / p} \leq c_{p, n}\left(\int_{\mathbb{R}^{n}}|f(y)|^{p} d y\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

and the constant $c_{p, n}$ is the best possible.
Proof. We use duality. Fix f and g positive and continuous with $\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq 1$ and $\|g\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} \leq 1$. We will show that $\int g(x)(S f)(x) d x \leq c_{p, n}$. We express both g and $S f$ in polar coordinates by writing $x=r \phi$ and $y=t \theta$. The relation $|x-y| \leq|x|$ is equivalent to $\theta \cdot \phi \geq t / 2 r$. We obtain

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} g(x)(S f)(x) d x=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{1}{v_{n}|x|^{n}} f(y) g(x) \chi_{D(x,|x|)}(y) d x d y \\
= & \frac{1}{v_{n}} \iint_{\left(S^{n-1}\right)^{2}} \int_{r=0}^{\infty} \int_{t=0}^{2 r} f(t \theta) g(r \phi) \chi_{\phi \cdot \theta \geq t / 2 r} t^{n} \frac{d t}{t} \frac{d r}{r} d \phi d \theta \\
= & \frac{2^{\frac{n}{p^{\prime}}}}{v_{n}} \iint_{\left(S^{n-1}\right)^{2}} \int_{r=0}^{\infty} g(r \phi) r^{\frac{n}{p^{\prime}}}\left(\int_{t=0}^{1} f(2 r t \theta)(2 r t)^{\frac{n}{p}} \chi_{\phi \cdot \theta \geq t} t^{\frac{n}{p^{\prime}}} \frac{d t}{t}\right) \frac{d r}{r} d \phi d \theta \\
\leq & \frac{2^{\frac{n}{p^{\prime}}}}{v_{n}} \iint_{\left(S^{n-1}\right)^{2}} G(\phi)\left[\int_{r=0}^{\infty}\left(\int_{t=0}^{1} f(2 r t \theta)(2 r t)^{\frac{n}{p}} \chi_{\phi \cdot \theta \geq t} t^{\frac{n}{p^{\prime}}} \frac{d t}{t}\right)^{p} \frac{d r}{r}\right]^{1 / p} d \phi d \theta, \tag{2.2}
\end{align*}
$$

where $G(\phi)=\left(\int_{r=0}^{\infty} g(r \phi)^{p^{\prime}} r^{n} \frac{d r}{r}\right)^{1 / p^{\prime}}$. The bracketed expression in (2.2) is the L^{p} norm of the group $\left(\mathbb{R}^{+}, \frac{d t}{t}\right)$ convolution of the function $t \rightarrow f(t \theta) t^{\frac{n}{p}}$ with the kernel $\chi_{[0, \theta \cdot \phi]}(t) t^{\frac{n}{p^{\prime}}}$ at $2 r$. We therefore estimate (2.2) by

$$
\begin{equation*}
\frac{2^{\frac{n}{p^{\prime}}}}{v_{n}} \iint_{\left(S^{n-1}\right)^{2}} G(\phi) F(\theta)\left(\int_{0}^{\theta \cdot \phi} t^{\frac{n}{p^{\prime}}} \frac{d t}{t}\right) d \phi d \theta \tag{2.3}
\end{equation*}
$$

where $F(\theta)=\left(\int_{0}^{\infty} f(r \theta)^{p} r^{n} \frac{d r}{r}\right)^{1 / p}$. Let $K(\phi \cdot \theta)=\int_{0}^{\theta \cdot \phi} t^{n / p^{\prime}} \frac{d t}{t}=\frac{p^{\prime}}{n}\left[(\phi \cdot \theta)^{+}\right]^{n / p^{\prime}}$, where N^{+}denotes the positive part of the number N. Next, we need the following:

Lemma. For any $F, G \geq 0$ measurable on S^{n-1} and $K \geq 0$ measurable on $[-1,1]$,

$$
\begin{equation*}
\iint_{\left(S^{n-1}\right)^{2}} F(\theta) G(\phi) K(\theta \cdot \phi) d \phi d \theta \leq\|F\|_{L^{p}\left(S^{n-1}\right)}\|G\|_{L^{p^{\prime}}\left(S^{n-1}\right)} \int_{S^{n-1}} K(\theta \cdot \phi) d \phi \tag{2.4}
\end{equation*}
$$

Proof. We may assume that all three quantities on the right hand side of (2.4) are finite. Since K depends only on the inner product $\theta \cdot \phi$, the integral $\int_{S^{n-1}} K(\theta \cdot \phi) d \phi$ is independent of θ. Hölder's inequality applied to the functions F and 1 with respect to the measure $K(\theta \cdot \phi) d \theta$ gives

$$
\begin{equation*}
\int_{S^{n-1}} F(\theta) K(\theta \cdot \phi) d \theta \leq\left(\int_{S^{n-1}} F(\theta)^{p} K(\theta \cdot \phi) d \theta\right)^{1 / p}\left(\int_{S^{n-1}} K(\theta \cdot \phi) d \theta\right)^{1 / p^{\prime}} \tag{2.5}
\end{equation*}
$$

We will now use (2.5) to prove (2.4). The left hand side of (2.4) is trivially estimated by $\left(\int_{S^{n-1}}\left(\int_{S^{n-1}} F(\theta) K(\theta \cdot \phi) d \theta\right)^{p} d \phi\right)^{1 / p}\|G\|_{L^{p^{\prime}}\left(S^{n-1}\right)}$. Applying (2.5) and Fubini's theorem we bound this last expression by $\|F\|_{L^{p}\left(S^{n-1}\right)}\|G\|_{L^{p^{\prime}}\left(S^{n-1}\right)} \int_{S^{n-1}} K(\theta \cdot \phi) d \phi$. The lemma is now proved. Observe that equality is attained in (2.4) if and only if both F and G are constants.

We now continue with the proof of Theorem 2. Applying the lemma and using the fact that F and G have norm one, we estimate (2.3) by $\frac{p^{\prime}}{n} \frac{\frac{n}{p^{\prime}}}{v_{n}} \int_{S^{n-1}}\left((\theta \cdot \phi)^{+}\right)^{\frac{n}{p^{\prime}}} d \theta$. To compute this integral, we slice the sphere in the direction transverse to ϕ. For convenience we may take $\phi=e_{1}=(1,0, \cdots, 0)$. The area of the slice cut by the hyperplane $\phi_{1}=s$ is $\omega_{n-2}\left(1-s^{2}\right)^{\frac{n-2}{2}}$ and the weight of this slice is $\left(1-s^{2}\right)^{-\frac{1}{2}}$. We get

$$
\int_{S^{n-1}}\left((\theta \cdot \phi)^{+}\right)^{\frac{n}{p^{\prime}}} d \theta=\omega_{n-2} \int_{s=0}^{1} s^{\frac{n}{p^{\prime}}}\left(1-s^{2}\right)^{\frac{n-3}{2}} d s=\omega_{n-2} \frac{1}{2} B\left(\frac{1}{2}\left(\frac{n}{p^{\prime}}-1\right), \frac{n-3}{2}\right) .
$$

We now use that $n v_{n}=\omega_{n-1}$ to get the final estimate $c_{p, n}$ in (2.2) which completes the proof of (2.1). It remains to establish that the constant $c_{p, n}$ is the best possible. For any $y \in \mathbb{R}^{n}$, let $A(y)$ be the spherical cap $\left\{\theta \in S^{n-1}:|\theta-y| \leq|y|\right\}$. This cap is nonempty if and only if $|y| \geq 1 / 2$. For such y, the Lebesgue measure $|A(y)|$ is $\omega_{n-2} \int_{1 / 2|y|}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}} d s$. Let $G(t)=\chi_{[0,1]}(t) t^{n / p^{\prime}} \int_{t}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}} d s$. An easy computation shows that $\|G\|_{L^{1}\left(\mathbb{R}^{+}, \frac{d t}{t}\right)}=$
$\left(\frac{p^{\prime}}{n}\right) \int_{0}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}} s^{\frac{n}{p^{\prime}}} d s$. Let $h=h_{\epsilon, N}$ be an element of the family $|x|^{-n / p} \chi_{\epsilon \leq|x| \leq N}$ normalized to have L^{p} norm one. We have

