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Abstract. We present two extrapolation methods for multi-sublinear operators
that allow us to derive estimates for general functions from the corresponding
estimates on characteristic functions. Of these methods, the first is applicable
to general multi-sublinear operators while the second requires working with the
so-called (ε, δ)-atomic operators. Among the applications, we discuss some new
endpoint estimates for the bilinear Hilbert transform.

1. Introduction

For a variety of important operators in analysis, it is easier to derive a restricted
type estimate, that is an estimate on characteristic functions of measurable sets,
than to derive an estimate for general functions. It is therefore interesting to ask
what kind of estimates can be obtained from a known restricted type estimate. This
is, for example, the case for the Carleson operator [5]

Sf(x) = sup
n
|(Dn ∗ f)(x)| ,

where f ∈ L1(T) and Dn is the Dirichlet kernel on T = {z ∈ C; |z| = 1}, for which
the following estimate is known (see [11])

‖S(χE)‖L1,∞ ≤ C D(|E|)
with D(t) = t(1 + log+ 1

t
). Another example of this sort appears in the case of the

bilinear Hilbert transform

H(f, g)(x) =
1

π
lim
ε→0

∫
|t|≥ε

f(x− t)g(x+ t)
dt

t
,

for which the following restricted type inequality has been proved in [3] (see also
[4])∣∣{x ∈ R : |H(χE, χF )(x)| > λ

}∣∣ ≤ C

λ2/3

(
1 + log+ 1

λ

)4/3(
|E||F |min(|E|, |F |)

)1/3

,
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for all λ > 0. Writing the last expression in terms of the decreasing rearrangement
of H(χE, χF ), one can easily see that

‖H(χE, χF )‖X ≤ CD(|E|, |F |) , (1.1)

whereD(s, t) =
(
stmin(s, t)

)1/2
(

1+log+ 1
stmin(s,t)

)2

andX is the weak type weighted

Lorentz space Λ2/3,∞(w) defined by

‖f‖Λ2/3,∞(w) = sup
t>0

W (t)3/2f ∗(t),

with W (t) =
∫ t

0
w(s)ds and, in this case, W (t) = t(1 + log+ 1/t)−4/3. In (1.1),

the variables can be separated since for any α, β ∈ [0, 1] with α + β = 1, we have
D(s, t) ≤ D1(s)D2(t) where

D1(s) = s
1+α

2

(
1 + log+ 1

s

)2

, D2(t) = t
1+β

2

(
1 + log+ 1

t

)2

. (1.2)

The preceding two examples provide the main motivation to investigate the
boundedness properties of linear or multilinear operators for which restricted es-
timates are known. In the linear or sublinear case we assume that T satisfies

‖T (χE)‖X ≤ CD(|E|) (1.3)

for any measurable set E, |E| < ∞, where D is increasing with D(0) = 0 and X
is a general quasi-Banach lattice space. Analogously, in the bilinear or bi-sublinear
case, T may satisfy an estimate of the form

‖T (χE1 , χE2)‖X ≤ CD(|E1|, |E2|), (1.4)

whereD is a function which is increasing in both variables withD(0, ·) = D(·, 0) = 0.
The analysis of m-linear or m-sublinear operators for m ≥ 3 presents no significant
differences and thus for simplicity in our exposition we may focus on the case m = 2.

In order to introduce the different approaches that we study in the present paper,
we give an overview of the existing results in the linear (or sublinear) case. This
study is motivated by the need to understand the a.e. convergence of Fourier series
and thus the boundedness of the Carleson operator on spaces near L1.

