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Abstract We obtain a fractional Sobolev inequality for Sobolev spaces Ẇ s,X(Rn) for ball
Banach function spaces X on Rn with the homogeneity and the non-collapse properties. Pre-
cisely, we show the existence of a positive constant C such that, for any f ∈ Ẇ s,X(Rn)∩ X

α
α+s ,

∥ f ∥Ẇ s,X (Rn) ≥ C ∥ f ∥X α
α+s ,

where α is the homogeneity index of X, s ∈ (0,min{−α, 1}), and X
α
α+s is the α

α+s -
convexification of X. Moreover, under some mild assumptions, we prove that the closure
of C∞c (Rn) with respect to ∥ · ∥Ẇ s,X (Rn) modulo constants is identified with Ẇ s,X(Rn) ∩ X

α
α+s .

When X is a Lebesgue space, these results reduce to the well-known Sobolev embeddings
for which the restriction s ∈ (0,min{−α, 1}) is sharp. However, our results also provide new
Sobolev embeddings for Morrey spaces, mixed-norm Lebesgue spaces, Lebesgue spaces with
power weights, Besov–Triebel–Lizorkin–Bourgain–Morrey spaces, and Lorentz spaces. As
in the case for the classical Sobolev inequality, our results have a wide range of applications.

1 Introduction

It is well known that, for any given s ∈ (0, 1) and p ∈ [1,∞), the homogeneous fraction-
al Sobolev space Ẇ s,p(Rn) is defined as the space of all measurable functions f on Rn whose
Gagliardo semi-norm

∥ f ∥Ẇ s,p(Rn) :=
[∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp dx dy

] 1
p

is finite. The classical Sobolev embedding, also known as the fractional Sobolev inequality, states
that when sp < n one has

∥ f ∥Lp∗s (Rn) ≤ C ∥ f ∥Ẇ s,p(Rn)(1.1)

for any f ∈ C∞c (Rn) with the positive constant C independent of f , where p∗s := np
n−sp denotes the

critical Sobolev exponent and C∞c (Rn) denotes the set of all infinite differentiable functions on Rn

with compact support. We refer to [54, Theorem 10.2.1] for an elementary proof of (1.1) (see also
[65, Théorème 8.1]). It is well known that the Sobolev type inequalities on various function spaces
have received a lot of attention and intensive studies for a long time; see, for instance, Haroske et
al. [26, 28, 32], Nakai et al. [55, 56, 57, 58, 59], Sawano et al. [69, 70, 71], Liu et al. [46], Ho
[36], and, recently, Alvarado et al. [2, 3, 4]. The Sobolev type inequalities have wide applications
in harmonic analysis and partial differential equations (see, for instance, [27, 34, 54, 63]).

The ball Banach function space X was introduced by Sawano et al. [68] in order to unify the
study of several important function spaces. Compared with Banach function spaces, ball Banach
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function spaces contain a long list of function spaces. For instance, Morrey spaces, Orlicz-slice
spaces, mixed-norm Lebesgue spaces, and weighted Lebesgue spaces are all ball Banach function
spaces, but they may not be Banach function spaces (see [68, 79, 80] for the details). Recently,
Dai et al. [16] studied the Bourgain–Brezis–Mironescu formula of Sobolev type spaces based on
ball Banach function spaces. Moreover, the Brezis–Van Schaftingen–Yung formula of Sobolev
type spaces based on ball Banach function spaces was also established in [17, 18] and applied to
improve fractional Sobolev and Gagliardo–Nirenberg inequalities.

In this article, we establish the fractional Sobolev inequality in the setting of ball Banach func-
tion spaces and, as an application, we characterize the closure of C∞c (Rn) with respect to ∥·∥Ẇ s,X(Rn),
which is a new Gagliardo semi-norm associated with X. To be precise, assuming that X has the
homogeneity property and the non-collapse property, that is, for any f ∈ X, λ ∈ (0,∞), and
x ∈ Rn, ∥ f (λ·)∥X = λα∥ f ∥X for some α ∈ (−∞, 0) and ∥1B(x,1)∥X & 1 with the implicit positive
constant independent of x ∈ Rn, we show that there exists a positive constant C such that, for any
f ∈ Ẇ s,X(Rn) ∩ X

α
α+s ,

∥ f ∥Ẇ s,X(Rn) :=

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
≥ C ∥ f ∥X α

α+s ,

where s ∈ (0,min{−α, 1}). Here and thereafter, for any x ∈ Rn and r ∈ (0,∞),

B(x, r) := {y ∈ Rn : |y − x| < r}

denotes the ball with center x and radius r and, for any f ∈ M (Rn), let ∥ f (x)∥X(x) := ∥ f (·)∥X .
Then, using this inequality, we prove that the closure of C∞c (Rn) with respect to ∥ · ∥Ẇ s,X(Rn) modulo
constants, denoted by Ds,X(Rn), is identified with Ẇ s,X(Rn) ∩ X

α
α+s . These results have a wide

range of applications and, in particular, when X is a Lebesgue space, they reduce back to the well-
known embeddings, (1.1) and [11, Theorem 3.1]; this indicates that in general the restriction s ∈
(0,min{−α, 1}) is sharp. To the best of our knowledge, when X is a Morrey space, a mixed-norm
Lebesgue space, the Lebesgue space with power weight, a Besov–Triebel–Lizorkin–Bourgain–
Morrey space, or a Lorentz space, these embeddings are new in the literature.

Recall that all the known proofs of (1.1) strongly depend on the explicit integral expression of
the Lebesgue norm under consideration. Since ∥ · ∥X has no explicit expression, the known clas-
sical proofs are inapplicable for the ball Banach fractional Sobolev inequality. To overcome this
essential difficulty, we fully employ the homogeneity property and the non-collapse property of X,
which are used, to replace the dilation invariance and the translation invariance of the Lebesgue
norm, respectively; these are crucial tools in the known proofs of the classical fractional Sobolev
inequality.

The remainder of this article is organized as follows.
In Section 2, we recall concepts related to ball Banach function spaces. Then, assuming that

a ball Banach function space X has the homogeneity property (Assumption 2.7), we introduce
the homogeneous ball Banach fractional Sobolev space Ẇ s,X(Rn) extending the concept of the
homogeneous fractional Sobolev space Ẇ s,p(Rn) to this setting.

Section 3 is devoted to the ball Banach fractional Sobolev inequality. Specifically, in Theorem
3.3, under Assumption 2.7 (the homogeneity property) and Assumption 3.1 (the non-collapse
property of X), we show that, if s ∈ (0,min{−α, 1}), then for any f in MX(Rn) we have

∥ f ∥Ẇ s,X(Rn) & ∥ f ∥X α
α+s

with the implicit positive constant independent of f . This extends the classical fractional Sobolev
inequality from the Lebesgue space to the ball Banach function space (see Remark 3.4). Moreover,
we prove that the ball Banach fractional Sobolev inequality is valid not only for C∞c (Rn) functions
but also for Ẇ s,X(Rn) ∩ X

α
α+s functions.
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In Section 4, we provide an equivalent characterization of the closure of C∞c (Rn) with respect
to ∥ · ∥Ẇ s,X(Rn) modulo constants, which is denoted by Ds,X(Rn). To go further, we need an extra
mild assumption on X (see Assumption 4.1). Under Assumptions 2.7, 3.1, and 4.1, we show that
Ds,X(Rn) is identified with Ẇ s,X(Rn) ∩ X

α
α+s . To be precise, we prove that there exists a linear

isometric isomorphism

I : Ds,X (
Rn)→ Ẇ s,X (

Rn) ∩ X
α
α+s .

On one hand, using the ball Banach fractional Sobolev inequality, we show that I is injective.
On the other hand, by the Hölder inequality associated with the ball Banach function space (see
Lemma 4.9), we prove that I is surjective. This result is an extension of [11, Theorem 3.1]
from the classical Gagliardo semi-norm ∥ · ∥Ẇ s,p(Rn) to ∥ · ∥Ẇ s,X(Rn) (see Remark 4.3). Finally, we
show that Assumption 4.1(iii) is just slightly stronger than a necessary and sufficient condition of
C∞c (Rn) ⊂ Ẇ s,X(Rn), which implies that this assumption is necessary in some sense.

In Section 5, we apply our main results to several specific examples of ball Banach function
spaces, namely the Morrey space Mp

r (Rn), the mixed-norm Lebesgue space L p⃗(Rn), the Lebesgue
space with power weight Lr

ω(Rn), the Besov–Bourgain–Morrey space ṀBp,τ
q,r (Rn), and the Lorentz

space Lp,q(Rn) (see, respectively, Theorems 5.3, 5.6, 5.7, 5.10, 5.11, 5.13, 5.14, 5.16, and 5.17).
Finally, we state our notation and conventions. We denote by N := {1, 2, . . .}, Z+ := N ∪ {0}

and Zn
+ := (Z+)n. We always denote by C a positive constant which is independent of the main

parameters, but it may vary from line to line. The symbol f . g means that f ≤ Cg. If f . g
and g . f , we then write f ∼ g. If f ≤ Cg and g = h or g ≤ h, we then write f . g = h or
f . g ≤ h. We use 0 to denote the origin of Rn. For any measurable subset E of Rn, we denote
by 1E its characteristic function and denote by E{ its complementary set. In addition, we use the
symbol Lp

loc (Rn) with p ∈ (0,∞] to denote the set of all measurable functions f on Rn such that
f 1E ∈ Lp(Rn) for any bounded measurable set E ⊂ Rn. Furthermore, for any λ ∈ (0,∞) and any
ball B(x, r) ⊂ Rn with x ∈ Rn and r ∈ (0,∞), let λB(x, r) := B(x, λr). Finally, for any q ∈ [1,∞],
we denote by q′ its conjugate exponent, that is, 1

q +
1
q′ = 1.

2 Preliminaries

In this section, we recall the definition of ball Banach function spaces and introduce homoge-
neous ball Banach fractional Sobolev spaces. In what follows, we denote by M (Rn) the set of all
measurable functions on Rn and we set

(2.1) B(Rn) :=
{
B(x, r) : x ∈ Rn and r ∈ (0,∞)

}
.

The following concept is just [68, Definition 2.2].

Definition 2.1. Let X ⊂M (Rn) be a quasi-normed linear space equipped with a quasi-norm ∥ · ∥X ,
which makes sense for all measurable functions on Rn. Then X is called a ball quasi-Banach
function space on Rn if it satisfies:

(i) if f ∈M (Rn), then ∥ f ∥X = 0 implies that f = 0 almost everywhere;

(ii) if f , g ∈M (Rn), then |g| ≤ | f | almost everywhere implies that ∥g∥X ≤ ∥ f ∥X;

(iii) if { fm}m∈N ⊂ M (Rn) and f ∈ M (Rn), then 0 ≤ fm ↑ f almost everywhere as m → ∞
implies that ∥ fm∥X ↑ ∥ f ∥X as m→ ∞;

(iv) B ∈ B(Rn) implies that 1B ∈ X, where B(Rn) is the same as in (2.1).

Moreover, a ball quasi-Banach function space X is called a ball Banach function space if it
satisfies:
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(v) for any f , g ∈ X,
∥ f + g∥X ≤ ∥ f ∥X + ∥g∥X;

(vi) for any ball B ∈ B(Rn), there exists a positive constant C(B), depending on B, such that, for
any f ∈ X, ∫

B
| f (x)| dx ≤ C(B)∥ f ∥X .

Remark 2.2. (i) Let X be a ball Banach function space on Rn. By [77, Remark 2.6(i)], we
conclude that, for any f ∈M (Rn), ∥ f ∥X = 0 if and only if f = 0 almost everywhere.

