
WEIGHTED WEAK-TYPE (1, 1) ESTIMATES VIA RUBIO DE
FRANCIA EXTRAPOLATION
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Abstract. The classical Rubio de Francia extrapolation result asserts that
if an operator T : Lp0(u) → Lp0,∞(u) is bounded for some p0 > 1 and every
u ∈ Ap0

, then, for every 1 < p < ∞ and every u ∈ Ap, T : Lp(u) → Lp,∞(u)
is bounded. However, there are examples showing that it is not possible to
extrapolate to the end-point p = 1. In this paper we shall prove that there
exists a class of weights, slightly larger than Ap, with the following property:
If an operator T : Lp0,1(u)→ Lp0,∞(u) is bounded, for some p0 > 1 and every
u in this class then, for every u ∈ A1,

(1) T is of restricted weak-type (1, 1);
(2) for every ε > 0,

T : L(logL)ε(u) −→ L1,∞
loc (u).

Moreover, for a big class of operators, including Calderón-Zygmund maximal
operators, g-functions, the intrinsic square function, and the Haar shift oper-
ators, we obtain a weak-type (1, 1) estimate with respect to every u ∈ A1.

1. Introduction

Let M be the Hardy-Littlewood maximal operator, defined by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy,

where Q denotes a cube in Rn. A positive locally integrable function w (called
weight) is said to belong to the Muckenhoupt class Ar (r > 1), if

‖w‖Ar = sup
Q

(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w−1/(r−1)(x) dx

)r−1

<∞.

If r = 1, we say that w ∈ A1, if Mw(x) ≤ Cw(x), at almost every point x ∈ Rn

and ‖w‖A1 will be the least constant C satisfying such inequality.
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2 Weighted weak-type (1, 1) estimates via Rubio de Francia extrapolation

These classes of weights were introduced by B. Muckenhoupt [17], who proved
that, if p > 1, then

M : Lp(w) −→ Lp(w)

is bounded if, and only if, w ∈ Ap. Also, for every 1 ≤ p <∞, M is of weak-type
(p, p) if, and only if, w ∈ Ap.

Concerning the behavior of the boundedness constant of M , depending on
the weight w, we mention the work of Buckley [3], who proved that, for every
1 ≤ p <∞,

‖M‖Lp(w)→Lp,∞(w) ≤ C‖w‖
1
p

Ap
,

and, if p > 1,

‖M‖Lp(w)→Lp(w) ≤ Cp‖w‖
1
p−1

Ap
,

with Cp depending on p.
An important result, for our purpose, concerning Ap weights is the so-called

extrapolation theorem of Rubio de Francia [20] (see also [10, 11, 12] ), which says
that if, for some p0 ≥ 1 and every w ∈ Ap0 ,

T : Lp0(w) −→ Lp0(w)

is a bounded operator then, for every p > 1 and every w ∈ Ap,
T : Lp(w) −→ Lp(w)

is also bounded. We have to emphasize that it is not possible to extrapolate
up to the endpoint p = 1; that is, there are examples of operators, for which
the hypothesis of Rubio de Francia’s theorem holds, which are not of weak-type
(1, 1), as for example the operator T = M ◦M .

Since the above result was first proved, many other proofs and improvements
have appeared in the literature. In particular, it was shown in [7, 6] that the
operator T played no role and, in fact, the result could be obtained for a pair of
functions (f, g) as follows: if, for some 1 ≤ p0 < ∞, there exists an increasing
function ϕp0(t), t > 0, such that, for every w ∈ Ap0 ,

‖g‖Lp0 (w) ≤ ϕp0(‖w‖Ap0 )‖f‖Lp0 (w),

then, for every 1 < p <∞, there exists an increasing function ϕp(t), t > 0, such
that, for every w ∈ Ap,

‖g‖Lp(w) ≤ ϕp(‖w‖Ap)‖f‖Lp(w).

Moreover, an explicit construction of ϕp from ϕp0 was given in [8], where a
version of the extrapolation theorem with sharp bounds was proved. Along these
lines, we have to also mention the recent work [9] where a simple proof of the last
result has been presented. As said in that paper, the three basic ingredients of
any of the proofs of the extrapolation results are:

(i) Factorization.
(ii) Construction of A1 weights via the Rubio de Francia algorithm.
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(iii) Sharp bounds for the Hardy-Littlewood maximal function.

In fact, the main idea in [9] was to use a new factorization of Ap0 weights, while
(ii) and (iii) were used in a standard way. We recall that the usual factorization
result for Ap0 weights says that w ∈ Ap0 if, and only if, there exist u0, u1 ∈ A1

such that w = u0u
1−p0
1 , while the argument in [9] uses the fact that, if w ∈ Ap

and u ∈ A1, then wup−p0 ∈ Ap0 , 1 ≤ p ≤ p0 <∞, and

‖wup−p0‖Ap0 ≤ ‖w‖Ap‖u‖
p0−p
A1

.

We would like also to comment that, as explained in [9]: The extrapolation
results can be adapted to any situation in which factorization and the Rubio de
Francia algorithm are available.

One of the main results of this paper is to show that one can also extrapolate
in cases where the Rubio de Francia algorithm is indeed not available and, what
it is more important, these new extrapolation results allow us to obtain, in many
cases, the weak-type (1, 1) boundedness.

In fact, we can prove that there exists a class of weights Âp0 (see Definition 2.9),
slightly bigger than Ap0 , for which, given a restricted weak-type (p0, p0) bounded

operator T : Lp0,1(u) → Lp0,∞(u), for some p0 > 1 and every u ∈ Âp0 then, for
every u ∈ A1, T is of restricted weak-type (1, 1) and, if T is sublinear (or even
quasi-sublinear), we also obtain that, for every ε > 0,

T : L(logL)ε(u) −→ L1,∞
loc (u)

is bounded, where

L(logL)ε(u) =

{
f : ‖f‖L(logL)ε(u) =

∫ ∞
0

f ∗u(t)
(

1 + log+ 1

t

)ε
dt <∞

}
,

and

L1
loc(u) =

{
f : ‖f‖L1

loc(u) = sup
0<t≤1

tf ∗u(t) <∞
}
,

with f ∗u the decreasing rearrangement of f , with respect to the weight u, defined
by

f ∗u(t) = inf
{
y > 0 : λuf (y) ≤ t

}
,

and λuf (y) = u
({
x : |f(x)| > y

})
is the distribution function of f with respect to

u (we shall write λf (y) and f ∗, if u = 1). We shall also use the standard notation
u(E) =

∫
E
u(x) dx (if u = 1 we simply write |E|).

Moreover, for a big class of operators, including Calderón-Zygmund maximal
operators, g-functions, the intrinsic square function, and Haar shift operators, we
obtain that, for every u ∈ A1,

T : L1(u) −→ L1,∞(u)

is bounded.
We state the version of the extrapolation result given in [9]:
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Theorem 1.1. Assume that, for some family of pairs of nonnegative functions,
(f, g), for some 1 ≤ p0 <∞, and for all w ∈ Ap0, we have(∫

Rn
gp0(x)w(x) dx

)1/p0

≤ N(‖w‖Ap0 )

(∫
Rn
fp0(x)w(x) dx

)1/p0

,

where N(t), t > 0, is an increasing function. Then, for all 1 < p < ∞ and all
w ∈ Ap, (∫

Rn
gp(x)w(x) dx

)1/p

≤ K(w)

(∫
Rn
fp(x)w(x) dx

)1/p

,

where, if p < p0,

K(w) = CN
(
‖w‖Ap(2‖M‖Lp(w))

p0−p
)

and, if p > p0,

K(w) = CN
(
‖w‖

p0−1
p−1

Ap
(2‖M‖Lp′ (w1−p′ ))

p−p0
p−1

)
.