When X = L1,∞ and D is a concave function it is shown in [14] that if T satisfies
(1.3) then T maps B∗D (see [14] for the precise definition of this space) to L1,∞.
The proof of this extrapolation result is based on decomposing each function f into
simple functions to which the initial hypotheses are applied. Here it is worthwhile to
point out that as X is a quasi-Banach space, additional issues appear since one needs
to control the quasi-norm of a linear combination of functions. In this particular
case one has that if {gj}j is a sequence of functions with ‖gj‖L1,∞ ≤ 1 then for any
{cj}j ⊂ R ∥∥∥∑

j

cj gj

∥∥∥
L1,∞
.
∥∥{cj}j∥∥`(log `)

. (1.5)

These ingredients appear in the adaptation of this scheme to the m-linear setting.
The method introduced in [14] applied to the Carleson operator S with D(t) =
t (1 + log+ 1

t
), gives that the Fourier series of each function in L (logL) (log logL)
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converges a.e.; this follows from the corresponding result in B∗D since the latter space
contains the former, see [14] for the precise details.

Concerning the a.e. convergence of Fourier series and the boundedness of the
Carleson operator, a closer space to L1 was obtained by Antonov in [1], namely,
L (logL) (log log logL). The ideas in [1] have been exploited in [13] (see also [9] for
related results) to obtain that Antonov’s result is a particular example of a general
extrapolation result: the method developed in [14] can be improved when applied
to maximal operators T∗f(x) = supj |Kj ∗ f(x)| where Kj ∈ L1 (similar results are
obtained for variable kernels, see [13], [9]). A further extension of these techniques is
introduced in [6] and [7] where a more general class of operators, called (ε, δ)-atomic
(see the definition below), is considered. It is shown in [6] that if an (ε, δ)-atomic
operator T satisfies (1.3), which is an estimate for characteristic functions, then the
same estimate holds for any function f ∈ L1 with ‖f‖∞ ≤ 1:

‖Tf‖X ≤ CD(‖f‖1). (1.6)

This means that taking (1.6) as the initial assumption (note that this with f = χE
is (1.3)), in place of decomposing f into simple functions as in [14], one can use more
general bounded functions. This was used in [6] to give another proof of Antonov’s
result: The Carleson operator is (ε, δ)-atomic and (1.6) holds with X = L1,∞ and
D(t) = t (1 + log+ 1

t
). The key idea in [1] relies on decomposing each function f

according to the level sets {dk−1 < |f | ≤ dk} with dk = 22k . Again, to deal with
linear combinations in X one uses (1.5). This allows one to obtain an estimate from
L(logL) (log log logL) to L1,∞. Let us observe that having taken the more “natural”
sequence dk = 2k would have led us to the smaller space L(logL) (log logL).

Motivated by the aforementioned results, in the present paper we extend the two
approaches outlined above to the case of m-linear or m-sublinear operators. We first
extend the approach in [14]: for general operators satisfying (1.4) we decompose the
given functions into simple functions; the need to control the quasi-norm of linear
combinations of simple functions requires a substitute for (1.5). Note that in this
case it is natural to consider target spaces X that are quasi-Banach spaces below L1

(this is the case for the bilinear Hilbert transform). We use the concept introduced
by Turpin [15] of the Galb(X) of a quasi-Banach space X defined as follows

Galb(X) =
{

(cn)n;
∑
n

cnfn ∈ X, whenever ‖fn‖X ≤ 1
}
,

endowed with the norm ‖c‖Galb(X) = sup‖fn‖X≤1

∥∥∑
n cnfn

∥∥
X

. This Galb space was
studied in [7] for the case of the weighted Lorentz spaces X = Λq(w), for 0 < q <∞,
and also for the weak spaces X = Λq,∞(w).

Next, we introduce (ε, δ)-atomic operators in the multi-variable setting. For these,
estimates for characteristic functions of the form (1.4) can be extended to L1 func-
tions bounded by 1 (as in (1.6)). Thus we take as initial assumption the more
general estimate

‖T (f1, . . . , fm)‖X ≤ CD(‖f1‖1, . . . , ‖fm‖1),

for all functions (f1, . . . , fm) ∈ L1 × · · · × L1 with ‖fj‖∞ ≤ 1 for j = 1, . . . ,m.
By decomposing general functions not only into sums of simple functions but also
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into combinations of bounded functions, better results can be obtained following
the ideas in [6] and [7]. Our main motivation in the study of this problem is to
obtain estimates for the bilinear Hilbert transform. For this purpose, it is natural
to consider quasi-Banach spaces with Galb(X) = `q with 0 < q < 1 and functions
D1, D2 like in (1.2).