(ii) As mentioned in [77, Remark 2.6(ii)], we obtain an equivalent formulation of Definition 2.1
via replacing any ball B by any bounded measurable set E therein.

(iii) We should point out that, in Definition 2.1, if we replace a ball B by any measurable set E
with finite measure, we obtain the definition of (quasi-)Banach function spaces, which were
originally introduced in [7, Definitions 1.1 and 1.3]. Thus, a (quasi-)Banach function space
is also a ball (quasi-)Banach function space and the converse is not necessarily true.

(iv) By [19, Theorem 2], we conclude that both (ii) and (iii) of Definition 2.1 imply that any ball
Banach function space is complete.

The associate space X′ of a given ball Banach function space X is defined as follows (see [7,
Chapter 1, Section 2] or [68, p. 9]).

Definition 2.3. For any given ball Banach function space X, its associate space (also called the
Köthe dual space) X′ is defined by setting

X′ :=
{
f ∈M (Rn) : ∥ f ∥X′ < ∞

}
,

where, for any f ∈ X′,

∥ f ∥X′ := sup
{
∥ f g∥L1(Rn) : g ∈ X, ∥g∥X = 1

}
and ∥ · ∥X′ is called the associate norm of ∥ · ∥X .

Remark 2.4. From [68, Proposition 2.3], we deduce that, if X is a ball Banach function space,
then its associate space X′ is also a ball Banach function space.

We also recall the concept of the convexity of ball Banach function spaces; this is a part of [68,
Definition 2.6].

Definition 2.5. Let X be a ball Banach function space and p ∈ (0,∞). The p-convexification Xp

of X is defined by setting
Xp :=

{
f ∈M (Rn) : | f |p ∈ X

}
,

equipped with the quasi-norm ∥ f ∥Xp := ∥ | f |p∥1/pX for any f ∈ Xp.

We recall the definition of ball Banach function spaces with absolutely continuous norm; see
[8, Definition 3.1] and [76, Definition 3.2].

Definition 2.6. A ball Banach function space X is said to have an absolutely continuous norm if,
for any f ∈ X and any sequence of measurable sets, {E j} j∈N ⊂ Rn with E j+1 ⊂ E j for any j ∈ N
and

∩
j∈N E j = ∅, ∥ f 1E j∥X → 0 as j→ ∞.

Next, we extend the concept of the homogeneous fractional Sobolev space to the ball Banach
function space. To this end, we need the following assumption.
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Assumption 2.7. Let X be a ball Banach function space and α ∈ (−∞, 0). We consider the
homogeneity property that for any λ ∈ (0,∞) and f ∈ X the following holds ∥ f (λ·)∥X = λα∥ f ∥X .

Remark 2.8. If X satisfies Assumption 2.7 with α ∈ (−∞, 0) then, by Definition 2.1(iii) and the
fact that ∥1B(0,1)∥X > 0 which is a simple consequence of Definition 2.1(i), we conclude that

∥1Rn∥X = lim
r→∞

∥∥∥1B(0,r)
∥∥∥

X = lim
r→∞

r−α
∥∥∥1B(0,1)

∥∥∥
X = ∞.

Definition 2.9. Let X satisfy Assumption 2.7 with α ∈ (−∞, 0) and let s ∈ (0, 1). The homo-
geneous ball Banach fractional Sobolev space Ẇ s,X(Rn) is defined to be the set of all functions
f ∈M (Rn) such that

∥ f ∥Ẇ s,X(Rn) :=

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
< ∞.

3 The Ball Banach Fractional Sobolev Inequality

In this section, we establish the fractional Sobolev inequality of the ball Banach fractional
Sobolev space, which is called the ball Banach fractional Sobolev inequality. In order to achieve
this, we need the following non-degeneracy assumption.

Assumption 3.1. Let X be a ball Banach function space. We say that X has the non-collapse
property if there exists a positive constant C such that, for any x ∈ Rn,∥∥∥1B(x,1)

∥∥∥
X ≥ C.

Definition 3.2. Let X be a ball Banach function space. The space MX(Rn) is defined to be the set
of all functions f ∈M (Rn) such that, for any ε ∈ (0,∞),∥∥∥1{x∈Rn: | f (x)|>ε}

∥∥∥
X < ∞.

Having established these basic facts, we focus on the main result of this work, which is the
following embedding theorem.

Theorem 3.3. Let X and α satisfy Assumptions 2.7 and 3.1 and let s ∈ (0,min{−α, 1}). Then there
exists a positive constant C such that, for any f ∈MX(Rn),

∥ f ∥X α
α+s ≤ C ∥ f ∥Ẇ s,X(Rn) .

Remark 3.4. Let X := Lp(Rn) with p ∈ [1,∞) and let α := − n
p . In this case, Assumptions 2.7 and

3.1 obviously hold and hence so does Theorem 3.3, which coincides with the well-known classical
fractional Sobolev inequality (1.1). For this reason the range of s ∈ (0,min{−α, 1}) in Theorem
3.3 is sharp in general.

To prove Theorem 3.3, we need the following technical lemma.

Lemma 3.5. Let X, α, and s be the same as in Theorem 3.3. Then there exists a positive constant
C such that for any measurable set E ⊂ Rn satisfying ∥1E∥X < ∞ and for any x ∈ E we have∥∥∥∥∥ 1

|x − ·|s−α 1E{(·)
∥∥∥∥∥

X
≥ C∥1E∥

s
α

X .(3.1)
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Proof. We first consider the case that E := B(0, r) with r ∈ (0,∞). From Assumption 2.7, we
deduce that∥∥∥∥∥ 1

| · |s−α 1B(0,r){(·)
∥∥∥∥∥

X
∥1B(0,r)∥

− s
α

X = rs−α
∥∥∥∥∥ 1
|r · |s−α 1B(0,r){ (r·)

∥∥∥∥∥
X

∥∥∥1B(0,r) (r·)
∥∥∥− s
α

X

=

∥∥∥∥∥ 1
| · |s−α 1B(0,1){(·)

∥∥∥∥∥
x
∥1B(0,1)∥

− s
α

X .

By Assumption 2.7 and the fact that s ∈ (0,min{−α, 1}) we have∥∥∥∥∥ 1
| · |s−α 1B(0,1){(·)

∥∥∥∥∥
X
≤
∞∑

k=1

∥∥∥∥∥ 1
| · |s−α 1B(0,2k)\B(0,2k−1)(·)

∥∥∥∥∥
X

≤
∞∑

k=1

2(k−1)(α−s)∥1B(0,2k)∥X ∼
∞∑

k=1

2−ks < ∞.

This implies that ∥∥∥∥∥ 1
| · |s−α 1B(0,r){(·)

∥∥∥∥∥
X
∥1B(0,r)∥

− s
α

X = C ∈ (0,∞)

and hence, for any r ∈ (0,∞), ∥∥∥∥∥ 1
| · |s−α 1B(0,r){(·)

∥∥∥∥∥
X
= C ∥1B(0,r)∥

s
α

X .(3.2)

Now, we claim that, for any r ∈ (0,∞) and x ∈ Rn,∥∥∥∥∥ 1
|x − ·|s−α 1B(x,4r){(·)

∥∥∥∥∥
X
& ∥1B(x,r)∥

s
α

X .(3.3)

We discuss the following two cases based on the size of |x|.
Case (i): |x| ≥ 2r. In this case, let B(x1, r1) be a ball with r1 := |x|+4r

|x|−r r and

x1 := (|x| + 4r + r1)
x
|x| =

|x| + 4r
|x| − r

x.

It is easy to show that B(x1, r1) ⊂ B(x, 4r){. Combining this, Assumption 2.7, and |x| ≥ 2r, we
obtain ∥∥∥∥∥ 1

|x − ·|s−α 1B(x,4r){(·)
∥∥∥∥∥

X

∥∥∥1B(x,r)
∥∥∥− s
α

X ≥
∥∥∥∥∥ 1
|x − ·|s−α 1B(x1,r1)(·)

∥∥∥∥∥
X
∥1B(x,r)∥

− s
α

X

≥ 1
(4r + 2r1)s−α

(
|x| + 4r
|x| − r

)−α
∥1B(x,r)∥

α−s
α

X

& ∥1B( x
r ,1)∥

α−s
α

X .

Using this and Assumption 3.1 we conclude that∥∥∥∥∥ 1
|x − ·|s−α 1B(x,4r){(·)

∥∥∥∥∥
X
& ∥1B(x,r)∥

s
α

X .(3.4)

Case (ii): |x| < 2r. In this case, from Assumptions 2.7 and 3.1, we infer that, for any r ∈ (0,∞),

rα∥1B(x,r)∥X = ∥1B( x
r ,1)∥X & 1 ∼ ∥1B(0,6)∥X = rα∥1B(0,6r)∥X .(3.5)

We observe that B(x, 4r) ⊂ B(0, 6r) and for any y ∈ B(0, 6r){ one has 4
3 |y| ≥ |x − y|. By this, (3.2),

and (3.5), we find that∥∥∥∥∥ 1
|x − ·|s−α 1B(x,4r){(·)

∥∥∥∥∥
X
&

∥∥∥∥∥ 1
| · |s−α 1B(0,6r){(·)

∥∥∥∥∥
X
∼ ∥1B(0,6r)∥

s
α

X & ∥1B(x,r)∥
s
α

X .(3.6)
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Combining (3.4) and (3.6), we conclude that the above claim holds.
Next, we show that (3.1) is valid. Let

rs := sup
{
r ∈ [0,∞) : ∥1B(x,r)\E∥X < ∥1E∥X

}
.

If rs = 0, then, for any r ∈ (0,∞), ∥1B(x,r)\E∥X ≥ ∥1E∥X . From this, we deduce that∥∥∥∥∥ 1
|x − ·|s−α 1E{(·)

∥∥∥∥∥
X
≥

∥∥∥∥∥ 1
|x − ·|s−α 1B(x,r)\E(·)

∥∥∥∥∥
X
≥ rα−s∥1B(x,r)\E∥X

≥ rα−s∥1E∥X → ∞

as r ∈ (0,∞) and r → 0. This implies that (3.1) holds in this case. If rs > 0, we first prove that
rs < ∞. Indeed, when r ≥ ( 2∥1E∥X

∥1B(0,1)∥X )−
1
α + |x|, using Minkowski’s inequality and Assumption 2.7,

we find that

∥1B(x,r)\E∥X ≥ ∥1B(x,r)∥X − ∥1E∥X ≥ ∥1B(0,r−|x|)∥X − ∥1E∥X
= (r − |x|)−α∥1B(0,1)∥X − ∥1E∥X ≥ ∥1E∥X .

This implies that

rs ≤
(

2∥1E∥X
∥1B(0,1)∥X

)− 1
α

+ |x| < ∞.