In particular,

K(w) . N
(
C‖w‖

max
(

1,
p0−1
p−1

)
Ap

)
.

In this paper we are interested in the case 1 < p < p0.

A constant Cp (independent of the weights) such that it remains bounded when
p tends to 1, will be represented by C. As usual, we shall use the symbol A . B
to indicate that there exists a universal positive constant C, independent of all
important parameters, such that A ≤ CB. A ≈ B means that A . B and
B . A.

2. Main results: restricted weak-type extrapolation

Given a weight u, let Lp,1(u) be the set of measurable functions such that

‖f‖Lp,1 =

∫ ∞
0

f ∗u(t)t
1
p
−1 dt = p

∫ ∞
0

λuf (y)1/pdy <∞,

and let Lp,∞(u) be defined by the condition

‖f‖Lp,∞(u) = sup
t>0

t1/pf ∗u(t) = sup
y>0

yλuf (y)1/p <∞.

Definition 2.1. For every 1 ≤ p <∞, we define the restricted Ap class, ARp , as
those weights u for which the following quantity is finite:

‖u‖ARp = sup
E⊂Q

|E|
|Q|

(
u(Q)

u(E)

)1/p

,

where the supremum is taken over all cubes Q and all measurable sets E ⊂ Q.
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We clearly have that
AR1 = A1.

Then, the starting point of our theory is the following result in [14]:

Theorem 2.2. For every 1 ≤ p <∞, it holds that

M : Lp,1(u) −→ Lp,∞(u)

is bounded if, and only if, u ∈ ARp . Moreover, if 1 < p <∞,

(p− 1)‖M‖Lp,1(u)→Lp,∞(u) . ‖u‖ARp ≤ ‖M‖Lp,1(u)→Lp,∞(u),

and, if p = 1,
‖M‖L1(u)→L1,∞(u) ≈ ‖u‖A1 .

Concerning the relation with Ap weights the following result holds:

Proposition 2.3. For every ε > 0,

Ap ⊂ ARp ⊂ Ap+ε.

Moreover, for every 1 ≤ p <∞,

‖w‖ARp ≤ ‖w‖
1/p
Ap
. (2.1)

Proof. The embeddings are clear. Now, for every E ⊂ Q,

|E| ≤ w(E)1/p
(∫

Q

w1−p′(x) dx
)1/p′

,

and hence

|E|
|Q|

(
w(Q)

w(E)

)1/p

≤ 1

|Q|
w(Q)1/p

(∫
Q

w1−p′(x) dx
)1/p′

≤ ‖w‖1/p
Ap
,

as we wanted to show. �

Our next goal is to study this class of weights and prove a factorization result
for, at least, a sufficiently large subclass. Let us start with two lemmas:

Lemma 2.4. If f ∈ L1
loc(Rn) satisfies that Mf(x) < ∞, a.e. x ∈ Rn then, for

every cube Q ⊂ Rn for which fχQ 6≡ 0, there exists 0 < sf,Q <∞ such that

Q ⊂ Ef,Q ⊂ 13Q,

where Ef,Q =
{
y ∈ Rn : M(fχQ)(y) > sf,Q

}
.

Proof. For convenience, we will assume that Q is a closed cube. Let us first prove
that, for every x /∈ 3Q and every y ∈ Q, we have that

M(fχQ)(x) ≤M(fχQ)(y). (2.2)

In fact, take any cube R containing x and such that |R∩Q| > 0. Then, |R| ≥ |Q|,
and

1

|R|

∫
R∩Q
|f(z)| dz ≤ 1

|Q|

∫
R∩Q
|f(z)| dz ≤ 1

|Q|

∫
Q

|f(z)| dz ≤M(fχQ)(y).
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Hence, taking the supremum in R, we obtain (2.2). In particular, if we define
sf,Q = 1

2
supx∈∂(3Q) M(fχQ)(x), then

0 < sf,Q < inf
y∈Q

M(fχQ)(y) <∞. (2.3)

Using (2.3) we observe that Q ⊂ Ef,Q. To finish, assume x /∈ 13Q, and take any
cube R containing x and such that |R ∩Q| > 0. Then, |R| ≥ 2n|3Q|, and

1

|R|

∫
R∩Q
|f(z)| dz ≤ 1

2n
1

|3Q|

∫
3Q

|f(z)|χQ(z) dz ≤ 2

2n
sf,Q ≤ sf,Q.

Hence M(fχQ)(x) ≤ sf,Q and Ef,Q ⊂ 13Q. �

Lemma 2.5.
Let g be a positive measurable function such that, for every constant a ≥ 0,

|{x : g(x) = a}| = 0. (2.4)

Then, the following holds:

(i) Let F be a measurable set with |F | < ∞ and let α ≤ 0. Then, for almost
every 0 < t < |F |, (

gαχF
)∗

(t) =
(
(gχF )∗(|F | − t)

)α
.

(ii) For every r > 0, (
gχ{g>r})

∗(t) = g∗(t)χ{g∗>r}(t).

(iii) If g > 0, t > 0, α ≤ 0 and |E| = t, then∫
{x:g(x)>g∗(t)}

g(x)α dx ≤
∫
E

g(x)α dx.

Proof. (i) and (ii) are immediate from the usual definitions. Let us see that (iii)
follows from the previous estimates:∫

E

g(x)α dx =

∫
Rn
g(x)αχE(x) dx

=

∫ t

0

(gαχE)∗(s) ds =

∫ t

0

(
(gχE)∗(s)

)α
ds, (2.5)

where we have used (i) in the last equality. Similarly, using now (i) and (ii):∫
{x:g(x)>g∗(t)}

g(x)α dx ≤
∫ t

0

(gαχ{x:g(x)>g∗(t)})
∗(s) ds

=

∫ t

0

(
(gχ{x:g(x)>g∗(t)})

∗(s)
)α
ds =

∫ t

0

g∗(s)α ds. (2.6)

Thus, since g∗ ≥ (gχE)∗ and α < 0, (2.5) and (2.6) prove the result. �
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Remark 2.6. Without loss of generality (see [5, Lemma 2.1]) we can assume
that g satisfies condition (2.4) and, in this case, for every r > 0.

|{x : g(x) > g∗(r)}| = r.

The following result will be fundamental for our purposes.

Theorem 2.7. For every positive and locally integrable function f and every
1 ≤ p <∞, the weight u = (Mf)1−p ∈ ARp , with constant independent of f .

Proof. We have to prove that

‖u‖ARp = sup
E⊂Q

|E|
|Q|

(∫
Q
Mf(x)1−p dx∫

E
Mf(x)1−p dx

)1/p

<∞.

Let Q be an arbitrary cube and let us write, for every x ∈ Q,

Mf(x) ≈M(fχ3Q)(x) +M(fχ(3Q)c)(x).