$$
\begin{align*}
\|S h\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} & =\int_{r=0}^{\infty} \int_{\phi \in S^{n-1}}\left(\frac{1}{v_{n} r^{n}} \int_{D(r \phi, r)} h(y) d y\right)^{p} r^{n-1} d \phi d r \\
& =\int_{r=0}^{\infty} \int_{\phi \in S^{n-1}}\left(\frac{1}{v_{n} r^{n}} \int_{t=0}^{2 r} \int_{t \theta \in D(r \phi, r)} h \in S^{n-1} h(t \theta) t^{n-1} d \theta d t\right)^{p} r^{n-1} d \phi d r \\
& =\int_{r=0}^{\infty} \int_{\phi \in S^{n-1}}\left(\frac{1}{v_{n} r^{n}} \int_{t=0}^{2 r}|A((r / t) \phi)| h(t) t^{n} \frac{d t}{t}\right)^{p} r^{n} d \phi \frac{d r}{r} \\
& =\omega_{n-2}^{p} \frac{2^{n p-n}}{v_{n}^{p}} \omega_{n-1} \int_{r=0}^{\infty}\left(\int_{t=0}^{1} h(2 r t)(2 r t)^{\frac{n}{p}} G(t) \frac{d t}{t}\right)^{p} r^{n} \frac{d r}{r} . \tag{2.7}
\end{align*}
$$

The convolution inequality $\|g * L\|_{L^{p}} \leq\|g\|_{L^{p}}\|L\|_{L^{1}}$ in the group $\left(\mathbb{R}^{+}, \frac{d t}{t}\right)$ written as

$$
\begin{equation*}
\int_{r=0}^{\infty}\left(\int_{t=0}^{1} h(2 r t)(2 r t)^{\frac{n}{p}} G(t) \frac{d t}{t}\right)^{p} \frac{d r}{r} \leq\left(\int_{r=0}^{\infty} h(r)^{p} r^{n} \frac{d r}{r}\right)\|G\|_{L^{1}\left(\mathbb{R}^{+}, \frac{d t}{t}\right)}^{p} \tag{2.8}
\end{equation*}
$$

becomes an equality as $\epsilon \rightarrow 0$ and $N \rightarrow \infty$. Inserting (2.8) in (2.7) we obtain

$$
\|S h\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} \leq \omega_{n-2}^{p} \frac{2^{n p-n}}{v_{n}^{p}}\left(\frac{p^{\prime}}{n}\right)^{p}\left(\int_{s=0}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}} s^{\frac{n}{p^{\prime}}} d s\right)^{p} \omega_{n-1} \int_{r=0}^{\infty} h(r)^{p} r^{n-1} d r=c_{p, n}^{p}
$$

since $\|h\|_{L^{p}}=1$, and equality is attained as $\epsilon \rightarrow 0$ and $N \rightarrow \infty$. Theorem 2 is now proved.
3. A lower bound for the operator norm of the Hardy-Littlewood maximal function on $L^{p}\left(\mathbb{R}^{n}\right)$.