From the definition of rs, we further infer that ∥1B(x, 12 rs)\E∥X < ∥1E∥X and ∥1B(x,2rs)\E∥X ≥ ∥1E∥X .
Using these and (3.3), we conclude that∥∥∥∥∥ 1

|x − ·|s−α 1E{(·)
∥∥∥∥∥

X
∼

∥∥∥∥∥ 1
|x − ·|s−α 1B(x,2rs)\E(·)

∥∥∥∥∥
X
+

∥∥∥∥∥ 1
|x − ·|s−α 1(B(x,2rs)

∪
E){(·)

∥∥∥∥∥
X

≥ 1
|2rs|s−α

∥1E∥X +
∥∥∥∥∥ 1
|x − ·|s−α 1(B(x,2rs)

∪
E){(·)

∥∥∥∥∥
X

≥
∥∥∥∥∥ 1
|x − ·|s−α 1E\B(x,2rs)(·)

∥∥∥∥∥
X
+

∥∥∥∥∥ 1
|x − ·|s−α 1(B(x,2rs)

∪
E){(·)

∥∥∥∥∥
X

∼
∥∥∥∥∥ 1
|x − ·|s−α 1B(0,2rs){(·)

∥∥∥∥∥
X
&

∥∥∥∥1B(0, 12 rs)

∥∥∥∥ s
α

X

∼
[∥∥∥∥1B(0, 12 rs)\E

∥∥∥∥
X
+

∥∥∥∥1B(0, 12 rs)∩E

∥∥∥∥
X

] s
α

& ∥1E∥
s
α

X .

This finishes the proof of Lemma 3.5. �

Now, we prove Theorem 3.3.

Proof of Theorem 3.3. Notice that | | f (x)| − | f (y)| | ≤ | f (x) − f (y)| for any x, y ∈ Rn. Replacing f
with | f |, without loss of generality, we may only consider the case that f ≥ 0. Fix f ≥ 0 and define

Dk :=
{
x ∈ Rn : 2k < f (x) ≤ 2k+1

}
for any k ∈ Z. It is easy to prove that

∥ f ∥X ∼
∥∥∥∥∥∥∥∑i∈Z 2i1Di

∥∥∥∥∥∥∥
X

and ∥ f ∥X α
α+s ∼

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

.(3.7)

Using Lemma 3.5, we conclude that

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
=

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)
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&

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

∥∥∥∥∥∥2i1(Di−1∪Di∪Di+1)c(x)
|x − y|s−α

∥∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)

&

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

2i
∥∥∥1Di−1∪Di∪Di+1(x)

∥∥∥ s
α

X(x) 1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)

.

Hence, ∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

∥∥∥∥∥∥∥∑k∈Z 2k α
α+s 1Dk

∥∥∥∥∥∥∥
− s
α

X

&

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

2i

∥∥∥∥∥∥∥∑k∈Z 2k α
α+s 1Dk

∥∥∥∥∥∥∥
− s
α

X

∥∥∥1Di−1∪Di∪Di+1(x)
∥∥∥ s
α

X(x) 1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)

&

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
X

,

which, together with (3.7), further implies that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
&

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

∼ ∥ f ∥X α
α+s .

This finishes the proof of Theorem 3.3. �

As a corollary of Theorem 3.3, we have the following conclusion.

Corollary 3.6. Let X and α satisfy Assumptions 2.7 and 3.1 and let s ∈ (0,min{−α, 1}). Then
there exists a positive constant C such that, for any f ∈ C∞c (Rn),

∥ f ∥X α
α+s ≤ C ∥ f ∥Ẇ s,X(Rn) .

Proof. Let f ∈ C∞c (Rn). Then, for any ϵ ∈ (0,∞), {x ∈ Rn : | f (x)| > ϵ} ⊂ supp ( f ) and there
exists r ∈ (0,∞) such that supp ( f ) ⊂ B(0, r). From Definition 2.1(ii) and (iv), we infer that∥∥∥1{x∈Rn: | f (x)|>ε}

∥∥∥
X ≤

∥∥∥1B(0,r)
∥∥∥

X < ∞

and hence f ∈MX(Rn), which implies C∞c (Rn) ⊂MX(Rn). Combining this and Theorem 3.3, we
complete the proof of Corollary 3.6. �

By this, we have proved that the ball Banach fractional Sobolev inequality holds for any f ∈
C∞c (Rn). To extend the ball Banach fractional Sobolev inequality to a wider class Ẇ s,X(Rn)∩ X

α
α+s

requires a considerable amount of additional work; for this purpose we need the following two
technical lemmas.

Lemma 3.7. Let X and α satisfy Assumptions 2.7 and 3.1, s ∈ (0,min{−α, 1}), m ∈ (0,∞), and
−∞ < b < a < ∞. Then there exists a positive constant C such that for any real-valued function
f ∈M (Rn) that satisfies∥∥∥1{x∈Rn: f (x)>a}

∥∥∥
X > m and

∥∥∥1{x∈Rn: f (x)<b}
∥∥∥

X > m(3.8)

we have

∥ f ∥Ẇ s,X(Rn) ≥ Cm
α+s
α (a − b).(3.9)
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Proof. Let us fix a real-valued function f ∈ M (Rn) that satisfies (3.8). From Definition 2.1(iii)
and (3.8), we deduce that there exists r ∈ (0,∞) such that∥∥∥1{x∈Rn: f (x)>a}∩B(0,r)

∥∥∥
X > m and

∥∥∥1{x∈Rn: f (x)<b}∩B(0,r)
∥∥∥

X > m.(3.10)

Let A1 := {x ∈ B(0, r) : f (x) > 2a/3 + b/3},

A2 := {x ∈ B(0, r) : a/3 + 2b/3 < f (x) ≤ 2a/3 + b/3} ,

and A3 := {x ∈ B(0, r) : f (x) ≤ a/3 + 2b/3}. For any measurable set E ⊂ B(0, r) and x ∈ E, let

r(E)
x := sup

{
rs ∈ [0,∞) :

∥∥∥1[B(0,r)∩B(x,rs)]\E
∥∥∥

X < ∥1E∥X
}
.(3.11)

For any i ∈ {1, 2, 3}, we define ri := sup{r(Ai)
x : x ∈ Ai}.

If min{r1, r3} > 1
8 r, then there exist x1 ∈ A1 satisfying r(A1)

x1 > 1
8 r and x3 ∈ A3 satisfying

r(A3)
x3 > 1

8 r. It is easy to show that there exists x∗i such that B(x∗i ,
1
16 r) ⊂ B(xi,

1
8 r) ∩ B(0, r) for any

i ∈ {1, 3}. By this, (3.11), the definition of A3, (3.10), Assumptions 2.7 and 3.1, we conclude that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

(3.12)

≥
∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α 1A1(x)

∥∥∥∥∥
X(x)

1A3(y)

∥∥∥∥∥∥
X(y)

&
a − b
rs−α

∥∥∥∥1B(x1,
1
8 r)∩B(0,r)

∥∥∥∥
X

∥∥∥∥1B(x3,
1
8 r)∩B(0,r)

∥∥∥∥− s
α

X

∥∥∥1A3

∥∥∥ α+s
α

X

≥ a − b
rs−α

∥∥∥∥1B(x∗1,
1
16 r)

∥∥∥∥
X

∥∥∥∥1B(x∗3,
1
16 r)

∥∥∥∥− s
α

X

∥∥∥1{x∈Rn: f (x)<b}∩B(0,r)
∥∥∥ α+s
α

X

& m
α+s
α (a − b)

∥∥∥∥1B( 16
r x∗1,1)

∥∥∥∥
X

∥∥∥∥1B( 16
r x∗3,1)

∥∥∥∥− s
α

X
& m

α+s
α (a − b).

If min{r1, r3} ≤ 1
8 r, without loss of generality, we may assume r1 ≤ 1

8 r. We first claim that, for
any x ∈ B(0, r) and r̃ ≤ 1

8 r,∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\B(x,2r̃)(·)

∥∥∥∥∥
X
&

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥ s
α

X
.(3.13)

To prove this, we consider the following two cases on the size of |x|.
Case (i): |x| ≥ 4r̃. In this case, let r1 := |x|−2r̃

|x|+r̃ r̃ and

x1 := (|x| − 2r̃ − r1)
x
|x| =

|x| − 2r̃
|x| + r̃

x.

It is easy to show B(x1, r1) ⊂ B(0, r) \ B(x, 2r̃). Combining this and Assumption 2.7, we obtain∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\B(x,2r̃)(·)

∥∥∥∥∥
X

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥− s
α

X

≥
∥∥∥∥∥ 1
|x − ·|s−α 1B(x1,r1)(·)

∥∥∥∥∥
X

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥− s
α

X

≥ 1
(r̃ + 2r1)s−α

(
|x| − 2r̃
|x| + r̃

)−α ∥∥∥1B(x,r̃)
∥∥∥

X

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥− s
α

X

&
1

r̃s−α
∥∥∥1B(x,r̃)

∥∥∥
X

∥∥∥∥∥∥1
B(
|x|− 1

4 r̃
|x| x, 14 r̃)

∥∥∥∥∥∥−
s
α

X

&
∥∥∥1B( x

r̃ ,1)
∥∥∥

X

∥∥∥∥∥1B( 4|x|−r̃
|x|r̃ x,1)

∥∥∥∥∥− s
α

X
.
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By this and Assumption 3.1, we conclude that (3.13) holds in this case.
Case (ii): |x| < 4r̃. In this case, from r̃ ≤ 1

8 r and Assumption 2.7, we deduce that∥∥∥∥∥ 1
| · |s−α 1B(0,r)\B(0,6r̃)(·)

∥∥∥∥∥
X
∥1B(0,6r̃)∥

− s
α

X ≥
∥∥∥∥∥ 1
| · |s−α 1B(0,8r̃)\B(0,6r̃)(·)

∥∥∥∥∥
X
∥1B(0,6r̃)∥

− s
α

X(3.14)

=

∥∥∥∥∥ 1
| · |s−α 1B(0, 43 )\B(0,1)(·)

∥∥∥∥∥
X
∥1B(0,1)∥

− s
α

X > 0.

It is easy to prove that B(x, 2r̃) ⊂ B(0, 6r̃) and, for any y ∈ B(0, 6r̃){, 5
3 |y| ≥ |x− y|. By this, (3.14),

and an argument similar to that used in the estimation of (3.5), we find that∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\B(x,2r̃)(·)

∥∥∥∥∥
X
&

∥∥∥∥∥ 1
| · |s−α 1B(0,r)\B(0,6r̃)(·)

∥∥∥∥∥
X

& ∥1B(0,6r̃)∥
s
α

X & ∥1B(x, 12 r̃)∥
s
α

X .

This shows (3.13) in this case. Altogether, we conclude that the above claim holds.
By (3.11) and (3.13), we find that, for any measurable set E ⊂ B(0, r) and any x ∈ E satisfying

r(E)
x ∈ (0, 1

8 r), ∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\E(·)

∥∥∥∥∥
X

(3.15)

∼
∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\[E∪B(x,2r(E)

x )](·)
∥∥∥∥∥

X
+

∥∥∥∥∥ 1
|x − ·|s−α 1[B(0,r)∩B(x,2r(E)

x )]\E(·)
∥∥∥∥∥

X

≥
∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\[E∪B(x,2r(E)

x )](·)
∥∥∥∥∥

X
+

∥∥∥∥∥ 1
|x − ·|s−α 1E\B(x,2r(E)

x )(·)
∥∥∥∥∥

X

∼
∥∥∥∥∥ 1
|x − ·|s−α 1B(0,r)\B(x,2r(E)

x )(·)
∥∥∥∥∥

X

&
∥∥∥∥1B(0,r)∩B(x, 12 r(E)

x )

∥∥∥∥ s
α

X

∼
{∥∥∥∥1B(0,r)∩B(x, 12 r(E)

x )∩E

∥∥∥∥
X
+

∥∥∥∥1B(0,r)∩B(x, 12 r(E)
x )\E

∥∥∥∥
X

} s
α

& ∥1E∥
s
α

X .