We denote by L0(Rn) the class of Lebesgue measurable functions that are finite
a.e. and by g∗(t) = inf {s : µg(s) ≤ t} the decreasing rearrangement of g ∈ L0,
where µg(y) = |{x ∈ R : |g(x)| > y}| is the distribution function of g with respect
to the Lebesgue measure (we refer the reader to [2] for further information about
distribution functions and decreasing rearrangements). For a measurable set E, χE
denotes its characteristic function and |E| its Lebesgue measure. For simplicity of
presentation, we say that an operator T is sublinear if |T (λf)| = |λ| |Tf | and∣∣∣T(∑

n∈N

fn

)∣∣∣ ≤∑
n∈N

|Tfn|

for all functions f , fn and λ ∈ R. If we only have that |T (f1 + f2)| ≤ |Tf1| +
|Tf2|, then to obtain our conclusions we need to assume an additional boundedness
condition on our operator T such as

T : L1 + L∞ −→ L0 ,

or assume some density property of the spaces in question.
For m-linear or m-sublinear operators we state and prove our results in the case

m = 2, since the case with more variables only presents trivial notational changes.
Given a function D(s, t), increasing in each variable with D(0, ·) = D(·, 0) = 0,

we write dD = dD(s, t) for the measure in [0,∞)2 defined by

dD
(
[0, a)× [0, b)

)
=

∫∫
[0,a)×[0,b)

dD(s, t) = D(a, b).

Note that if D is smooth then dD(t, s) = ∂t∂sD(t, s) dt ds.

2. Decompositions into simple functions and estimates on Lorentz
spaces

Given an increasing function D such that D(0) = 0 and 0 < q <∞, the Lorentz
space Λq(dD) is given by

‖f‖Λq(dD) =
(∫ ∞

0

f ∗(t)q dD(t)
) 1
q ≈

(∫ ∞
0

λqD
(
µf (λ)

) dλ
λ

) 1
q
.

It is known that this space is quasi-Banach if and only if the function D satisfies
the ∆2-condition; that is D(2 t) ≤ CD(t) for some constant C > 0 and for every
t > 0, see [8].

2.1. Sublinear case. We start with the sublinear case which already contains many
of the ideas that will be used in the m-linear setting. We have the following result.



MULTILINEAR EXTRAPOLATION AND THE BILINEAR HILBERT TRANSFORM 5

Theorem 2.1. Let T be a sublinear operator, let X be a quasi-Banach lattice space
and let D be an increasing function such that D(0) = 0. Assume that, for any
measurable set E with |E| <∞, we have

‖T (χE)‖X ≤ C D(|E|). (2.1)

Then, the following are valid:

(a) If Galb(X) = `1, then

T : Λ1(dD) −→ X.

(b) If Galb(X) = `p with 0 < p < 1, then

T : Λp(dDp) −→ X.

(c) If Galb(X) = ` (log `)α with α > 0, then

T : Λ∗α(dD) −→ X,

where Λ∗α(dD) is the subspace of Λ1(dD) defined by the functional

‖f‖Λ∗α(dD) =

∫ ∞
0

λD
(
µf (λ)

)(
1 + log+ ‖f‖Λ1(dD)

λD
(
µf (λ)

))α dλ
λ

= ‖f‖Λ1(dD)

∫ ∞
0

ϕα

(
λD
(
µf (λ)

)
‖f‖Λ1(dD)

)
dλ

λ

with ϕα(t) = t (1 + log+ 1/t)α.