Now, it is easy to see that, for every x, x′ ∈ Q,

M(fχ(3Q)c)(x) ≈M(fχ(3Q)c)(x
′);

that is, M(fχ(3Q)c) is essentially constant CQ,f in Q. Hence, for every x ∈ Q,

Mf(x) ≈M(fχ3Q)(x) + CQ,f .

Hence, ∫
Q

(Mf(x))1−p dx ≈
∫
Q

(M(fχ3Q)(x) + CQ,f )
1−p dx.

Let Ef,3Q be as in Lemma 2.4, and let g(x) = M(fχ3Q)(x) + CQ,f . Then, by
Lemmas 2.5 and 2.4, with α = 1− p, and Remark 2.6, we obtain that∫

Q

(Mf(x))1−p dx .
∫ |Q|

0

(
g1−pχEf,3Q

)∗
(t) dt

≤
∫ |Ef,3Q|

0

(
(gχEf,3Q)∗(|Ef,3Q| − t)

)1−p
dt

=

∫ |Ef,3Q|
0

(
(gχEf,3Q)∗(t)

)1−p
dt =

∫ |Ef,3Q|
0

g∗(t)1−p dt. (2.7)

Using now that (
M(fχ3Q)

)∗
(s) ≈ 1

s

∫ s

0

(fχ3Q)∗(t) dt,

we deduce that∫
Q

(Mf(x))1−p dx .
∫ |Ef,3Q|

0

(
1

s

∫ s

0

(fχ3Q)∗(t) dt+ CQ,f

)1−p

ds

≤
∫ |39Q|

0

sp−1F (s) ds, (2.8)
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where

F (s) =

(∫ s

0

(fχ3Q)∗(t) dt+ CQ,fs

)1−p

is a decreasing function.
Now, we want to prove that

B = sup
E⊂Q

(
|E|
|Q|

)p ∫
Q

(M(fχ3Q)(x) + CQ,f )
1−p dx∫

E
(M(fχ3Q)(x) + CQ,f )1−p dx

<∞.

Using (2.7) and (2.8), we see that∫
Q

(M(fχ3Q)(x) + CQ,f )
1−p dx .

∫ |39Q|

0

sp−1F (s) ds.

Similarly, if E ⊂ Q, with |E| = t, Lemma 2.5 gives:∫
E

(M(fχ3Q)(x) + CQ,f )
1−p dx =

∫
E

(g(x))1−p dx ≥
∫
{x:g(x)>g∗(t)}

(g(x))1−p dx

=

∫ t

0

(g1−pχ{x:g(x)>g∗(t)})
∗(s) ds =

∫ t

0

(g1−p)∗(s) ds

=

∫ t

0

(g∗(s))1−p ds ≈
∫ t

0

sp−1F (s) ds.

Therefore,

B . sup
0<t<|Q|

(
t

|39Q|

)p ∫ |39Q|
0

sp−1F (s) ds∫ t
0
sp−1F (s) ds

= sup
0<t<|Q|

∫ 1

0
sp−1F (s|39Q|) ds∫ 1

0
sp−1F (ts) ds

≤ 1,

and the result follows. �

Corollary 2.8. For every u ∈ A1, every positive and locally integrable function
f and every 1 ≤ p <∞, the weight (Mf)1−pu ∈ ARp and

‖(Mf)1−pu‖ARp . ‖u‖
1/p
A1
.

Proof. We have that∫
Q

(Mf)1−p(x)u(x) dx ≤ 1

infx∈QMf(x)p−1

∫
Q

u(x) dx =
u(Q)

infx∈QMf(x)p−1
.

Let us take 0 < α < 1 such that α ≤ p− 1. Then, since

|Q|∫
Q

(Mf)α(x) dx
≤
∫
Q

(Mf)−α(x) dx

|Q|
,
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we have, using that (Mf)α ∈ A1,

1

infx∈QMf(x)p−1
=

(
1

infx∈QMf(x)α

) p−1
α

.

(
|Q|∫

Q
(Mf)α(x) dx

) p−1
α

≤
(∫

Q
(Mf)−α(x) dx

|Q|

) p−1
α

≤
∫
Q

(Mf)1−p(x) dx

|Q|
.

By the previous theorem, we finally obtain that(
|E|
|Q|

)p ∫
Q

(Mf)1−p(x)u(x) dx .
u(Q)

|Q|

∫
E

(Mf)1−p(x) dx

≤ ‖u‖A1

∫
E

(Mf)1−p(x)u(x) dx,

as we wanted to see. �

The above corollary motivates the following definition:

Definition 2.9. We define

Âp =
{
u : ∃ f ∈ L1

loc and ∃u1 ∈ A1 : u = (Mf)1−pu1

}
,

with

‖u‖Âp = inf ‖u1‖1/p
A1
.

We have proved that, for every 1 ≤ p <∞,

Âp ⊂ ARp and ‖u‖ARp . ‖u‖Âp .

At this point, we should emphasize that the class of weights for which we are

going to extend Rubio de Francia’s extrapolation result is Âp. It is unknown to

us whether Âp = ARp .

We begin by proving the following important distribution inequality:

Proposition 2.10. For every weight u, every pair of positive functions f and g,
every γ > 0 and 1 ≤ p < p0,

λug (y) ≤ λuMf (γy) + γp0−p
yp0

yp

∫
{g>y}

(Mf(x))p−p0u(x) dx. (2.9)
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Proof.

λug (y) ≤ λuMf (γy) + u({x : g(x) > y, Mf(x) ≤ γy})

= λuMf (γy) +

∫
{g>y,Mf≤γy}

u(x) dx

≤ λuMf (γy) +

∫
{g>y}

( γy
Mf

)p0−p
u(x) dx

= λuMf (γy) + γp0−p
yp0

yp

∫
{g>y}

(Mf(x))p−p0u(x) dx.

�

Now, we are ready to prove our first Rubio de Francia extrapolation result,
based on the following facts:

(i) The Âp class satisfies a factorization result.
(ii) We will not need to construct A1 weights, so Rubio de Francia algorithm

can be avoided.
(iii) Sharp bounds for the maximal operators are known.

Theorem 2.11. Let T be an operator satisfying that, for some p0 > 1 and every

v ∈ Âp0,

T : Lp0,1(v) −→ Lp0,∞(v)

is bounded, with constant less than or equal to ϕp0(‖v‖Âp0 ), with ϕp0 an increasing

function on (0,∞). Then, for every v ∈ A1,

T : L
1, 1
p0 (v) −→ L1,∞(v) (2.10)

is bounded, with constant less than or equal to

ϕp0,1(‖v‖A1) = C‖v‖
1− 1

p0
A1

ϕp0(‖v‖
1
p0
A1

).

In particular, T is of restricted weak-type (1, 1); that is, for every measurable set,

‖TχE‖L1,∞(v) . ϕp0,1(‖v‖A1)v(E). (2.11)
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Proof. Let v ∈ A1 and let w = (Mf)1−p0v. Then, by (2.9) with p = 1 and the

fact that w ∈ Âp0 with ‖w‖Âp0 ≤ ‖v‖
1/p0
A1

, we have that

λvTf (y) ≤ λvMf (γy) + γp0−1y
p0

y

∫
{|Tf |>y}

(Mf(x))1−p0v(x) dx

.λvMf (γy) + γp0−1
ϕp0(‖w‖Âp0 )p0

y

(∫ ∞
0

(∫
{|f |>z}

(Mf(x))1−p0v(x) dx

)1/p0

dz

)p0
≤λvMf (γy) + γp0−1

ϕp0(‖w‖Âp0 )p0

y

(∫ ∞
0

z
1
p0
−1

(∫
{|f |>z}

v(x) dx

)1/p0

dz

)p0
≈λvMf (γy) + γp0−1

ϕp0(‖w‖Âp0 )p0

y
‖f‖

L
1, 1
p0 (v)

.