Let g := ( f − 2a/3 − b/3)+. Here and thereafter, for any a ∈ R, we set a+ := max{a, 0}. It is easy
to prove that, for any x, y ∈ Rn, | f (x) − f (y)| ≥ |g(x) − g(y)| and hence∥∥∥∥∥∥

∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
≥

∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
.(3.16)

Let Dk := {x ∈ B(0, r) : 2k < g(x) ≤ 2k+1} for any k ∈ Z. By standard arguments we have

∥∥∥g1B(0,r)
∥∥∥

X ∼
∥∥∥∥∥∥∥∑i∈Z 2i1Di

∥∥∥∥∥∥∥
X

and
∥∥∥g1B(0,r)

∥∥∥
X
α
α+s ∼

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

.(3.17)

From the assumption that r1 ≤ 1
8 r, we deduce that, for any i ∈ Z and x ∈ Di−1 ∪ Di ∪ Di+1,

r(Di−1∪Di∪Di+1)
x ∈ (0, 1

8 r]. Using this and (3.15), we conclude that∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
≥

∥∥∥∥∥∥∥∑i∈Z
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥
X(y)

&

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

∥∥∥∥∥∥2i1B(0,r)\(Di−1∪Di∪Di+1)(x)
|x − y|s−α

∥∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)
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&

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

2i
∥∥∥1Di−1∪Di∪Di+1(x)

∥∥∥ s
α

X(x) 1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)

.

By this, we immediately have∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
− s
α

X

&

∥∥∥∥∥∥∥∥∥∥
∑
i∈Z
|Di |>0

2i

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di(x)

∥∥∥∥∥∥∥
− s
α

X(x)

∥∥∥1Di−1∪Di∪Di+1(x)
∥∥∥ s
α

X(x) 1Di(y)

∥∥∥∥∥∥∥∥∥∥
X(y)

&

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
X

.

Combining this, (3.16), (3.17), and (3.10), we find that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)
≥

∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

(3.18)

&

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

∼
∥∥∥g1B(0,r)

∥∥∥
X
α
α+s

& (a − b)
∥∥∥1B(0,r)∩{x∈Rn: f (x)>a}

∥∥∥ α+s
α

X

& m
α+s
α (a − b),

thus, (3.9) also holds in Case (ii). Now, (3.12) and (3.18) complete the proof of Lemma 3.7. �

Lemma 3.8. Let f ∈ Ẇ s,X(Rn). Then there exists a constant C ∈ C such that f −C ∈MX(Rn).

Proof. Without loss of generality, we may assume that f is a real-valued function, otherwise we
can consider the real part and the imaginary part of f separately. Let

I := sup
{
λ ∈ R :

∥∥∥1{x∈Rn: f (x)≥λ}
∥∥∥

X = ∞
}

and
i := inf

{
λ ∈ R :

∥∥∥1{x∈Rn: f (x)≤λ}
∥∥∥

X = ∞
}
.

We first prove that I = i. Assume that I < i and then there exists λ1 ∈ (I, i). By Remark 2.8 and
the definitions of I and i, we conclude that

∞ = ∥1Rn∥X ≤
∥∥∥1{x∈Rn: f (x)≥λ1}

∥∥∥
X +

∥∥∥1{x∈Rn: f (x)≤λ1}
∥∥∥

X < ∞,

which is a contradiction. Assume that I > i and then there exist constants λ2 and λ3 satisfying
i < λ2 < λ3 < I. By the definitions of I and i, we have∥∥∥1{x∈Rn: f (x)>λ3}

∥∥∥
X = ∞ =

∥∥∥1{x∈Rn: f (x)<λ2}
∥∥∥

X .

From this and Lemma 3.7, we infer that, for any m ∈ (0,∞),

∥ f ∥Ẇ s,X(Rn) ≥ Cm
α+s
α (λ3 − λ2),(3.19)
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where C is the same as in (3.9). By the arbitrariness of m, we conclude that (3.19) contradicts the
assumption that f ∈ Ẇ s,X(Rn). This shows I = i.

Now, we prove that I ∈ R. In order to show this, we assume that I = ∞ = i or I = −∞ = i and
we argue by contradiction. We only consider the first case because the argument for the second
case is similar. By Definition 2.1(iii) and Remark 2.8, we conclude that

lim
λ→∞

∥∥∥1{x∈Rn: f (x)<λ}
∥∥∥

X = ∥1Rn∥X = ∞.

From this, we deduce that there exists a constant λ ∈ (−∞,∞) such that, for any m ∈ (0,∞),∥∥∥1{x∈Rn: f (x)<λ}
∥∥∥

X > m.(3.20)

Then, by the definition of i, we find that ∥1{x∈Rn: f (x)≤λ}∥X < ∞ and ∥1{x∈Rn: f (x)≤λ+1}∥X < ∞ and
hence

∥1{x∈Rn: f (x)>λ+1}∥X ≥ ∥1Rn∥X − ∥1{x∈Rn: f (x)≤λ+1}∥X = ∞.(3.21)

Using (3.20), (3.21), and Lemma 3.7, we conclude that for any s ∈ (0,min{−α, 1}) and m ∈ (0,∞)
we have

∥ f ∥Ẇ s,X(Rn) & m
α+s
α .

From the arbitrariness of m, we infer that ∥ f ∥Ẇ s,X(Rn) = ∞, which contradicts the assumption that
f ∈ Ẇ s,X(Rn). Thus, I = i ∈ (−∞,∞). By the definitions of i and I, we obtain, for any ε ∈ (0,∞),
∥1{x∈Rn: | f (x)−I|>ε}∥X < ∞, which completes the proof of Lemma 3.8. �

Using the above lemmas, we conclude the following corollary.

Corollary 3.9. Let X and α satisfy Assumptions 2.7 and 3.1 and let s ∈ (0,min{−α, 1}). Then
there exists a positive constant C̃ such that for any f ∈ Ẇ s,X(Rn) ∩ X

α
α+s we have

∥ f ∥X α
α+s ≤ C̃ ∥ f ∥Ẇ s,X(Rn) .

Proof. Let f ∈ Ẇ s,X(Rn) ∩ X
α
α+s . From Lemma 3.8, there exists a constant C ∈ C such that, for

any ε ∈ (0,∞), ∥∥∥1{x∈Rn: | f (x)−C|>ε}
∥∥∥

X < ∞,

that is, f −C ∈MX(Rn). Assuming C , 0 and letting ε := |C|2 , we obtain∥∥∥∥1{x∈Rn: | f (x)−C|> |C|2 }

∥∥∥∥
X
< ∞.(3.22)

On the other hand, using f ∈ X
α
α+s , we find that

∥∥∥∥1{x∈Rn: | f (x)|> |C|2 }

∥∥∥∥
X
≤

(
2
|C| ∥ f ∥X

α
α+s

) α
α+s

< ∞.(3.23)

By Remark 2.8, (3.22), and (3.23), we conclude that

∞ = ∥1Rn∥X ≤
∥∥∥∥1{x∈Rn: | f (x)−C|> |C|2 }

∥∥∥∥
X
+

∥∥∥∥1{x∈Rn: | f (x)|> |C|2 }

∥∥∥∥
X
< ∞,

which is a contradiction. Thus, C = 0 and f ∈MX(Rn), which implies Ẇ s,X(Rn)∩X
α
α+s ⊂MX(Rn).

Combining this and Theorem 3.3, we complete the proof of Corollary 3.9. �
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The Ball Banach Fractional Sobolev Inequality and Its Applications 13

4 Closure of C∞c (Rn) with respect to ∥ · ∥Ẇ s,X(Rn)

In this section, we characterize the closure of C∞c (Rn) with respect to ∥ · ∥Ẇ s,X(Rn). Notice that,
for any C ∈ C, ∥ f +C∥Ẇ s,X(Rn) = ∥ f ∥Ẇ s,X(Rn). Thus, it makes sense to define the space of equivalent
classes

Ds,X (
Rn) :=

{
[ f ] : f ∈ C∞c (Rn)

∥·∥Ẇ s,X (Rn)
}

with the norm ∥ [ f ] ∥Ds,X(Rn) := ∥ f ∥Ẇ s,X(Rn), where [ f ] := { f +C : C ∈ C}.
Next, we show the spaceDs,X(Rn) is identified with Ẇ s,X(Rn)∩ X

α
α+s . This identification relies

on certain natural assumptions that are valid on most important examples of ball Banach function
spaces.

Assumption 4.1. Let X and α satisfy Assumption 2.7 and let s ∈ (0,min{−α, 1}). Assume that

(i) X has an absolutely continuous norm (see Definition 2.6);

(ii) there exists a positive constant C such that, for any r ∈ (0,∞) and f ∈M (Rn×Rn) satisfying
∥ ∥ f (x, y)∥X(x)∥X(y) < ∞,∥∥∥∥∥∥∥

∥∥∥∥∥∥
?

B(0,r)
f (x − z, y − z) dz

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

≤ C
∥∥∥∥ f (x, y)∥X(x)

∥∥∥
X(y) ;

(iii) there exists a positive constant C such that, for any x ∈ B(0, 1),∥∥∥∥∥∥ 1B(x,1)(·)
|x − ·|s−α−1

∥∥∥∥∥∥
X
< C.

Theorem 4.2. Let X and α satisfy Assumption 2.7, s ∈ (0,min{−α, 1}), and X also satisfy Assump-
tions 3.1 and 4.1. Then there exists a linear isometric isomorphism

I : Ds,X (
Rn)→ Ẇ s,X (

Rn) ∩ X
α
α+s .

In other words, the spaceDs,X(Rn) is identified with Ẇ s,X(Rn) ∩ X
α
α+s .

Remark 4.3. Let X := Lp(Rn) with p ∈ [1,∞) and let α := − n
p . In this case, Assumptions 2.7,

3.1, and 4.1 hold and hence so does Theorem 4.2, which coincides with [11, Theorem 3.1].

The proof of Theorem 4.2 is based on the following technical lemmas.

Lemma 4.4. Let X and α satisfy Assumption 2.7 and let s ∈ (0,min{−α, 1}). Then Ẇ s,X(Rn)
contains C∞c (Rn) if and only if X satisfies∥∥∥∥∥∥∥

∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

< ∞.(4.1)

Proof. We first show the sufficiency. Assume that (4.1) holds. Let f ∈ C∞c (Rn) satisfy supp ( f ) ⊂
B(0, r) with r ∈ (0,∞). From this, Assumption 2.7, and s ∈ (0,min{−α, 1}), we infer that, for any
y ∈ B(0, 2r), ∥∥∥∥∥ | f (·) − f (y)|

| · −y|s−α
∥∥∥∥∥

X
(4.2)

≤
∥∥∥∥∥ | f (·) − f (y)|
| · −y|s−α 1B(0,4r)

∥∥∥∥∥
X
+

∞∑
k=1

∥∥∥∥∥ | f (·) − f (y)|
| · −y|s−α 1B(0,2k+2r)\B(0,2k+1r)

∥∥∥∥∥
X
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14 Yiqun Chen, Loukas Grafakos, Dachun Yang, andWen Yuan

. ∥∇ f ∥L∞(Rn)

∥∥∥∥∥∥ 1B(0,4r)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X
+ ∥ f ∥L∞(Rn)

∞∑
k=1

∥∥∥∥∥∥1B(0,2k+2r)\B(0,2k+1r)(·)
| · |s−α

∥∥∥∥∥∥
X

.

∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X
+

∥∥∥∥∥∥1B(0,4r)\B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X
+

∞∑
k=1

2−sk
∥∥∥1B(0,8r)\B(0,4r)

∥∥∥
X

.

∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X
+ ∥1B(0,4r)∥ +

∞∑
k=1

2−sk
∥∥∥1B(0,8r)\B(0,4r)

∥∥∥
X

.

∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X
+ 1

and, by the support condition of f , for any y ∈ B(0, 2r){,∥∥∥∥∥ | f (·) − f (y)|
| · −y|s−α

∥∥∥∥∥
X
.

1
|y|s−α ∥ f ∥L

∞(Rn) .
1
|y|s−α .(4.3)

Using Assumption 2.7, we find that∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,2r)(y)

∥∥∥∥∥∥∥
X(y)

= (2r)−2α

∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(2ry,1)(2rx)
|2rx − 2ry|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,2r)(2ry)

∥∥∥∥∥∥∥
X(y)

= (2r)1−s−α

∥∥∥∥∥∥∥
∥∥∥∥∥∥1B(y,(2r)−1)(x)

|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

.

Combining this, (4.2), (4.3), Assumption 2.7, (4.1), and s ∈ (0,min{−α, 1}), we conclude that

∥ f ∥Ẇ s,X(Rn) ≤
∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1B(0,2r)(y)

∥∥∥∥∥∥
X(y)

+

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1B(0,2r){(y)

∥∥∥∥∥∥
X(y)

.

∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,2r)(y)

∥∥∥∥∥∥∥
X(y)

+ ∥1B(0,2r)∥X(y) +

∞∑
k=1

∥∥∥∥∥∥1B(0,2k+1r)\B(0,2kr)(y)
|y|s−α

∥∥∥∥∥∥
X(y)

. max
{
1, (2r)1−s−α} ∥∥∥∥∥∥∥

∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

+
∥∥∥1B(0,2r)

∥∥∥
X(y)

+

∞∑
k=1

2−sk
∥∥∥1B(0,4r)\B(0,2r)(x)

∥∥∥
X(x)

< ∞.

This finishes the proof of the sufficiency.
Now we prove the necessity. Let e⃗i := (0, . . . , 0, 1, 0, . . . , 0) (the ith entry is 1 and the other

entries are 0) for any i ∈ {1, . . . , n}. We first claim that, for any x, y ∈ B(0, 2),

max
{∣∣∣ ∣∣∣x − 4ne⃗i

∣∣∣ − ∣∣∣y − 4ne⃗i
∣∣∣ ∣∣∣ : i ∈ {1, . . . , n}

}
& |x − y| .

To see this, let x = (x1, . . . , xn) and y = (y1, . . . , yn). Assume that

|x1 − y1| = max {|xi − yi| : i ∈ {1, . . . , n}}
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The Ball Banach Fractional Sobolev Inequality and Its Applications 15

and x1 < y1. By x, y ∈ B(0, 2), we find that∣∣∣ ∣∣∣x − 4ne⃗1
∣∣∣ − ∣∣∣y − 4ne⃗1

∣∣∣ ∣∣∣(4.4)

=

(4n − x1)2 +

n∑
i=2

x2
i


1
2

−
(4n − y1)2 +

n∑
i=2

y2
i


1
2

=
8n(y1 − x1) +

∑n
i=1(xi + yi)(xi − yi)

[(4n − x1)2 +
∑n

i=2 x2
i ]

1
2 + [(4n − y1)2 +

∑n
i=2 y2

i ]
1
2

≥ 8n(y1 − x1) − 4n(y1 − x1)
16n

≥ y1 − x1

4

≥ |x − y|
4
√

n
.

This shows that the above claim holds. For any i ∈ {1, . . . , n}, let fi ∈ C∞c (Rn) ⊂ Ẇ s,X(Rn)
satisfying fi(x) = |x − 4ne⃗i| in B(0, 2). By (4.4) and the definition of fi, we conclude that∥∥∥∥∥∥∥

∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

.

∥∥∥∥∥∥∥
∥∥∥∥∥∥1B(y,1)(x)

∑n
i=1 | |x − 4ne⃗i| − |y − 4ne⃗i| |
|x − y|s−α

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

≤
n∑

i=1

∥ fi∥Ẇ s,X(Rn) < ∞.

This finishes the proof of the necessity and hence the proof of Lemma 4.4. �

The following corollary is a direct consequence of Lemma 4.4.

Corollary 4.5. Let X, α, and s satisfy Assumption 4.1(iii). Then C∞c (Rn) ⊂ Ẇ s,X(Rn).

Lemma 4.6. Let X be a ball Banach function space satisfying Assumption 4.1(i) and let f ∈
M (Rn × Rn) satisfy ∥∥∥∥ f (x, y)∥X(x)

∥∥∥
X(y) < ∞.

Then there exists a sequence of functions, { fm}m∈N ⊂ Cc(Rn × Rn), such that

lim
m→∞

∥∥∥ ∥ fm(x, y) − f (x, y)∥X(x)

∥∥∥
X(y) = 0.

Proof. From Assumption 4.1(i), we deduce that∥∥∥∥∥∥∥∥∥ f (x, y)1B(0, j){(x)1B(0, j){(y)
∥∥∥∥

X(x)

∥∥∥∥∥
X(y)
≤

∥∥∥∥∥∥∥∥∥ f (x, y)1B(0, j){(y)
∥∥∥∥

X(x)

∥∥∥∥∥
X(y)
→ 0

as j → ∞. Notice that, for almost every y ∈ Rn, {x ∈ Rn : f (x, y) > N} converges to a set of
zero Lebesgue measure as N → ∞. By this and Assumption 4.1(i), we find that, for almost every
y ∈ Rn, ∥∥∥ f (x, y)1{x∈Rn: f (x,y)>N}

∥∥∥
X(x) → 0

as N → ∞, which, together with [49, Definition 3.11 and Proposition 3.12], further implies that∥∥∥∥∥∥∥ f (x, y)1{(x,y): f (x,y)>N}
∥∥∥

X(x)

∥∥∥∥
X(y)
=

∥∥∥∥∥∥∥ f (x, y)1{x∈Rn: f (x,y)>N}
∥∥∥

X(x)

∥∥∥∥
X(y)
→ 0
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as N → ∞. Combining the above observations, we conclude that, for any ε ∈ (0,∞), there exists
a bounded function g supported in a compact subset D ⊂ (Rn × Rn) such that∥∥∥∥g(x, y) − f (x, y)∥X(x)

∥∥∥
X(y) < ε.(4.5)

Using Lusin’s theorem, we conclude that there exists a sequence of bounded continuous functions,
{hk(x, y)}k∈N, supported in D such that

lim
k→∞

[g(x, y) − hk(x, y)] = 0

almost everywhere on Rn ×Rn. From Assumption 4.1(i) and [42, Lemma 5.6.14], we deduce that,
for almost every y ∈ Rn,

lim
k→∞
∥g(x, y) − hk(x, y)∥X(x) = 0.

Then, by this, Assumption 4.1(i), and [49, Definition 3.11 and Proposition 3.12], we find that

lim
k→∞

∥∥∥∥g(x, y) − hk(x, y)∥X(x)

∥∥∥
X(y) = 0.(4.6)

From (4.5) and (4.6), we conclude that, for any ε ∈ (0,∞), there exists a bounded continuous
functions h(x, y) supported in a set of finite measure D ⊂ (Rn × Rn) such that∥∥∥ ∥h(x, y) − f (x, y)∥X(x)

∥∥∥
X(y) < ε.

This finishes the proof of Lemma 4.6. �

Lemma 4.7. Let X and α satisfy Assumption 2.7, s ∈ (0,min{−α, 1}), and X also satisfy As-
sumptions 3.1 and 4.1. Let u ∈ M (Rn) satisfy ∥u∥Ẇ s,X(Rn) < ∞. Then there exists a sequence of
functions, {um}m∈N ⊂ C∞(Rn), such that

lim
m→∞

∥u − um∥Ẇ s,X(Rn) = 0.

Proof. Let ρ ∈ C∞c (Rn) be such that supp (ρ) ⊂ B(0, 1) and
∫
Rn ρ(x)dx = 1, and define ρm(·) :=

mnρ(m·) for any m ∈ N. For any x, y ∈ Rn, let

f (x, y) :=


u(x) − u(y)
|x − y|s−α , x , y,

0, x = y.

By Lemma 4.6, we find that, for any ε ∈ (0,∞), there exists g ∈ Cc(Rn × Rn) such that∥∥∥ ∥ f (x, y) − g(x, y)∥X(x)

∥∥∥
X(y) < ε.(4.7)

From the definition of ∥ · ∥Ẇ s,X(Rn), we infer that, for any u ∈ Ẇ s,X(Rn),

∥u ∗ ρm − u∥Ẇ s,X(Rn)(4.8)

=

∥∥∥∥∥∥
∥∥∥∥∥u ∗ ρm(x) − u ∗ ρm(y) − [u(x) − u(y)]

|x − y|s−α
∥∥∥∥∥

X(x)

∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn

u(x − z) − u(y − z)
|x − y|s−α ρm(z) dz − u(x) − u(y)

|x − y|s−α
∥∥∥∥∥

X(x)

∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn

f (x − z, y − z)ρm(z) dz − f (x, y)
∥∥∥∥∥

X(x)

∥∥∥∥∥∥
X(y)

≤
∥∥∥∥ f (x, y) − g(x, y)∥X(x)

∥∥∥
X(y)
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+

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn

g(x − z, y − z)ρm(z) dz − g(x, y)
∥∥∥∥∥

X(x)

∥∥∥∥∥∥
X(y)

+

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn
| f (x − z, y − z) − g(x − z, y − z)| ρm(z) dz

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

=: I1 + I2 + I3.

Notice that g is uniformly continuous and there exists R ∈ (0,∞) such that supp (g) ⊂ B(0,R) ×
B(0,R). This, combined with the definition of ρm, further implies that

I2 ≤ sup
(x,y)∈B(0,R+1)×B(0,R+1)

(z,w)∈B(0,m−1)×B(0,m−1)

|g(x, y) − g(x − z, y − w)|
∥∥∥∥∥∥∥1B(0,R+1)(x)1B(0,R+1)(y)

∥∥∥
X(x)

∥∥∥∥
X(y)

(4.9)

→ 0

as m→ ∞. Now, we estimate I3. Using Assumption 4.1(ii), we conclude that

I3 .

∥∥∥∥∥∥∥
∥∥∥∥∥∥
?

B(0,m−1)
|( f − g) (x − z, y − z)| dz

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

.
∥∥∥∥( f − g)(x, y)∥X(x)

∥∥∥
X(y) < ε.(4.10)

Combining (4.8), (4.7), (4.9), and (4.10), we find that ∥u ∗ ρm − u∥Ẇ s,X(Rn) → 0 as m → ∞, which
completes the proof Lemma 4.7. �

The following Lorentz–Luxembourg lemma can be found in [80, Lemma 2.6].

Lemma 4.8. Let X be a ball Banach function space. Then X coincides with its second associate
space X′′. In other words, a function f belongs to X if and only if it belongs to X′′ and, in that
case, ∥ f ∥X = ∥ f ∥X′′ .

Lemma 4.9. Let X be a ball Banach function space and p, p′ ∈ (1,∞) satisfy 1
p +

1
p′ = 1. Then,

for any f ∈ Xp and g ∈ Xp′ , ∥ f g∥X ≤ ∥ f ∥Xp∥g∥Xp′ .