Let $M(f)(x)=\sup _{r>0}\left(v_{n} r^{n}\right)^{-1} \int_{|y-x| \leq r}|f(y)| d y$ be the usual Hardy-Littlewood maximal function on \mathbb{R}^{n}. The family of functions $f_{\epsilon, N}(x)=|x|^{-n / p} \chi_{\epsilon \leq|x| \leq N}$ is extremal for Theorems 1 and 2. Let $A_{p, n}$ be the operator norm of M on $L^{p}\left(\mathbb{R}^{n}\right)$. By computing $\left\|M\left(f_{\epsilon, N}\right)\right\|_{L^{p}} /\left\|f_{\epsilon, N}\right\|_{L^{p}}$ and letting $\epsilon \rightarrow 0$ and $N \rightarrow \infty$ we obtain a lower bound for $A_{p, n}$. Proposition. For $1<p<\infty$, let $A_{p, n}$ be the best constant C that satisfies the inequality $\|M f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ for all f in L^{p}. Then

$$
\begin{equation*}
A_{p, n} \geq p^{\prime} \frac{\omega_{n-2}}{\omega_{n-1}} \sup _{\delta>1} \frac{1}{\delta^{n}} \int_{-1}^{1}\left(\sqrt{1-s^{2}}\right)^{n-3}\left(s+\sqrt{s^{2}+\delta^{2}-1}\right)^{\frac{n}{p^{\prime}}} d s \tag{3.1}
\end{equation*}
$$

and the supremum above is attained for some $\delta=\delta_{n, p}$ always less than 2 .

Proof. The following is only a sketch. Since $|x|^{-n / p}$ is in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, we can calculate $M\left(|x|^{-n / p}\right)$ instead. Observe that $M\left(|x|^{-n / p}\right)=c|x|^{-n / p}$ where $c=M\left(|x|^{-n / p}\right)\left(e_{1}\right)$ and $e_{1}=(1,0, \ldots, 0)$. Also note that the supremum of the averages of $|x|^{-n / p}$ over balls of radius r centered at e_{1} is attained for some $r=1+\gamma$ where $\gamma>0$. We therefore find that

$$
\begin{equation*}
c=\sup _{\gamma>0} \frac{1}{v_{n}(1+\gamma)^{n}} \int_{r=0}^{2+\gamma} r^{n-\frac{n}{p}} A_{r} \frac{d r}{r}, \tag{3.2}
\end{equation*}
$$

where $A_{r}=\left|\left\{\theta \in S^{n-1}:\left|r \theta-e_{1}\right|<1+\gamma\right\}\right|$. Calculation gives that $A_{r}=\omega_{n-1}$ for $r \leq \gamma$ and $A_{r}=\omega_{n-2} \int_{\left(r^{2}-\gamma^{2}-2 \gamma\right) / 2 r}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}} d s$ for $2+\gamma>r>\gamma$. We plug these values into (3.2) and we interchange the integration in r and s :

$$
\int_{r=\gamma}^{2+\gamma} \int_{s=\frac{r^{2}-\gamma^{2}-2 \gamma}{2 r}}^{1} r^{\frac{n}{p^{\prime}}}\left(1-s^{2}\right)^{\frac{n-3}{2}} d s \frac{d r}{r}=\int_{-1}^{1} \int_{r=\gamma}^{s+\sqrt{s^{2}+\gamma^{2}+2 \gamma}} r^{\frac{n}{p^{\prime}}}\left(1-s^{2}\right)^{\frac{n-3}{2}} \frac{d r}{r} d s
$$

We now let $\delta=\gamma+1$ and obtain (3.1). Note that the constant on the right hand side of (3.1) reduces to the constant $c_{p, n}$ of Theorem 2 when $\delta=1$.