Therefore,

yλvTf (y) . yλvMf (γy) + γp0−1ϕp0(‖v‖
1/p0
A1

)p0‖f‖
L
1, 1
p0 (v)

.
1

γ
‖v‖A1‖f‖L1(v) + γp0−1ϕp0(‖v‖

1/p0
A1

)p0‖f‖
L
1, 1
p0 (v)

.
(1

γ
‖v‖A1 + γp0−1ϕp0(‖v‖

1/p0
A1

)p0
)
‖f‖

L
1, 1
p0 (v)

,

from which the result follows taking the infimum in γ > 0. �

Remark 2.12. In general, it is not true that if T satisfies the hypotheses of
Theorem 2.11, then T is of weak-type (1, 1). To see this, we consider the following
operator, which was introduced in [1],

Af(x) =

∥∥∥∥fχ(0,x)

x− ·

∥∥∥∥
L1,∞(0,1)

.

This operator plays an important role in connection with Bourgain’s return
time theorems. Now, it is immediate to see that, for every measurable set E,
AχE ≤ MχE, and hence A satisfies the same restricted inequalities as M . How-
ever A is not of weak-type (1, 1).

Theorem 2.13. Let T be a sublinear operator such that, for some p0 > 1 and

every v ∈ Âp0,

‖Tf‖Lp0,∞(v) ≤ ϕp0(‖v‖Âp0 )‖f‖Lp0,1(v),

with ϕp0 an increasing function on (0,∞). Then, for every 1 ≤ p < p0 and every

v ∈ Âp,
‖Tf‖Lp,∞(v) ≤ ϕp0,p(‖v‖Âp)‖f‖Lp,

p
p0 (v)

,

where

ϕp0,p(t) . t
1− p

p0ϕp0(Ct
p
p0 ). (2.12)
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Proof. The case p = 1 was already solved in Theorem 2.11. Let p > 1 and

v = (Mg)1−pu ∈ Âp, with u ∈ A1 and ‖u‖1/p
A1
≤ 2‖v‖Âp . Then, we observe that

w = (Mf)p−p0v =
(

(Mf)1−p0u
) p0−p
p0−1

(
(Mg)1−p0u

) p−1
p0−1

= v
p0−p
p0−1

1 v
p−1
p0−1

2 .

By hypothesis, for j = 1, 2, T : Lp0,1(vj) → Lp0,∞(vj) is bounded, with constant

less than or equal to ϕp0(‖vj‖Âp0 ) ≤ ϕp0(‖u‖
1/p0
A1

) and hence, by interpolation

T : Lp0,1(w)→ Lp0,∞(w) (2.13)

is bounded, with constant less than or equal to Cϕp0(‖u‖
1/p0
A1

).
Using this fact and (2.9), we obtain that

λvTf (y) ≤ λvMf (γy) + γp0−p
yp0

yp

∫
{|g|>y}

(Mf(x))p−p0v(x) dx

.λvMf (γy) + γp0−p
ϕp0(‖u‖

1/p0
A1

)p0

yp

(∫ ∞
0

(∫
{|f |>z}

(Mf(x))p−p0v(x) dx

)1/p0

dz

)p0
≤λvMf (γy) + γp0−p

ϕp0(C‖v‖
p/p0

Âp
)p0

yp

(∫ ∞
0

z
p
p0
−1

(∫
{|f |>z}

v(x) dx

)1/p0

dz

)p0
≈λvMf (γy) + γp0−p

ϕp0(C‖v‖
p/p0

Âp
)p0

yp
‖f‖p

L
p,
p
p0 (v)

,

and the result follows as in the proof of Theorem 2.11. �

Remark 2.14. The behavior of the extrapolation constant obtained in the pre-
vious theorem is sharp, since if we apply the result to the maximal operator we
have that ϕp0(t) = t and the same holds for ϕp0,p.

Since ‖χE‖
L
p,
p
p0 (u)

= ‖χE‖Lp,1(u), we obtain that, if 1 < p < p0, we can extrap-

olate restricted weak-type inequalities as follows:

Corollary 2.15. Let T be a sublinear operator satisfying that, for some p0 > 1

and every v ∈ Âp0,

T : Lp0,1(v) −→ Lp0,∞(v)

is bounded, with constant less than or equal to ϕp0(‖v‖Âp0 ), with ϕp0 an increasing

function on (0,∞). Then, with ϕp0,p as in (2.12), 1 < p < p0 and every v ∈ Âp,
T : Lp,1(v) −→ Lp,∞(v) (2.14)

is bounded, with constant less than or equal to C
p−1

ϕp0,p(‖v‖Âp).

Another consequence of our results is that, although we cannot, in general,
obtain the weak-type (1, 1) boundedness for T , we can extrapolate up to a space
quite near to L1(u):
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Corollary 2.16. Let T be a sublinear operator satisfying that, for some p0 > 1

and every v ∈ Âp0,

T : Lp0,1(v) −→ Lp0,∞(v)

is bounded, with constant less than or equal to ϕp0(‖v‖Âp0 ), and ϕp0 an increasing

function. Then, for every ε > 0 and every u ∈ A1,

T : L(logL)ε(u) −→ L1,∞
loc (u)

is bounded, with constant less than or equal to
C‖u‖

1− 1
p0

A1

ε
ϕ((‖u‖

1
p0
A1

).

Proof. Let 1 < p1 < p0. Then, by Corollary 2.15 and (2.10), we get that, for
every u ∈ A1,

T : L
1, 1
p1 (u) −→ L1,∞(u)

is bounded, with constant less than or equal to

ϕp1,1(‖u‖A1) .
1

p1 − 1
‖u‖

1− 1
p0

A1
ϕp0(‖u‖

1
p0
A1

).

Now, given ε > 0 and u ∈ A1, let us take p1 such that ε(p′1 − 1) = 2. Then, if
we write f = f0 + f1, where ‖f0‖∞ ≤ f ∗u(1), we obtain that

‖Tf1‖L1,∞(u) .
‖u‖

1− 1
p0

A1

p1 − 1
ϕp0(‖u‖

1
p0
A1

)

(∫ 1

0

f ∗u(t)1/p1t
1
p1
−1
dt

)p1
≤
‖u‖

1− 1
p0

A1

p1 − 1
ϕp0(‖u‖

1
p0
A1

)

(∫ 1

0

f ∗u(t)

(
1 + log+ 1

t

)ε
dt

)
×
(∫ 1

0

(
1 + log+ 1

t

)−ε(p′1−1)
dt

t

)p1/p′1
.
‖u‖

1− 1
p0

A1

ε
ϕp0(‖u‖

1
p0
A1

)‖f‖L(logL)ε(u).