Proof. By Lemma 4.8, the definitions of X and X′, the Hölder inequality, and the definitions of
Xp and Xp′ , we conclude that, for any f ∈ Xp and g ∈ Xp′ ,

∥ f g∥X = sup
∥h∥X′=1

∫
Rn
| f (x)g(x)h(x)| dx

≤ sup
∥h∥X′=1

[∫
Rn
| f (x)|p |h(x)| dx

] 1
p
[∫
Rn
| f (x)|p′ |h(x)| dx

] 1
p′

≤ sup
∥h∥X′=1

[∫
Rn
| f (x)|p |h(x)| dx

] 1
p

sup
∥h∥X′=1

[∫
Rn
| f (x)|p′ |h(x)| dx

] 1
p′

= ∥ f ∥Xp∥g∥Xp′ .

This finishes the proof of Lemma 4.9. �

Next, we prove Theorem 4.2.

Proof of Theorem 4.2. Let [u] ∈ Ds,X(Rn). By the definition ofDs,X(Rn), we find that there exists
{um}m∈N ⊂ C∞c (Rn) converging to u with respect to the quasi-norm ∥ · ∥Ẇ s,X(Rn). Using Assumption
4.1(iii) and Corollary 4.5, we obtain {um}m∈N ⊂ Ẇ s,X(Rn) and hence u ∈ Ẇ s,X(Rn). By Corollary
3.6, we conclude that {um}m∈N ⊂ X

α
α+s . From Lemma 3.8, we infer that there exists a constant

C̃ ∈ C such that, for any ε ∈ (0,∞), ∥∥∥∥1{x∈Rn: |u(x)−C̃|>ε}

∥∥∥∥
X
< ∞.
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18 Yiqun Chen, Loukas Grafakos, Dachun Yang, andWen Yuan

Let i ∈ N. Using {um}m∈N ⊂ C∞c (Rn), we find that ∥1{x∈Rn: |u(x)−C̃−ui(x)|>ε}∥X < ∞ and hence
u − C̃ − ui ∈MX(Rn). From Theorem 3.3, we deduce that∥∥∥u − C̃ − ui

∥∥∥
X
α
α+s ≤

∥∥∥u − C̃ − ui
∥∥∥

Ẇ s,X(Rn) ,

which, together with ui ∈ X
α
α+s , further implies that u − C̃ ∈ X

α
α+s . We then define

I([u]) := u − C̃.

Using the definition of [u], we conclude that I is injective.
Now, we show that I is surjective. Let u ∈ Ẇ s,X(Rn) ∩ X

α
α+s and g ∈M (Rn) satisfy that g ≡ 1

on B(0, 1), g ≡ 0 on B(0, 2){, and g(x) := 2 − |x| for any x ∈ B(0, 2) \ B(0, 1). Let g j(·) := g( ·j ) for
any j ∈ N. Next, we prove that

lim
j→∞
∥u − g ju∥Ẇ s,X(Rn) = 0.(4.11)

It is easy to show that, for any j ∈ N and x, y ∈ Rn,

|[1 − g j(x)]u(x) − [1 − g j(y)]u(y)| ≤ |u(x) − u(y)||1 − g j(x)| + |g j(x) − g j(y)||u(y)|

and hence

∥u − g ju∥Ẇ s,X(Rn)(4.12)

≤
∥∥∥∥∥∥∥
∥∥∥∥∥∥ |u(x) − u(y)||1 − g j(x)|

|x − y|s−α

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

+

∥∥∥∥∥∥∥
∥∥∥∥∥∥ |g j(x) − g j(y)||u(y)|

|x − y|s−α

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

=: I j + J j.

We first estimate I j. Form ∥u∥Ẇ s,X(Rn) < ∞, we deduce that, for almost every y ∈ Rn,∥∥∥∥∥ |u(·) − u(y)|
| · −y|s−α

∥∥∥∥∥
X
< ∞.

By this, the definition of g j, and Assumption 4.1(i), we conclude that, for almost every y ∈ Rn,∥∥∥∥∥∥ |u(·) − u(y)||1 − g j(·)|
| · −y|s−α

∥∥∥∥∥∥
X
≤

∥∥∥∥∥∥ |u(·) − u(y)|1B(0, j){(·)
| · −y|s−α

∥∥∥∥∥∥
X
→ 0

as j→ ∞. Using this and [49, Definition 3.11 and Proposition 3.12], we obtain

lim
j→∞

I j = 0.(4.13)

This is the desired estimate for I j.
Now, we estimate J j. For any j ∈ N and y ∈ Rn, let

f j(y) :=

∥∥∥∥∥∥ |g j(·) − g j(y)|
| · −y|s−α

∥∥∥∥∥∥
X
.

Using the definition of g j and Assumption 2.7, we conclude that

f j(y) = jα−s

∥∥∥∥∥∥∥ |g( ·j ) − g( y
j )|

| ·j −
y
j |s−α

∥∥∥∥∥∥∥
X

= j−s

∥∥∥∥∥∥∥ |g(·) − g( y
j )|

| · − y
j |s−α

∥∥∥∥∥∥∥
X

=: j−s f
(
y
j

)
.
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The Ball Banach Fractional Sobolev Inequality and Its Applications 19

Next, we claim that, for any β ∈ (1,∞), f = f1 ∈ Xβ. By the definition of g, we find that, for any
y ∈ B(0, 3){,

f (y) =
∥∥∥∥∥ |g(·)|
| · −y|s−α

∥∥∥∥∥
X
.
∥1B(0,2)∥X

ys−α .(4.14)

From the definition of g, Assumptions 2.7 and 4.1(iii), and s ∈ (0,min{−α, 1}), we deduce that, for
any y ∈ B(0, 3),

f (y) ≤
∥∥∥∥∥∥ |g(·) − g(y)|1B(0,4)(·)

| · −y|s−α

∥∥∥∥∥∥
X
+

∥∥∥∥∥∥ |g(·) − g(y)|1B(0,4){(·)
| · −y|s−α

∥∥∥∥∥∥
X

(4.15)

.

∥∥∥∥∥∥ 1B(y,7)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X
+

∥∥∥∥∥∥1B(0,4){(·)
| · |s−α

∥∥∥∥∥∥
X

≤ 7−α
∥∥∥∥∥∥ 1B(y,7)(7·)
|7 · −y|s−α−1

∥∥∥∥∥∥
X
+

∞∑
k=1

∥∥∥∥∥∥1B(0,2k+2)\B(0,2k+1)(·)
| · |s−α

∥∥∥∥∥∥
X

≤ 71−s

∥∥∥∥∥∥ 1B( y
7 ,1)(·)

| · − y
7 |s−α−1

∥∥∥∥∥∥
X

+

∞∑
k=1

2−s(k+1)
∥∥∥1B(0,2)\B(0,1)

∥∥∥
X . 1.

Combining (4.14), (4.15), Assumption 4.1(iii), and s ∈ (0,min{−α, 1}), we conclude that, for any
β ∈ (1,∞),

∥ f ∥Xβ ≤
∥∥∥ f 1B(0,3)

∥∥∥
Xβ +

∥∥∥∥ f 1B(0,3){

∥∥∥∥
Xβ

.
∥∥∥1B(0,3)

∥∥∥
Xβ +

∥∥∥1B(0,2)
∥∥∥

X

∥∥∥∥∥∥1B(0,3){(·)
| · |β(s−α)

∥∥∥∥∥∥
1
β

X

≤
∥∥∥1B(0,3)

∥∥∥
Xβ +

∥∥∥1B(0,2)
∥∥∥

X

 ∞∑
k=1

3[−βs+(β−1)α]k
∥∥∥1B(0,3)\B(0,1)

∥∥∥
X


1
β

< ∞.

This proves the above claim.
Let u j(·) := j−s−αu( j·) for any j ∈ N. From the above claim and Assumption 4.1(i), we infer

that, for any ε ∈ (0,∞), there exists δ ∈ (0,∞) such that∥∥∥ f 1B(0,δ)
∥∥∥

X−
α
s <

ε

2∥u∥X α
α+s

.

Using this, Lemma 4.9, and Assumption 2.7, we conclude that, for any j ∈ N,∥∥∥ f u j1B(0,δ)
∥∥∥

X ≤
∥∥∥ f 1B(0,δ)

∥∥∥
X−
α
s

∥∥∥u j
∥∥∥

X
α
α+s =

∥∥∥ f 1B(0,δ)
∥∥∥

X−
α
s ∥u∥X α

α+s <
ε

2
.(4.16)

By Assumption 4.1(i), we conclude that there exists N ∈ N such that, for any j > N,∥∥∥∥u1B(0,δ j){

∥∥∥∥
X
α
α+s
<

ε

2∥ f ∥X− αs
.

From this, Lemma 4.9, and Assumption 2.7, we deduce that, for any j > N,∥∥∥∥ f u j1B(0,δ){

∥∥∥∥
X
≤ ∥ f ∥X− αs

∥∥∥∥u j1B(0,δ){

∥∥∥∥
X
α
α+s
= ∥ f ∥X− αs

∥∥∥∥u1B(0,δ j){

∥∥∥∥
X
α
α+s
<
ε

2
.(4.17)

Using Assumption 2.7, (4.16), and (4.17), we find that, for any j > N,∥∥∥ f ju
∥∥∥

X =
∥∥∥ f u j

∥∥∥
X ≤

∥∥∥∥ f u j1B(0,δ){

∥∥∥∥
X
+

∥∥∥ f u j1B(0,δ)
∥∥∥

X < ε.(4.18)
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This is the desired estimate for J j. Then, combining (4.12), (4.13), and (4.18), we conclude that
(4.11) holds. From this and Lemma 4.7, we infer that, for any u ∈ Ẇ s,X(Rn) ∩ X

α
α+s , there exists

a set {u j} j∈N ⊂ C∞c (Rn) such that lim j→∞ ∥u − u j∥Ẇ s,X(Rn) = 0 and hence [u] ∈ Ds,X(Rn), which
further implies that I is surjective. This finishes the proof of Theorem 4.2. �

Now, we show that Assumption 4.1(iii) is necessary for ball Banach function spaces whose
quasi-norm is invariant under rotations in some weak sense.

Proposition 4.10. Let X and α satisfy Assumption 2.7 and let s ∈ (0,min{−α, 1}). Assume that
there exists a positive constant C such that, for any n × n unitary matrix A and any f ∈ X,

1
C
∥ f ∥X ≤ ∥ f (A·)∥X ≤ C∥ f ∥X .(4.19)

If X has the property ∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

< ∞,(4.20)

then X satisfies Assumption 4.1(iii).

Proof. Assume that Assumption 4.1(iii) fails. Then, for any M ∈ (0,∞), there exists yM ∈ B(0, 1)
such that ∥∥∥∥∥∥ 1B(yM ,1)(·)

| · −yM |s−α−1

∥∥∥∥∥∥
X
≥ M.(4.21)

By Assumption 2.7 and s ∈ (0,min{−α, 1}), we conclude that∥∥∥∥∥∥1B(0,2)(·)
| · |s−α−1

∥∥∥∥∥∥
X
≤
∞∑

i=0

2(s−α−1)i
∥∥∥1B(0,2−i+1)\B(0,2−i)

∥∥∥
X

=

∞∑
i=0

2(s−1)i
∥∥∥1B(0,2)\B(0,1)

∥∥∥
X < ∞.