We do not prove Theorem 2.1 here. In Theorem 2.6 below we obtain similar
results for bi-sublinear operators and the arguments in that proof can be easily
adapted in the proof of Theorem 2.1.

Remark 2.2. We notice that in (a) and (b) we do not “lose” information since
we may recover the initial assumption by applying the obtained estimate to char-
acteristic functions since ‖χE‖Λp(dDp) = D(|E|). More precisely, given X such that
Galb(X) = `p with 0 < p ≤ 1 then

‖T (χE)‖X . D(|E|), |E| <∞ ⇐⇒ T : Λp(dDp) −→ X.

The same occurs in (c) since

‖χE‖Λ∗α(dD) = D(|E|)
∫ 1

0

ϕα

(
λD(|E|)
D(|E|)

)
dλ

λ
≈ D(|E|),

and therefore

‖T (χE)‖X . D(|E|), |E| <∞ ⇐⇒ T : Λ∗α(dD) −→ X.

Remark 2.3. Let us observe that Theorem 2.1 part (a) (with D concave) is optimal
in the sense that one cannot expect a space bigger than Λ1(dD) valid for every
operator T satisfying (2.1): we take X = Λ1(dD) which is a Banach space, T = Id
and we observe that ‖T (χE)‖X = D(|E|).
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Example 2.4. Suppose that X is any Banach space and hence Galb(X) = `1. If
D(t) = t1/q then Λ(dD) = Lq,1 and we have that

‖T (χE)‖X . |E|1/q, |E| <∞ ⇐⇒ T : Lq,1 −→ X.

This is the best estimate one can obtain from the restricted type assumption on T .
Naturally, this conclusion may not be optimal if T itself maps the bigger space Lq

(when q ≥ 1) into X.

The method of Theorem 2.1 does not use any specific property of the operator T .
For instance, if we know that T is a supremum of a sequence of linear operators (as in
Moon’s theorem [12]) or even more generally, that T is atomic (see the corresponding
definition in the next section), then we are able to obtain a better conclusion. Let
us examine a few more examples using the previous method.

Example 2.5. In these examples we set D(t) = t.

• Let X = Lq,∞ with q > 1, hence X is a Banach space. Then, we have for any
sublinear operator T ,

‖T (χE)‖Lq,∞ . |E|, |E| <∞ ⇐⇒ T : L1 −→ Lq,∞.

We note that this equivalence can be obtained directly by working with simple
functions.

• Let X = Lq,∞ with 0 < q < 1, hence Galb(X) = `q. In this case Λq(dDq) = L1,q

and, for any sublinear operator T ,

‖T (χE)‖Lq,∞ . |E|, |E| <∞ ⇐⇒ T : L1,q −→ Lq,∞.

However, Moon’s theorem [12] says that under certain conditions on T , one obtains
that T maps L1 into Lq,∞ which is a stronger conclusion since L1,q $ L1 for
0 < q < 1.

• Let X = L1,∞, hence Galb(X) = ` log ` and Λ(dD) = L1. In this case we have
Λ∗1(dD) = B∗ϕ0

(see [14]) and thus

‖T (χE)‖L1,∞ . |E|, |E| <∞ ⇐⇒ T : Λ∗1(dD) −→ L1,∞.

Yet another comparison with Moon’s theorem yields that, under some conditions
on T , it is bounded from L1 into L1,∞ which is a stronger conclusion since

‖f‖L1 =

∫ ∞
0

λµf (λ)
dλ

λ
≤
∫ ∞

0

λµf (λ)

(
1 + log+ ‖f‖L1

λµf (λ)

)
dλ

λ
= ‖f‖Λ∗1(dD),

and hence, Λ∗1(dD) ⊂ L1. To see that this inclusion is proper we take

f(x) =
1

x log x (log log x)2
χ[ee,∞)(x).