Finally, using interpolation, we have that T is bounded on L
p0+p1

2 (u) with a

constant that can be also controlled by
‖u‖

1− 1
p0

A1

p1−1
ϕp0(‖u‖

1
p0
A1

), and hence

‖Tf0‖L1,∞
loc (u) . ‖Tf0‖

L
p0+p1

2 (u)
.
‖u‖

1− 1
p0

A1

p1 − 1
ϕp0(‖u‖

1
p0
A1

)‖f0‖
L
p0+p1

2 (u)

.
‖u‖

1− 1
p0

A1

ε
ϕp0(‖u‖

1
p0
A1

)‖f‖L1(u),

and the result follows. �
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3. From restricted weak-type to weak-type

Taking into account the results in (2.11) and (2.14) we are now interested in
studying when restricted weak-type implies weak-type. We shall consider two
cases: p = 1 and p > 1.

3.1. The case p = 1. In this case, we are interested in studying when the
following implication holds, for every u ∈ A1,

‖TχE‖L1,∞(u) . u(E),∀E =⇒ T : L1(u) −→ L1,∞(u).

We know that this is not true in general. However, it was proved in [4] that
for a quite big class of operators the above implication is true in the case u = 1.

Our goal now, is to prove that the same holds in the weighted setting if u ∈ A1.

Definition 3.1. Given δ > 0, a function a ∈ L1(Rn) is called a δ-atom if it
satisfies the following properties:

(i)
∫
Rn a(x) dx = 0, and

(ii) there exists a cube Q such that |Q| ≤ δ and supp a ⊂ Q.

Definition 3.2. (a) A sublinear operator T is (ε, δ)-atomic if, for every ε > 0,
there exists δ > 0 satisfying that

‖Ta‖L1+L∞ ≤ ε‖a‖1, (3.1)

for every δ-atom a.
(b) A sublinear operator T is (ε, δ)-atomic approximable if there exists a sequence
(Tn)n of (ε, δ)-atomic operators such that, for every measurable set E, |TnχE| ≤
|TχE| and, for every f ∈ L1 such that ‖f‖∞ ≤ 1, and for almost every x,

|Tf(x)| ≤ lim
n

inf |Tnf(x)|·

Examples: If

T ∗f(x) = sup
j∈N

∣∣∣∣ ∫
Rn
Kj(x, y)f(y) dy

∣∣∣∣,
with

lim
y→x
‖Kj(·, y)−Kj(·, x)‖L1+L∞ = 0,

then T ∗ is (ε, δ)-atomic approximable. In particular, standard maximal Calderón-
Zygmund operators are of this type. In general, T ∗f(x) = supn |Tnf(x)|, where
Tn is (ε, δ)-atomic, is (ε, δ)-atomic approximable and the same holds for Tf(x) =(∑

n |Tnf(x)|q
)1/q

, with q ≥ 1 (see [4] for other examples).

To formulate our main result, we first need the following definitions:

Definition 3.3. Given δ > 0, we say that Fδ is a δ-net if

Fδ = {Qj : |Qj| = δ,Qj are pairwise disjoint, ∪Qj = Rn}.
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Definition 3.4. A set E is said to be a δ-union of cubes, if E = ∪iQ̃i where, for
every i, there exists j such that Q̃i ⊂ Qj, with Qj ∈ Fδ, Fδ a δ-net, and every

Qj ∈ Fδ contains at most one Q̃i.
Finally, if E is a δ-union of cubes for some δ > 0, we write E ∈ F .

Theorem 3.5. Let T be a sublinear operator (ε, δ)-atomic approximable and let
u ∈ A1. Then, if there exists Cu > 0 such that, for every measurable set E,

‖TχE‖L1,∞(u) ≤ Cuu(E),

we have that

T : L1(u) −→ L1,∞(u)

is bounded, with constant 2nCu‖u‖A1.

Proof. First of all let us assume that T is (ε, δ)-atomic. Let N ∈ N and let us
consider uN = min(u,N). Let f ∈ L1 be a positive function such that ‖f‖∞ ≤ 1
and, given ε > 0, let us consider a δ-net Fδ, where δ is the number associated to
ε by the property that T is (ε, δ)-atomic.

Given Qi ∈ Fδ, let fi = fχQi . Then,∫
Rn
fi(x) dx ≤ |Qi|.

For each i, we can find a finite collection of cubes {Qi,j}j such that Qi = ∪jQi,j,

|Qi,j| =
∫
Rn
fi(x) dx =

∫
Qi

f(x) dx,

and
∑

j χQi,j ≤ 2n. Now, let us take one Q̃i, among these cubes, such that

u(Q̃i)

|Q̃i|
= min

j

u(Qi,j)

|Qi,j|
.

Then, it is clear that the function gi = fi − χQ̃i is a δ-atom and

‖gi‖1 ≤
∫
Qi

|f(x)| dx+ |Q̃i| = 2

∫
Qi

|f(x)| dx.

Now, f =
∑

i fi =
∑

i gi + χE, where E = ∪Q̃i ∈ F . Then, by sublinearity,
|Tf | ≤

∑
i |Tgi|+ |TχE| and therefore, for every 0 < α < 1,

(Tf)∗uN (t) ≤
(∑

i

|Tgi|
)∗
uN

(αt) + (TχE)∗un((1− α)t)

≤
(∑

i

|Tgi|
)∗(αt

N

)
+ (TχE)∗u((1− α)t).
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On the other hand, using the (ε, δ) property on each δ-atom gi, we obtain that(∑
i

|Tgi|
)∗(αt

N

)
≤ N

αt

∫ αt
N

0

(∑
i

|Tgi|
)∗

(s) ds ≤ N

αt

∑
i

∫ αt
N

0

(Tgi)
∗(s) ds

≤ max
(N
αt
, 1
)
ε
∑
i

‖gi‖1 ≤ 2 max
(N
αt
, 1
)
ε‖f‖1.

Consequently,

(Tf)∗uN (t) ≤ 2 max
(N
αt
, 1
)
ε‖f‖1 + (TχE)∗u((1− α)t)

≤ 2 max
(N
αt
, 1
)
ε‖f‖1 +

Cu
(1− α)t

u(E),

and, since,

u(E) =
∑
i

u(Q̃i) =
∑
i

u(Q̃i)

|Q̃i|
|Q̃i| =

∑
i

u(Q̃i)

|Q̃i|

∫
Qi

f(x) dx

≤
∑
i

u(Q̃i)

|Q̃i|

∑
j

∫
Qi,j

f(x) dx ≤
∑
i,j

u(Qi,j)

|Qi,j|

∫
Qi,j

f(x) dx

≤ ‖u‖A1

∑
i,j

∫
Qi,j

f(x) u(x) dx ≤ 2n‖u‖A1‖f‖L1(u),

we obtain that

(Tf)∗uN (t) ≤ 2 max
(N
αt
, 1
)
ε‖f‖1 +

2nCu‖u‖A1

(1− α)t
‖f‖L1(u).

Letting first ε tend to zero, then α → 0 and finally N → ∞, we get the result
for the operator T .

To finish, if T is (ε, δ)-atomic approximable and (Tm)m is the corresponding
sequence of (ε, δ)-atomic operators given in Definition 3.2, then

t(TmχE)∗u(t) ≤ t(TχE)∗u(t) ≤ Cuu(E),

and hence, t(Tmf)∗u(t) ≤ 2nCu‖u‖A1‖f‖L1(u), for every positive function f such
that ‖f‖∞ ≤ 1. Since |Tf(x)| ≤ limm inf |Tmf(x)|, we obtain the result. �

Remark 3.6. Observe that we have proved that, if an arbitrary weight u sat-
isfies ‖TχE‖L1,∞(u) ≤ Cuu(E), for every measurable set and T is (ε, δ)-atomic
approximable, then

T : L1(Mu) −→ L1,∞(u)

is bounded, with constant 2nCu.