4. Final Remarks.

We end with a couple of remarks. Let $c_{n, p}$ be the constant of Theorem 2. We observe that $c_{n, p} \leq \frac{p}{p-1}$. This can be shown directly or via the following inequality which can be found in [HLP]:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) g(x) d x \leq \int_{\mathbb{R}^{n}} \tilde{f}(x) \tilde{g}(x) d x \tag{4.1}
\end{equation*}
$$

where f and g are integrable and \tilde{f} denotes the symmetric decreasing rearrangement of any function f. Let T and S be the operators of Theorems 1 and 2 . The nonsymmetric decreasing rearrangement of the kernel of S is the kernel of T. Taking g to be the kernel of S and f in $L^{p} \cap L^{1}$ in (4.1), we obtain the pointwise inequality $S f \leq T \tilde{f}$. It follows that $c_{n, p} \leq \frac{p}{p-1}$.

For any $\delta>0$, we define variants T_{δ} of T and S_{δ} of S as follows:

$$
\left(T_{\delta} f\right)(x)=\frac{1}{|D(0, \delta|x|)|} \int_{D(0, \delta|x|)} f(y) d y \text { and }\left(S_{\delta} f\right)(x)=\frac{1}{|D(x, \delta|x|)|} \int_{D(x, \delta|x|)} f(y) d y
$$

Since $\left(T_{\delta} f\right)(x)=(T f)(\delta x)$ it is immediate that the operator norm of T_{δ} on $L^{p}\left(\mathbb{R}^{n}\right)$ is $\frac{p}{p-1} \delta^{-n / p}$.

To compute the operator norm of S_{δ} on $L^{p}\left(\mathbb{R}^{n}\right)$, we repeat the proof of Theorem 2 verbatim. We obtain the following result:

Theorem.

A. For $\delta>1$, the operator norm of S_{δ} on $L^{p}\left(\mathbb{R}^{n}\right)$ is

$$
p^{\prime} \frac{\omega_{n-2}}{\omega_{n-1}} \frac{1}{\delta^{n}} \int_{-1}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}}\left(s+\sqrt{s^{2}+\delta^{2}-1}\right)^{\frac{n}{p^{\prime}}} d s
$$

B. For $\delta<1$, the operator norm of S_{δ} on $L^{p}\left(\mathbb{R}^{n}\right)$ is

$$
p^{\prime} \frac{\omega_{n-2}}{\omega_{n-1}} \frac{1}{\delta^{n}} \int_{s=\sqrt{1-\delta^{2}}}^{1}\left(1-s^{2}\right)^{\frac{n-3}{2}}\left[\left(s+\sqrt{s^{2}+\delta^{2}-1}\right)^{\frac{n}{p^{\prime}}}-\left(s-\sqrt{s^{2}+\delta^{2}-1}\right)^{\frac{n}{p^{\prime}}}\right] d s
$$

(3.1) is of course subsumed in conclusion A above.

The second author would like to thank Professor Al Baernstein for stimulating his interest in these problems and also for many useful conversations.

References

[BT] A. Baernstein II and B.A. Taylor, Spherical rearrangements, subharmonic functions and *-functions in n-space, Duke Math. J. 43 (1976), no. 2, 245-268.
[HLP] G. Hardy, J. Littlewood and G. Pólya, Inequalities, The University Press, Cambridge, 1959.
[F] W. G. Faris, Weak Lebesgue spaces and Quantum mechanical binding, Duke Math. J. 43 (1976), no. 2, 365-373.
[PS] G. Pólya and G. Szegö, Isoperimatric inequalities in Mathematical Physics, Princeton Univ. Press, 1951.
[S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
[SO] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.) 4 (1938), no. 46, 471-497 ; English Translation: Amer. Math. Soc. Transl. (2) 34 (1963), 39-68.
[SS] E. M. Stein and J. O. Strömberg, Behavior of maximal functions in \mathbb{R}^{n} for large n, Arkiv för Mat. 21 (1983), 259-269.
[SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1971.

Department of Mathematics, UCLA, Los Angeles, CA 90024-1555
Department of Mathematics, Washington University, St Louis, MO 63130-4899.
Current address: Loukas Grafakos Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211

[^0]: *Research partially supported by the National Science Foundation
 1991 mathematics Subject Classification. Primary 42B25