We have that f ∈ L1 but one can easily see that ‖f‖Λ∗1(dD) = ∞. Thus, Λ∗1(dD)
is a proper subspace of L1.
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2.2. Bi-sublinear case. Before discussing a bi-sublinear extension of Theorem 2.1
we introduce some notation. Given a function of two variables D such that it is
increasing in each variable and D(0, ·) = D(·, 0) = 0, let ~Λp(dDp) be the function
space given by

‖(f1, f2)‖~Λp(dDp) =

∫ ∞
0

∫ ∞
0

f ∗1 (s1)p f ∗2 (s2)p dDp(s1, s2)

≈
∫ ∞

0

∫ ∞
0

sp1 s
p
2 D
(
µf1(s1), µf2(s2)

)p ds1 ds2

s1 s2

.

Notice that if D(s1, s2) = D1(s1)D2(s2) then dDp(s1, s2) = dDp
1(s1) dDp

2(s2) and
~Λp(dDp) = Λp(dDp

1)× Λp(dDp
2) since ‖(f1, f2)‖~Λp(dDp) = ‖f1‖Λp(dDp1) ‖f2‖Λp(dDp2).

Analogously, we introduce the function space ~Λ∗α(dD) given by the functional:

‖(f1, f2)‖~Λ∗α(dD) =

=

∫ ∞
0

∫ ∞
0

D
(
µf1(s1), µf2(s2)

)[
1+log+

‖(f1, f2)‖~Λ1(dD)

s1 s2D
(
µf1(s1), µf2(s2)

)]α ds1ds2

= ‖(f1, f2)‖~Λ1(dD)

∫ ∞
0

∫ ∞
0

ϕα

(
s1 s2D

(
µf1(s1), µf2(s2)

)
‖(f1, f2)‖~Λ1(dD)

)
ds1 ds2

s1 s2

,

with ϕα(t) = t (1 + log+ 1/t)α. In this case, if D(s1, s2) = D1(s1)D2(s2) we have

that Λ∗α(dD1)×Λ∗α(dD2) ↪→ ~Λ∗α(dD) since ‖(f1, f2)‖~Λ∗α(dD) ≤ ‖f1‖Λ∗α(dD1) ‖f2‖Λ∗α(dD2).

We now state a bi-sublinear extension of Theorem 2.1:

Theorem 2.6. Let T be a bi-sublinear operator and let X be a quasi-Banach space.
Let D be a two-variable function increasing in each variable with D(0, ·) = D(·, 0) =
0. Assume that for all measurable sets E1, E2 with |E1|, |E2| <∞, we have∥∥T (χE1 , χE2)

∥∥
X
. D(|E1|, |E2|). (2.2)

Then the following are valid:

(a) If Galb(X) = `1, then T : ~Λ1(dD) −→ X.

(b) If Galb(X) = `p with 0 < p < 1, then T : ~Λp(dDp) −→ X.

(c) If Galb(X) = ` (log `)α with α > 0, then T : ~Λ∗α(dD) −→ X.

As an immediate consequence of this result and the discussion above, in the
particular case D(s, t) = D1(s)D2(t), we obtain the following result.

Corollary 2.7. Let T be a bi-sublinear operator and let X be a quasi-Banach space.
Let D1, D2 be increasing functions that vanish at the origin. Assume that for all
measurable sets E1, E2 with |E1|, |E2| <∞ we have

‖T (χE1 , χE2)‖X . D1(|E1|)D2(|E2|). (2.3)

(a) If Galb(X) = `1, then T : Λ1(dD1)× Λ1(dD2) −→ X.

(b) If Galb(X) = `p with 0 < p < 1, then T : Λp(dDp
1)× Λp(dDp

2) −→ X.
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(c) If Galb(X) = ` (log `)α with α > 0, then T : Λ∗α(dD1)× Λ∗α(dD2) −→ X.

We point out that this corollary is also a consequence of the corresponding one-
variable result: we freeze one variable in T and apply Theorem 2.1 to the resulting
sublinear operator, then we freeze the other variable and apply again Theorem 2.1.