From this, the obvious estimate that for any x ∈ B(yM, 2|yM |){ we have |x − yM | ∼ |x|, and (4.21),
we obtain ∥∥∥∥∥∥1B(yM ,2|yM |)(·)

| · −yM |s−α−1

∥∥∥∥∥∥
X
≥

∥∥∥∥∥∥ 1B(yM ,1)(·)
| · −yM |s−α−1

∥∥∥∥∥∥
X
−

∥∥∥∥∥∥1B(yM ,1)\B(yM ,2|yM |)(·)
| · −yM |s−α−1

∥∥∥∥∥∥
X

≥
∥∥∥∥∥∥ 1B(yM ,1)(·)
| · −yM |s−α−1

∥∥∥∥∥∥
X
−

∥∥∥∥∥∥1B(0,2)(·)
| · |s−α−1

∥∥∥∥∥∥
X
→ ∞

as M → ∞. This fact together with Assumption 2.7 and (4.19) further implies that∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

≥
∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,2|y|)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0, 12 )(y)

∥∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥∥

1B(y,2|y|)(
|y|
|yM | x)

| |y||yM | x − y|s−α−1

∥∥∥∥∥∥∥∥
X(x)

|y|−α
|yM |−α

1B(0, 12 )(y)

∥∥∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥1B(yM ,2|yM |)(·)
| · −yM |s−α−1

∥∥∥∥∥∥
X

∥∥∥∥∥∥ | · |1−s

|yM |1−s 1B(0, 12 )(·)
∥∥∥∥∥∥

X
→ ∞

as M → ∞. This contradicts (4.20) and thus Assumption 4.1(iii) must hold. This finishes the
proof of Proposition 4.10. �
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5 Applications to Specific Function Spaces

In this section, we verify that our main results apply for several important examples of ball
Banach function spaces, including Morrey spaces (Subsection 5.1), mixed-norm Lebesgue spaces
(Subsection 5.2), Lebesgue spaces with power weights (Subsection 5.3), Besov–Triebel–Lizorkin–
Bourgain–Morrey spaces (Subsection 5.4), and Lorentz spaces (Subsection 5.5). To the best of
our knowledge, all results in this section are new. These applications reveal the extent to which
Sobolev embeddings play a prominent role in function space theory. And we are certain that many
other function spaces fall under the scope of our results.

To verify that these spaces satisfy some desired assumptions, we need the following lemma.

Lemma 5.1. Let X and α satisfy Assumption 2.7 and let s ∈ (0,min{−α, 1}). Assume moreover
that X satisfies the following property: there exists a positive constant C such that, for any f ∈ X
and t ∈ Rn,

1
C
∥ f (· + t)∥X ≤ ∥ f ∥X ≤ C ∥ f (· + t)∥X .(5.1)

Then Assumption 3.1 and both (ii) and (iii) of Assumption 4.1 hold.

Proof. By (5.1), we find that, for any x ∈ Rn, ∥1B(x,1)∥X ∼ ∥1B(0,1)∥X and hence Assumption 3.1
holds. From Minkowski’s inequality and (5.1), we deduce that∥∥∥∥∥∥∥

∥∥∥∥∥∥
?

B(0,r)
f (x − z, y − z) dz

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

.
?

B(0,r)

∥∥∥∥ f (x − z, y − z)∥X(x)

∥∥∥
X(y) dz

∼
∥∥∥∥ f (x, y)∥X(x)

∥∥∥
X(y) .

This implies that Assumption 4.1(ii) holds. Moreover, using (5.1), Assumption 2.7, and s ∈
(0,min{−α, 1}), we conclude that, for any y ∈ B(0, 1),∥∥∥∥∥∥ 1B(y,1)(·)

| · −y|s−α−1

∥∥∥∥∥∥
X
∼

∥∥∥∥∥∥1B(0,1)(·)
| · |s−α−1

∥∥∥∥∥∥
X
≤
∞∑

k=1

2(s−α−1)k
∥∥∥1B(0,2−k+1)\B(0,2−k)

∥∥∥
X

=

∞∑
k=1

2(s−1)k
∥∥∥1B(0,2)\B(0,1)

∥∥∥
X =

2s−1

1 − 2s−1

∥∥∥1B(0,2)\B(0,1)
∥∥∥

X = C′ < ∞.

This implies that Assumption 4.1(iii) holds, which completes the proof of Lemma 5.1. �

5.1 Morrey Spaces

Recall that the Morrey space Mp
r (Rn) with 0 < r ≤ p < ∞ was introduced by Morrey [60] in

order to study the regularity of solutions to certain equations. Morrey spaces have many applica-
tions in the theory of elliptic partial differential equations, potential theory, and harmonic analysis;
we refer to [13, 29, 30, 31, 33, 75] and the monographs [1, 66, 67, 78].

Definition 5.2. Let 0 < r ≤ p < ∞. The Morrey space Mp
r (Rn) is defined to be the set of all

measurable functions f on Rn such that

∥ f ∥Mp
r (Rn) := sup

B∈B(Rn)
|B|

1
p−

1
r ∥ f ∥Lr(B) < ∞.

The following Sobolev-type embedding is a corollary of Theorem 3.3.
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Theorem 5.3. Let 0 < r ≤ p < ∞ and s ∈ (0,min{ np , 1}). Then there exists a positive constant C
such that, for any f ∈ Ẇ s,X(Rn) ∩ X

α
α+s with X := Mp

r (Rn) and α := − n
p ,

sup
B∈B(Rn)

[
|B|

r
p−1

∫
B
| f (x)|

rn
n−sp dx

] n−sp
rn

≤ C sup
B1,B2∈B(Rn)

(|B1||B2|)
1
p−

1
r


∫

B1

∫
B2

 | f (x) − f (y)|
|x − y|s+

n
p

r

dx dy


1
r

.

Proof. From the conclusion in [68, p. 87], we infer that Mp
r (Rn) is a ball Banach function space.

It is easy to show that Assumption 2.7 holds with X and α replaced, respectively, by Mp
r (Rn) and

− n
p . By the definition of Mp

r (Rn), we find that, for any x ∈ Rn, ∥1B(x,1)∥Mp
r (Rn) = |B(0, 1)|

1
p , which

implies that Assumption 3.1 holds with X := Mp
r (Rn). Thus, all the assumptions of Theorem 3.3

with X := Mp
r (Rn) and α := − n

p are satisfied. Then, using Theorem 3.3 with X := Mp
r (Rn) and

α := − n
p , we obtain the desired conclusions, completing the proof of Theorem 5.3. �

Remark 5.4. From [72, Example 5.1], we know that the Morrey space Mp
r (Rn) has no absolutely

continuous norm if 1 < r < p < ∞. Thus, it is still unknown whether or not Theorem 4.2 holds
with X := Mp

r (Rn) and α := − n
p .

5.2 Mixed-Norm Lebesgue Spaces

The mixed-norm Lebesgue space L p⃗(Rn) was studied by Benedek and Panzone [6] in 1961,
which can be traced back to Hörmander [37]. For more studies on mixed-norm Lebesgue spaces,
we refer to [14, 15, 22, 23, 39, 40].

Definition 5.5. Let p⃗ := (p1, . . . , pn) ∈ (0,∞]n. The mixed-norm Lebesgue space L p⃗(Rn) is
defined to be the set of all measurable functions f on Rn such that

∥ f ∥L p⃗(Rn) :=


∫
R
· · ·

[∫
R
| f (x1, . . . , xn)|p1 dx1

] p2
p1
· · · dxn


1

pn

< ∞

with the usual modifications made when pi = ∞ for some i ∈ {1, . . . , n}.

The following theorem is a corollary of Theorem 3.3.

Theorem 5.6. Let p⃗ := (p1, . . . , pn) ∈ (0,∞]n and s ∈ (0,min{∑n
i=1

1
pi
, 1}). Then there exists a

positive constant C such that, for any f ∈ Ẇ s,X(Rn) ∩ X
α
α+s with X := L p⃗(Rn) and α := −∑n

i=1
1
pi

,


∫
R
· · ·


∫
R
| f (x1, . . . , xn)|

p1
n∑

i=1
1
pi

n∑
i=1

1
pi
−s

dx1



p2
p1

· · · dxn



n∑
i=1

1
pi
−s

pn
n∑

i=1
1
pi

≤ C


∫
R
· · ·


∫
R


∫
R
· · ·


∫
R

∣∣∣∣∣∣∣∣∣∣
| f (x) − f (y)|

|x − y|
s+

n∑
i=1

1
pi

∣∣∣∣∣∣∣∣∣∣
p1

dy1


p2
p1

· · · dyn


p1
pn

dx1



p2
p1

· · · dxn



1
pn

.
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Proof. It is easy to prove that L p⃗(Rn) is a ball Banach function space and Assumption 2.7 holds
with X and α replaced, respectively, by L p⃗(Rn) and −∑n

i=1
1
pi

. By these, Lemma 5.1, and the
translation invariance of L p⃗(Rn), we conclude that all the assumptions of Theorem 3.3 with X :=
L p⃗(Rn) and α := −∑n

i=1
1
pi

are satisfied. Then, using Theorem 3.3 with X := L p⃗(Rn) and α :=
−∑n

i=1
1
pi

, we obtain the desired conclusions, completing the proof of Theorem 5.6. �

The following theorem is a corollary of Theorem 4.2.

Theorem 5.7. Let p⃗ := (p1, . . . , pn) ∈ (0,∞)n and s ∈ (0,min{∑n
i=1

1
pi
, 1}). Then Theorem 4.2

holds with X := L p⃗(Rn) and α := −∑n
i=1

1
pi

.

Proof. It is straightforward that L p⃗(Rn) has an absolutely continuous norm. By this, the proof
of Theorem 5.6, Lemma 5.1, and the translation invariance of L p⃗(Rn), we conclude that all the
assumptions of Theorem 4.2 with X := L p⃗(Rn) and α := −∑n

i=1
1
pi

are satisfied. Then, using
Theorem 4.2 with X := L p⃗(Rn) and α := −∑n

i=1
1
pi

, we obtain the desired conclusions, which
completes the proof of Theorem 5.7. �

5.3 Lebesgue Spaces with Power Weights

We first present the definitions of both Muckenhoupt weights and weighted Lebesgue spaces
(see, for instance, [24, Definitions 7.1.2 and 7.1.3]).

Definition 5.8. Let p ∈ [1,∞) and ω be a nonnegative locally integrable function on Rn. Then ω
is called an Ap(Rn) weight, denoted by ω ∈ Ap(Rn), if, when p ∈ (1,∞),

[ω]Ap(Rn) := sup
B⊂Rn

1
|B|

[∫
B
ω(x) dx

] {
1
|B|

∫
B
[ω(x)]−

1
p−1 dx

}p−1

< ∞

and

[ω]A1(Rn) := sup
B⊂Rn

1
|B|

[∫
B
ω(x) dx

] {
ess sup

x∈Rn
[ω(x)]−1

}
< ∞,

where the suprema are taken over all balls B ∈ B(Rn). Moreover, the class A∞(Rn) is defined by

A∞(Rn) :=
∪

p∈[1,∞)

Ap(Rn).

Definition 5.9. Let p ∈ (0,∞) and ω ∈ A∞(Rn). The weighted Lebesgue space Lp
ω(Rn) is defined

to be the set of all measurable functions f on Rn such that

∥ f ∥Lp
ω(Rn) =

[∫
Rn
| f (x)|pω(x) dx

] 1
p

< ∞.

The following theorem is a corollary of Theorem 3.3.