Corollary 3.7. Let T be a sublinear (ε, δ)-atomic approximable operator satisfy-

ing that, for some p0 > 1 and every v ∈ Âp0,

T : Lp0,1(v) −→ Lp0,∞(v)
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is bounded, with constant less than or equal to ϕp0(‖v‖Âp0 ). Then, for every

v ∈ A1,

T : L1(v) −→ L1,∞(v),

with constant less than or equal to C‖v‖
2− 1

p0
A1

ϕp0(‖v‖
1/p0
A1

).

3.2. The case p > 1. Analyzing the results obtained in the previous sections, it
is natural to ask about the relation between the fact that an operator T satisfies

that, for every u ∈ Âp,
T : Lp,1(u) −→ Lp,∞(u) (3.2)

is bounded and that, for every u ∈ Ap,
T : Lp(u) −→ Lp,∞(u) (3.3)

is bounded.
Clearly, both conditions are the same if p = 1. On the other hand, for p > 1,

(3.3) cannot imply, in general, (3.2) since it is known that we cannot extrapolate
up to p = 1 from the last condition, and we can do it from the first. Hence, it
seems natural to think that (3.2) is a stronger condition than (3.3). This will be
the content of our next theorem, following the next three lemmas.

Lemma 3.8. Let 0 < θ < 1. If u = (Mh)θ(1−p)u0 ∈ Ap, with u0 ∈ A1 then, for
every positive locally integrable function F ,

v = u(MF )(1−θ)(1−p) ∈ ARp with ‖v‖ARp . ‖u0‖1/p
A1
,

and, for every measurable function g,

g∗u(t) ≤ g∗v

(( qt

‖F‖p(1−q)Lp,1(v)‖v‖
p(1−q)
ARp

)1/q
)
,

with q = 1 + (1−θ)(1−p)
p

.

Proof. The first part of the lemma follows by interpolation as in (2.13). On the
other hand,

λug (y) =

∫
{g>y}

u(x) dx =

∫
{g>y}

v(x)((MF )(x))(1−θ)(p−1) dx

≤
∫ λvg(y)

0

[t1/p(MF )∗v(t)]
(1−θ)(p−1)t

(1−θ)(1−p)
p dt

≤ 1

q
‖v‖(1−θ)(p−1)

ARp
λvg(y)1+

(1−θ)(1−p)
p ‖F‖(1−θ)(p−1)

Lp,1(v)

=
1

q
‖v‖p(1−q)

ARp
‖F‖p(1−q)Lp,1(v)λ

v
g(y)q,

and hence, the result follows. �
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Lemma 3.9. Let p > 1. If for every v ∈ Âp,

‖Tf‖Lp,∞(v) ≤ ϕ(‖v‖Âp)‖f‖Lp,1(v),

with ϕ an increasing function on (0,∞) then, for every u = u0u
1−p
1 ∈ Ap, u0, u1 ∈

A1, there exists q ∈ [1
p
, 1), such that

‖Tf‖Lpq,∞(u) . ‖u0‖
1−q
pq

A1
ϕ(C‖u0‖1/p

A1
)‖f‖Lpq,q(u).

Moreover,

1− q ≈ 1

p′‖u1‖A1

. (3.4)

Proof. Let u = u0u
1−p
1 , with u0, u1 ∈ A1. Then, there exists a locally integrable

function h such that u1 ≈ (Mh)θ(1−p), with 0 < θ < 1 and ‖u1‖A1 ≈ 1
1−θ .

By the previous lemma, taking q = 1 + (1−θ)(1−p)
p

and F = f , and using

interpolation as in (2.13), we have that

t
1
pq (Tf)∗u(t) .

(
‖f‖p(1−q)Lp,1(v)‖v‖

p(1−q)
ARp

) 1
pq
ϕ(C‖u0‖1/p

A1
)‖f‖Lp,1(v)

. ‖u0‖
1−q
pq

A1
ϕ(C‖u0‖1/p

A1
)‖f‖

1
q

Lp,1(v).

Now, since

‖f‖Lp,1(v) ≈
∫ ∞

0

(∫
{f>z}

u(x)((Mf)(x))p(q−1) dx

)1/p

dz

≤
∫ ∞

0

zq−1λuf (z)1/pdz ≈ ‖f‖qLpq,q(u),

we get the result. �

Lemma 3.10. Let 0 < q0, q1 ≤ 1 < p0 < p1 < ∞, and let T be a sublinear
operator such that

T : Lpj ,qj(u) −→ Lpj ,∞(u),

is bounded, with constant less than or equal to Mj, with j = 0, 1. Then, for every
0 < θ < 1 and 1

p
= 1−θ

p0
+ θ

p1
,

T : Lp(u) −→ Lp,∞(u)

is bounded, with ‖T‖Lp(u) . BM1−θ
0 M θ

1 , where

B =

(
p0(p− q0)

q0

(
p− p0

)) p−q0
pq0

+

(
p1(p− q1)

q1(p1 − p)

) p−q1
pq1

+
(p1

q1

)1/q1
.
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Proof. This is a classical interpolation result and the boundedness can be found
in [2, Theorem 5.3.2] but, for us, the most important part is the behavior of the
constant, which does not explicitly appear in classical books. Clearly, we have
that

T : (Lp0,q0(u), Lp1,q1(u))θ,∞ −→ (Lp0,∞(u), Lp1,∞(u))θ,∞,

with constant less than or equal to M1−θ
0 M θ

1 . Hence, everything will follow if we
prove:

(i) ‖f‖Lp,∞(u) ≤ 2‖f‖(Lp0,∞(u), Lp1,∞(u))θ,∞ .

(ii) ‖f‖(Lp0,q0 (u), Lp1,q1 (u))θ,∞ ≤ CB‖f‖Lp(u), with a uniform constant C.

The proof of (i) is easy and we omit it. To prove (ii), let f ∈ Lp(u) and given
t > 0, let γ = p0p1

p1−p0 and let us write f = f0 + f1, with f0 = fχ{|f |>f∗u(tγ)}. Then,

K(t, f ;Lp0,q0(u), Lp1,q1(u)) ≤ ‖f0‖Lp0,q0 (u) + t‖f1‖Lp1,q1 (u).

Now, by Hölder’s inequality,

‖f0‖Lp0,q0 (u) ≤
(∫ tγ

0

f ∗u(s)q0s
q0
p0
ds

s

)1/q0

≤
[

p− q0

q0

(
p
p0
− 1
)] p−q0pq0

tθ‖f‖Lp(u),

and

‖f1‖Lp1,q1 (u) =

(∫ ∞
0

f ∗u(s+ tγ)q1s
q1
p1
ds

s

)1/q1

≤ f ∗u(tγ)

(∫ tγ

0

s
q1
p1
−1
ds

)1/q1

+

(∫ ∞
tγ

f ∗u(s)q1s
q1
p1
−1
ds

)1/q1

= I + II.