Proof of Theorem 2.6. Assume without loss of generality that f , g ≥ 0. By [14,
Lemma 4],

f(x) =
∑
k∈Z

∑
j≥1

2k χEk,j(x) a.e.; g(x) =
∑
k′∈Z

∑
j′≥1

2k
′
χFk′,j′ (x) a.e.,

where

|Ek,j| ≤ |{x : f(x) > 2k+j}| = µf (2
k+j),

and

|Fk′,j′ | ≤ |{x : g(x) > 2k
′+j′}| = µg(2

k′+j′).

Thus, using (2.2) we have

‖T (f, g)‖X ≤
∥∥∥ ∑
j,j′k,k′

2k 2k
′ ∣∣T (χEk,j , χFk′,j′ )

∣∣∥∥∥
X

≤
∥∥{2k 2k

′
D
(
µf (2

j+k), µg(2
j′+k′)

)}
j,j′,k,k′

∥∥
Galb(X)

.

We start with (a) and (b) in which case Galb(X) = `p with 0 < p ≤ 1. Then,

‖T (f, g)‖pX ≤
∑
k,k′∈Z

∑
j,j′≥1

2k p 2k
′ pD

(
µf (2

j+k), µg(2
j′+k′)

)p
.
∑
j,j′≥1

∫ ∞
0

∫ ∞
0

sp tpD
(
µf (s 2j), µg(t 2j

′
)
)p ds

s

dt

t

=
∑
j,j′≥1

2−j p 2−j
′ p

∫ ∞
0

∫ ∞
0

sp tpD
(
µf (s), µg(t)

)p ds
s

dt

t

.
∫ ∞

0

∫ ∞
0

sp tpD
(
µf (s), µg(t)

)p ds
s

dt

t
≈ ‖(f, g)‖p~Λp(dDp)

.

Let us establish (c) in which case Galb(X) = ` (log `)α with α > 0. Following [14],
we write ϕα(t) = t (1 + log+ 1/t)α and we observe that given a non-trivial sequence
of non-negative numbers a = {ak}k we have

‖a‖` (log `)α ≤
∑
k

ak

(
1 + log

‖a‖`1
ak

)α
= Nα(a).

We write Fj = 2−j f , Gj′ = 2−j
′
g and

βk,k′,j,j′ = 2k 2k
′
D(µf (2

j+k), µg(2
j′+k′)) = 2k 2k

′
D(µFj(2

k), µGj′ (2
k′)).

As in [14, p. 239] (there, the computations are done with α = 1 but the argument
adapts trivially to an arbitrary α > 0) we obtain

‖T (f, g)‖X . Nα({βk,k′,j,j′}k,k′,j,j′) . Nα
({
Nα({βk,k′,j,j′}k,k′)

}
j,j′

)
.
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Then, for any j, j′ ≥ 1,∑
k,k′

βk,k′,j,j′ =
∑
k,k′

2k 2k
′
D(µFj(2

k), µGj′ (2
k′)) .

∫ ∞
0

∫ ∞
0

s tD
(
µFj(s), µGj′ (t)

) ds dt
s t

≈ ‖(Fj, Gj′)‖~Λ1(dD) = 2−j 2−j
′‖(f, g)‖~Λ1(dD)

and

Nα({βk,k′,j,j′}k,k′) .
∑
k,k′

βk,k′,j,j′
(

1 + log
2−j 2−j

′ ‖(f, g)‖~Λ1(dD)

βk,k′,j,j′

)α
.
∫ ∞

0

∫ ∞
0

s tD
(
µFj(s), µGj′ (t)

)(
1 + log+

2−j 2−j
′ ‖(f, g)‖~Λ1(dD)

s tD
(
µFj(s), µGj′ (t)

) )αds dt
s t

= 2−j 2−j
′ ‖(f, g)‖~Λ∗α(dD).