Theorem 5.10. Let p ∈ (1,∞), ω(x) := |x|β with β ∈ (0, n(p − 1)), and s ∈ (0,min{n+βp , 1}). Then
there exists a positive constant C such that, for any f ∈ Ẇ s,X(Rn) ∩ X

α
α+s with X := Lp

ω(Rn) and
α := −n+β

p ,

[∫
Rn
|u(x)|

p(n+β)
n+β−sp |x|β dx

] n+β−sp
n+β

≤ C
"
Rn×Rn

|u(x) − u(y)|p
|x − y|n+β+sp |x|

β|y|β dx dy
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Proof. From [20, p. 141], we know that |x|β ∈ Ap(Rn). Combining this and [68, p. 86], we conclude
that Lp

ω(Rn) is a ball Banach function space. It is easy to prove that Assumption 2.7 holds with
X and α replaced, respectively, by Lp

ω(Rn) and −n+β
p . From β ∈ (0, n(p − 1)), we infer that,

for any x ∈ Rn, ∥1B(x,1)∥Lp
ω(Rn) ≥ ∥1B(0,1)∥Lp

ω(Rn), which implies that Assumption 3.1 holds with
X := Lp

ω(Rn). Thus, all the assumptions of Theorem 3.3 with X := Lp
ω(Rn) and α := −n+β

p are

satisfied. Then, using Theorem 3.3 with X := Lp
ω(Rn) and α := −n+β

p , we obtain the desired
conclusions and complete the proof of Theorem 5.10. �

The following theorem is a corollary of Theorem 4.2.

Theorem 5.11. If p ∈ (1,∞), ω(x) := |x|β for any x ∈ Rn and some β ∈ (0,min{p, n(p−1)
2 }), and

s ∈ (0,min{ n+βp ,
p−β

p , 1}), then Theorem 4.2 holds with X := Lp
ω(Rn) and α := −n+β

p .

Proof. It is easy to show that Lp
ω(Rn) has an absolutely continuous norm. By [20, p. 141], we find

that, for any t ∈ Rn, |x + t|2β ∈ Ap(Rn). Using this together with [24, Exercise 7.1.9], we conclude
that, for any t ∈ Rn, |x|β|x + t|β ∈ Ap(Rn). Then, from [20, Theorem 7.3], we deduce that∥∥∥∥∥∥∥

∥∥∥∥∥∥
?

B(0,r)
f (x + z, y + z) dz

∥∥∥∥∥∥
Lp
ω(Rn)

∥∥∥∥∥∥∥
Lp
ω(Rn)

=

["
Rn×Rn

?
B(0,r)

f (x + z, y + z)p|x|β|y|β dz dx dy
] 1

p

=

["
Rn×Rn

?
B(0,r)

f (x + z, x + z + t)p|x|β|x + t|β dz dx dt
] 1

p

.
["

Rn×Rn
f (x, x + t)p|x|β|x + t|β dx dt

] 1
p

=

["
Rn×Rn

f (x, y)p|x|β|y|β dx dy
] 1

p

=
∥∥∥∥ f (x, y)∥Lp

ω(Rn)

∥∥∥
Lp
ω(Rn)
.

This proves that Assumption 4.1(ii) holds with X := Lp
ω(Rn). By the definition of ∥ · ∥Lp

ω(Rn) and
s ∈ (0,min{ n+βp ,

p−β
p , 1}), we conclude that, for any y ∈ B(0, 1),∥∥∥∥∥∥∥ 1B(y,1)(·)

| · −y|s−1+ n+β
p

∥∥∥∥∥∥∥
Lp
ω(Rn)

=

∫
B(y,1)

|x|β
|x − y|(s−1)p+n+β dx .

∫
B(0,2)

1
|x − y|(s−1)p+n+β dx < ∞.

This shows that Assumption 4.1(iii) holds with X := Lp
ω(Rn). Combining the above observations

and the proof of Theorem 5.10, we conclude that all the assumptions of Theorem 4.2 with X :=
Lp
ω(Rn) and α := − n+β

p are satisfied. Then, using Theorem 4.2 with X := Lp
ω(Rn) and α := −n+β

p ,
we obtain the desired conclusions, which completes the proof of Theorem 5.11. �

5.4 Besov–Triebel–Lizorkin–Bourgain–Morrey Spaces

Morrey-type spaces, serving as a good substitute of Morrey spaces, have been found many
applications in harmonic analysis and partial differential equations; see, for instance, [21, 25,
43, 53, 74]. To study the Bochner–Riesz multiplier problems in R3, Bourgain [9] introduced a
special Bourgain–Morrey spaces. Subsequently, Masaki [50] introduced Bourgain–Morrey spaces
for the full range of exponents to explore some problems on nonlinear Schrödinger equations.
In addition, Bourgain–Morrey spaces have many applications in the theory of partial differential
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equations (see, for instance, [5, 10, 41, 51, 52, 61, 62]). Recently, Hatano et al. [35] revealed
several fundamental real-variable properties of Bourgain–Morrey spaces. Motivated by Bourgain–
Morrey spaces and the structure of Besov spaces (or Triebel–Lizorkin spaces), Zhao et al. [81]
and Hu et al. [38] introduced Besov–Bourgain–Morrey spaces and Triebel–Lizorkin–Bourgain–
Morrey spaces, respectively, as follows.

Definition 5.12. Let 0 < q ≤ p ≤ r ≤ ∞, τ ∈ (0,∞], and {Qν,m}ν∈Z, m∈Zn be the system of dyadic
cubes of Rn.

(i) The Besov–Bourgain–Morrey space ṀBp,τ
q,r (Rn) is defined to be the set of all f ∈ Lq

loc(Rn)
such that

∥ f ∥ṀBp,τ
q,r (Rn) :=

∑
ν∈Z

∑
m∈Zn

(
|Qνm|

1
p−

1
q
∥∥∥ f 1Qνm

∥∥∥
Lq(Rn)

)r

τ
r


1
τ

< ∞

with the usual modifications made when r = ∞ and τ = ∞.

(ii) The Triebel–Lizorkin–Bourgain–Morrey space ṀF p,τ
q,r (Rn) is defined to be the set of all f ∈

Lq
loc(Rn) such that

∥ f ∥ṀF p,τ
q,r (Rn) :=

∫
Rn

{∫ ∞

0

[
tn( 1

p−
1
q−

1
r ) ∥∥∥ f 1B(y,t)

∥∥∥
Lq(Rn)

]τ dt
t

} r
τ

dy


1
r

< ∞

with the usual modifications made when r = ∞ and τ = ∞.

The following theorem is a corollary of Theorem 3.3.

Theorem 5.13. Let both 0 ≤ q < p < r ≤ ∞ and τ ∈ (1,∞) or 1 ≤ q ≤ p ≤ r ≤ τ = ∞,
A ∈ {B, F}, s ∈ (0,min{ np , 1}), and γ := n

n−sp . Then there exists a positive constant C such that, for
any f ∈ Ẇ s,X(Rn) ∩ X

α
α+s with X := ṀAp,τ

q,r (Rn) and α := − n
p ,

∥ f ∥ṀAγp,γτ
γq,γr (Rn) ≤ C

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥ | f (x) − f (y)|
|x − y|s+

n
p

∥∥∥∥∥∥∥
ṀAp,τ

q,r (Rn)

∥∥∥∥∥∥∥∥
ṀAp,τ

q,r (Rn)

.

Proof. We only consider the case A = B because the proof of the case A = F is similar and hence
we omit the details. From the proof of [82, Lemma 4.10], we infer that ṀBp,τ

q,r (Rn) is a ball Banach
function space. It is easy to prove that Assumption 2.7 holds with X and α replaced, respectively,
by ṀBp,τ

q,r (Rn) and − n
p . By these, Lemma 5.1, and the translation invariance of ṀBp,τ

q,r (Rn), we
conclude that all the assumptions of Theorem 3.3 with X := ṀBp,τ

q,r (Rn) and α := − n
p are satisfied.

Then, using Theorem 3.3 with X := ṀBp,τ
q,r (Rn) and α := − n

p , we obtain the desired conclusions,
which completes the proof of Theorem 5.13. �

The following theorem is a corollary of Theorem 4.2.

Theorem 5.14. Let 0 < q < p < r < ∞, τ ∈ (1,∞), A ∈ {B, F}, and s ∈ (0,min{ np , 1}). Then
Theorem 4.2 holds with X := ṀAp,τ

q,r (Rn) and α := − n
p .

Proof. We only consider the case A = B because the proof of the case A = F is similar and hence
we omit the details. From the proof of [82, Theorem 4.12], we infer that ṀBp,τ

q,r (Rn) has an abso-
lutely continuous norm. By this, the proof of Theorem 5.13, Lemma 5.1, and the translation in-
variance of ṀBp,τ

q,r (Rn), we conclude that all the assumptions of Theorem 4.2 with X := ṀBp,τ
q,r (Rn)

and α := − n
p are satisfied. Then, using Theorem 4.2 with X := ṀBp,τ

q,r (Rn) and α := − n
p , we obtain

the desired conclusions, which completes the proof of Theorem 5.14. �
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5.5 Lorentz Spaces

The Lorentz space was studied by Lorentz [47, 48] in the early 1950’s. As a natural general-
ization of Lebesgue spaces, Lorentz spaces serve as the intermediate spaces of Lebesgue spaces
in the real interpolation (see, for instance, [12]). For more studies on Lorentz spaces and their
associated function spaces, we refer to [64, 73, 44, 45].

Definition 5.15. Let p ∈ (0,∞) and q ∈ (0,∞]. For any f ∈M (Rn), let

a f (λ) :=
∣∣∣{x ∈ Rn : | f (x)| > λ}∣∣∣

and
f ∗(t) := inf{λ ∈ (0,∞) : a f (λ) ≤ t}.

The Lorentz space Lp,q(Rn) is defined to be the set of all functions f ∈ M (Rn) such that, when
p, q ∈ (0,∞),

∥ f ∥Lp,q(Rn) :=
{

q
p

∫ ∞

0

[
t

1
p f ∗(t)

]q dt
t

} 1
q

< ∞

and

∥ f ∥Lp,∞(Rn) := sup
t∈(0,∞)

t
1
p f ∗(t) < ∞.

The following theorem is a corollary of Theorem 3.3.

Theorem 5.16. Let p ∈ (1,∞), q ∈ (1,∞], and s ∈ (0,min{ np , 1}). Then there exists a positive
constant C such that, for any f ∈ Ẇ s,X(Rn) ∩ X

α
α+s with X := Lp,q(Rn) and α := − n

p ,

∥ f ∥
L

p2
p−sn ,

pq
p−sn (Rn)

≤ C

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥ | f (x) − f (y)|
|x − y|s+

n
p

∥∥∥∥∥∥∥
Lp,q(Rn)

∥∥∥∥∥∥∥∥
Lp,q(Rn)

.

Proof. From [68, p. 87], we infer that Lp,q(Rn) is a ball Banach function space. It is easy to
show that Assumption 2.7 holds with X and α replaced, respectively, by Lp,q(Rn) and − n

p . By
these, Lemma 5.1, and the translation invariance of Lp,q(Rn), we conclude that all the assumptions
of Theorem 3.3 with X := Lp,q(Rn) and α := − n

p are satisfied. Then, using Theorem 3.3 with
X := Lp,q(Rn) and α := − n

p , we obtain the desired conclusions, which completes the proof of
Theorem 5.16. �

The following theorem is a corollary of Theorem 4.2.

Theorem 5.17. Let p ∈ (1,∞), q ∈ (1,∞), and s ∈ (0,min{ np , 1}). Then Theorem 4.2 holds with
X := Lp,q(Rn) and α := − n

p .

Proof. From [76, Remark 3.4(iii)], we infer that Lp,q(Rn) has an absolutely continuous norm.
By this, the proof of Theorem 5.16, Lemma 5.1, and the translation invariance of Lp,q(Rn), we
conclude that all the assumptions of Theorem 4.2 with X := Lp,q(Rn) and α := − n

p are satisfied.
Then, using Theorem 4.2 with X := Lp,q(Rn) and α := − n

p , we obtain the desired conclusions,
which completes the proof of Theorem 5.17. �
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