Now,

I ≤
(p1

q1

)1/q1
f ∗u(tγ)t

γ
p1 =

(p1

q1

)1/q1
t
γ
p f ∗u(tγ)t

γ
(

1
p1
− 1
p

)
≤
(p1

q1

)1/q1
tθ−1‖f‖Lp(u),

and to estimate II, we proceed as for f0, and obtain

II ≤
[

p− q1

q1

(
p
p1
− 1
)] p−q1pq1

tθ−1‖f‖Lp(u),

from which the result follows. �

Theorem 3.11. Let 1 < p <∞ and let T be a sublinear operator such that, for

every v ∈ Âp,
T : Lp,1(v) −→ Lp,∞(v)
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is bounded, with constant ϕ(‖v‖Âp), and ϕ an increasing function on (0,∞).

Then, for every u ∈ Ap,
T : Lp(u) −→ Lp,∞(u)

is bounded, with constant less than or equal to

B(u) .

(
ϕ(C‖u‖2/p

Ap
)

p− 1

)
inf
u0,u1

(
‖u1‖

p−1
p

A1

(
1 + log+A(u, u0)

) p−1
p

)
,

where the infimum is taken among all possible decompositions u = u0u
1−p
1 , u0, u1 ∈

A1 and

A(u;u0) = ‖u0‖A1

(
ϕ(‖u0‖1/p

A1
)

ϕ(C‖u‖2/p
Ap

)

) p
p−1

.

In particular,

B(u) .

(
1

p− 1

)
‖u‖

1
p

Ap

(
1 + log+ ‖u‖Ap

) p−1
p ϕ(C‖u‖2/p

Ap
). (3.5)

We recall that the above estimates of B(u) are for p near 1.

Proof. By Lemma 3.9 we have that, given u = u0u
1−p
1 ∈ Ap, with uj ∈ A1, there

exists 1
p
≤ q < 1 such that

T : Lpq,q(u) −→ Lpq,∞(u)

is bounded, with constant less than or equal to C‖u0‖
1−q
pq

A1
ϕ(C‖u0‖1/p

A1
).

Now, by hypothesis and using the fact that ‖u‖Âp . ‖u‖
2/p
Ap

we have that, for

every measurable set E,

‖TχE‖Lp,∞(u) ≤ ϕ(‖u‖2/p
Ap

)u(E)1/p,

and using Theorem 1.1 we obtain that, for every p < r <∞,

T : Lr,1(u) −→ Lr,∞(u),

with norm less than or equal to C
r−1

ϕ(C‖u‖2/p
Ap

). Therefore, by Lemma 3.10,

T : Lp(u) −→ Lp,∞(u)

is bounded, with norm less than or equal to

B(u) .

[(
1

1− q

) p−q
pq

+

(
r

r − p

) p−1
p

+ r

]
(r − 1)−α

× ‖u0‖
1−q
pq

(1−α)

A1
ϕ(C‖u0‖1/p

A1
)1−αϕ(C‖u‖2/p

Ap
)α, (3.6)

where, 1− q < α < 1 and r > p satisfy

1− α
pq

+
α

r
=

1

p
.
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In fact, we shall take r < r0 for some fixed r0 <∞ big enough, and hence

α

(
1

pqr0

− 1

pq

)
< α

(
1

r
− 1

pq

)
=

1

p
− 1

pq
=

1

p

(
1− 1

q

)
.

Thus, for some small enough constant c0, we can take any α such that α ≥
c0(1

q
− 1). On the other hand,

r

r − p
=

αq

(1− α)(1− q)
≤ 1

(1− α)(1− q)
,

and (
1

1− q

) p−q
pq

.

(
1

1− q

) p−1
p

.

Now, by (3.4) and (3.6), we obtain that

B(u) . inf
c0(p−1)<α<1

(
p′‖u1‖A1

1− α

) p−1
p

(p′)α‖u0‖
1−q
pq

(1−α)

A1
ϕ(‖u0‖1/p

A1
)1−αϕ(C‖u‖2/p

Ap
)α;

and since
1− q
pq

(1− α) ≤ 1− q
pq
≤ 1− 1

p
,

we get that

B(u) .

(
1

p− 1

)2− 1
p

‖u1‖
p−1
p

A1
ϕ(C‖u‖2/p

Ap
)

(
inf

c0(p−1)<α<1

A(u, u0)1−α

1− α

) p−1
p

.

Computing the infimum we obtain the result. Finally, (3.5) follows since we
can always find a decomposition u = u0u

1−p
1 such that ‖u0‖A1 ≤ ‖u‖Ap and

‖u1‖p−1
A1
≤ ‖u‖Ap . �

Remark 3.12. If, in the above theorem, we assume that, for every v ∈ ARp ,

T : Lp,1(v) −→ Lp,∞(v)

is bounded, with constant ϕ(‖v‖ARp ) (as it happens in all the examples in Section

4), then using (2.1) and the same proof as before, one can see that the estimate
in (3.5) can be improved as follows

B(u) .

(
1

p− 1

)
‖u‖

1
p

Ap

(
1 + log+ ‖u‖Ap

) p−1
p ϕ(C‖u‖1/p

Ap
). (3.7)

An estimate of this kind, where a logarithmic factor appears, has been obtained
in [15] for the particular case of square functions.

Now, recently, the precise dependence on ‖u‖A2 of the norm of the Calderón-
Zygmund operators has attracted a lot of interest, and the following A2-conjecture
was formulated:

‖T‖L2(u) . ‖u‖A2 .
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This conjecture has been solved in [13]. In fact, it was proved in [19] that

‖T‖L2(u) . ‖u‖A2 + ‖T‖L2(u)→L2,∞(u) + ‖T ∗‖L2(u−1)→L2,∞(u−1),

but since u−1 ∈ A2 and T ∗ is again a Calderón-Zygmund operator, one can
conclude that to prove the A2-conjecture it is enough to prove that

‖T‖L2(u)→L2,∞(u) . ‖u‖A2 .

Therefore, if we could remove the logarithmic factor in (3.7), we would obtain
that

‖TχE‖L2,∞(u) ≤ ‖u‖AR2 u(E)1/2 =⇒ A2 − conjecture.

Also, we observe that, by Theorem 2.11 and the fact that ‖u‖AR2 . ‖u‖Â2
,

‖TχE‖L2,∞(u) ≤ ‖u‖AR2 u(E)1/2 =⇒ ‖TχE‖L1,∞(u) ≤ ‖u‖A1u(E),

while it was recently proved that the behavior of the constant of

T : L1,∞(u) −→ L1(u)

is not linear in ‖u‖A1 [18]. So, it is an interesting open problem to study whether
the following inequality is true, for every Calderón-Zygmund operator and every
measurable set E:

‖TχE‖L2,∞(u) . ‖u‖AR2 u(E)1/2.

4. Applications to weak-type (1, 1) estimates for classical
operators in Harmonic Analysis

It is clear from the standard proof that, if an operator T satisfies a good-λ
inequality

w({|Tf | > 3λ,Mf ≤ γλ}) ≤ Cwγ
αw({|Tf | > λ}),

then, for every w ∈ Â2,
T : L2,1(w)→ L2,∞(w)

is bounded, and therefore any Calderón-Zygmund operator and any Calderón-
Zygmund maximal operator satisfies the hypotheses of our theorems. However,
we have to mention that the proof using the good-λ inequality does not give good
estimates for the norm.

Square functions, g-function and the intrinsic square function: We refer
to the papers [21] and [16] for this part. Let Rn+1

+ = Rn × R+ and Γα(x) =
{(y, t) ∈ Rn+1

+ : |y − x| < αt}.
The classical square functions are defined as follows. If u(x, t) = Pt ∗ f(x) is

the Poisson integral of f , the Lusin area integral is defined by

Sαf(x) =

(∫
Γα(x)

|∇u(y, t)|2 dydt
tn−1

)1/2

,
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and the Littlewood-Paley g-function

g(f)(x) =

(∫ ∞
0

t|∇u(x, t)|2dt
)1/2

.

Also, for a function ϕ ∈ C∞(Rn) such that
∫
ϕ = 0, the continuous square

function is defined by

gϕf(x) =

(∫ ∞
0

|(ϕt ∗ f)(x)|2dt
t

)1/2

.

Finally, the intrinsic square function (introduced by M. Wilson in [21]) is de-
fined by

Gαf(x) =

(∫
Γα(x)

|Aαf(y, t)|2 dydt
tn+1

)1/2

,

where
Aαf(y, t) = sup

ϕ∈Cα
|(ϕt ∗ f)(y)|,

with Cα the family of functions ϕ supported in B(0, 1), such that
∫
ϕ = 0 and

|ϕ(x)− ϕ(x′)| < |x− x′|α, ∀x, x′.
It was proved in [21] that, if S is any of the Littlewood operators defined above,

it holds that
Sf(x) . Gαf(x),

and hence it is enough to study the boundedness of Gα. In [16] it was proved
that, for every w ∈ A3,

‖G1f‖L3(w) . ‖w‖1/2
A3
‖f‖L3(w),

and using the extrapolation of Rubio de Francia, it was obtained that, for every
w ∈ Ap, p > 1,

‖Gαf‖Lp(w) . ‖w‖
max( 1

2
, 1
p−1

)

A3
‖f‖Lp(w).

Modifying slightly their proof, we obtain the corresponding result for p = 1.
We shall follow the notation in [16] and we shall only present the modifications.

Theorem 4.1. For every w ∈ Â3,

‖Gαf‖L3,∞(w) . ‖w‖5/2

Â3
‖f‖L3,1(w).

Proof. Let Rn
i (1 ≤ i ≤ 2n) be the n-dimensional quadrants in Rn and let QN

i be
the dyadic cube adjacent to the origin of side length 2N that is contained in Rn

i .
Then, by [16, (5.7) and (5.8)], we have that

‖Gαf‖L3,∞(w;Rni ) . lim
N→∞

‖Gαf‖L3,∞(w;QNi )

. ‖Mf‖L3,∞(w) +
2n∑
i=1

lim
N→∞

‖(AN,i45 f)1/2‖L3,∞(w;Rni ),
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where

AN,i45 f(x) =
∑
j,k

(
1

|45Qj,k|

∫
45Qj,k

|f(y)|dy
)2

χQj,k(x),

with {Qj,k}j,k a particular family of cubes contained in QN
i satisfying the following

fundamental property: there exist measurable sets Ej,k ⊂ Qj,k such that {Ej,k}j,k
are pairwise disjoint and |Qj,k|/|Ej,k| ≤ 2.

Since ‖Mf‖L3,∞(w) . ‖w‖Â3
‖f‖L3,1(w), it will be enough to prove that, for every

N ,

‖(AN,i45 f)1/2‖L3,∞(w;QNi ) . ‖w‖
5/2

Â3
‖f‖L3,1(w).

Let AN45 be one of these AN,i45 and QN = QN
i . By duality, let us take h ≥ 0 such

that ‖h‖L3,1(w) = 1. Then we have to prove (see [16, (5.4)]), that∑
j,k

(
1

|45Qj,k|

∫
45Qj,k

|f(y)|dy
)2 ∫

Qj,k

h(x)w(x) dx . ‖w‖5
Â3
‖f‖2

L3,1(w).

Let c > 0 such that, for every x ∈ Qj,k, there exists another cube Q̃j,k centered

at x such that Qj,k ⊂ Q̃j,k ⊂ cQj,k. Then, since |Qj,k|/|Ej,k| ≤ 2, it holds that
|cQj,k|/|Ej,k| ≤ 2cn and thus w(cQj,k)/w(Ej,k) . ‖w‖3

Â3
and hence(

1

|45Qj,k|

∫
45Qj,k

|f(x)|
)2 ∫

Qj,k

h(x)w(x) dx

.‖w‖3
Â3

(
1

|45Qj,k|

∫
45Qj,k

|f(x)|
)2(

1

w(cQj,k)

∫
Qj,k

h(x)w(x) dx

)
w(Ej,k)

.‖w‖3
Â3

(
1

|45Qj,k|

∫
45Qj,k

|f(x)|
)2(

1

w(Q̃j,k)

∫
Q̃j,k

h(x)w(x) dx

)
w(Ej,k)

.‖w‖3
Â3

∫
Ej,k

Mf(x)2(M c
wh)(x)w(x) dx,

where

M c
w(h)(x) = sup

Qx

1

w(Qx)

∫
Qx

|h(x)|w(x) dx,

being Qx cubes centered at x. Summing in j, k and using that {Ej,k}j,k are
pairwise disjoint, we obtain that∫

QN
AN45f(x)h(x)w(x) dx . ‖w‖3

Â3

∫
Rn
Mf(x)2(M c

wh)(x)w(x) dx

.‖w‖3
Â3
‖(Mf)2‖L3/2,∞(w)‖M c

wh‖L3,1(w) . ‖w‖5
Â3
‖f‖2

L3,1(w).

Consequently,

‖(AN45f)1/2‖L3,∞(w;QN ) . ‖w‖
5/2

Â3
‖f‖L3,1(w),

as we wanted to prove. �
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As a consequence of our extrapolation results we can conclude that (see [21]):

Corollary 4.2. For every w ∈ A1,

Gα : L1(w) −→ L1,∞(w)

is bounded.

Proof. The result will follow by Corollary 3.7 as soon as we prove that Gα is
(ε, δ)-atomic approximable.

For every M ∈ N, let

ΓMα (x) =
{

(y, t) ∈ Rn+1
+ :

1

M
≤ t ≤M, |y − x| < αt

}
,

and set

GM
α f(x) =

(∫
ΓMα (x)

|Aαf(y, t)|2 dydt
tn+1

)1/2

.

Then, GM
α is (ε, δ)-atomic. To see this, let us take a δ-atom a and let us observe

that, for every ϕ ∈ Cα,

|(ϕt ∗ a)(y)| =
∣∣∣∣ ∫

Q

ϕt(y − z)a(z)dz

∣∣∣∣ =

∣∣∣∣ ∫
Q

(ϕt(y − z)− ϕt(y − yQ))a(z)dz

∣∣∣∣,
where yQ is the center of the cube Q. Therefore,

|(ϕt ∗ a)(y)| ≤ δα
1

tn+α
‖a‖1,

and hence

|Aαf(y, t)| . δα
1

tn+α
‖a‖1,

from which it follows that

‖GM
α f‖L1+L∞ ≤ ‖GM

α f‖L∞ . δα‖a‖1CM ,

and hence, by choosing δ appropriately we obtain (3.1) and the result follows. �
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