Therefore,

‖T (f, g)‖X . Nα
({

2−j 2−j
′ ‖(f, g)‖~Λ∗α(dD)

}
j,j′

)
= ‖(f, g)‖~Λ∗α(dD)Nα

(
{2−j 2−j

′}j,j′
)

= C ‖(f, g)‖~Λ∗α(dD).

�

Remark 2.8. As already observed in Remark 2.2, in Theorem 2.6 (and thus in
Corollary 2.7) we do not “lose” information and we recover the initial assumption by
applying the obtained estimate to characteristic functions since ‖(χE, χF )‖~Λp(dDp) =

D(|E|, |F |) and

‖(χE, χF )‖~Λ∗α(dD) = D(|E|, |F )

∫ 1

0

∫ 1

0

ϕα(s t)
ds dt

s t
≈ D(|E|, |F |).

Therefore, given X such that Galb(X) = `p with 0 < p ≤ 1,

‖T (χE, χF )‖X . D(|E|, |F |), |E|, |F | <∞ ⇐⇒ T : ~Λp(dDp) −→ X

and, given X such that Galb(X) = ` (log `)α,

‖T (χE, χF )‖X . D(|E|, |F |), |E|, |F | <∞ ⇐⇒ T : ~Λ∗α(dD) −→ X.

3. Atomic operators

3.1. Atomic and one-variable case. Let us recall first some definitions and re-
sults from [6] and [7]. We work in Rn, and Q represents a cube with sides parallel
to the coordinate axes. The results can be extended in the natural way to TN

(identifying TN with [0, 1)N). In [6], the following definitions were introduced:

Definition 3.1. Given δ > 0, a function a ∈ L1(Rn) is called a δ-atom if it satisfies
the following properties:

(a)

∫
Rn
a(x) dx = 0.

(b) There exists a cube Q such that |Q| ≤ δ and supp a ⊂ Q.
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Definition 3.2.

(a) A sublinear operator T is (ε, δ)-atomic if, for every ε > 0, there exists δ > 0
such that, for every δ-atom a,

‖Ta‖L1+L∞ ≤ ε‖a‖1.

(b) A sublinear operator T is (ε, δ)-atomic approximable if there exists a sequence
(Tj)j of (ε, δ)-atomic operators such that, for every measurable set E, |Tj(χE)| ≤
|T (χE)| and, for every f ∈ L1 such that ‖f‖∞ ≤ 1, and every t > 0,

(Tf)∗(t) ≤ lim
j

inf(Tjf)∗(t)·

In particular, any maximal operator of the form supj |Kj ∗ f |, where Kj ∈ Lpj for
some 1 ≤ pj < ∞, is (ε, δ)-atomic approximable (see [6] for more examples of this
kind of operators). Also, it was proved in [7] that operators bounded on Lp with
0 < p < 1 are not (ε, δ)-atomic approximable.

Theorem 3.3 ([7]). Let T be a sublinear, (ε, δ)-atomic approximable operator. Let
X be a quasi-Banach rearrangement invariant function space. Assume that, for
every measurable set E,

‖T (χE)‖X ≤ D(|E|), (3.1)

for some positive function D. Then, for every function f ∈ L1 with ‖f‖∞ ≤ 1 we
have

‖Tf‖X ≤ D(‖f‖1). (3.2)

As a consequence of this result, we can improve Theorem 2.1 when D(t) = t.

Corollary 3.4 ([7]). Let T be a sublinear, (ε, δ)-atomic approximable operator and
let X be a quasi-Banach r.i. space. Assume that for any measurable set E with
|E| <∞ we have

‖T (χE)‖X ≤ C |E|. (3.3)

Then,
‖Tf‖X ≤ C ‖f‖1, f ∈ L1 ∩ L∞,

and thus T : L1 −→ X.

This result extends Moon’s theorem since it includes a wider class of operators
and holds for any quasi-Banach space X.

Proof. Let f ∈ L1 ∩ L∞ and write f̃ = f/‖f‖∞ such that ‖f̃‖∞ ≤ 1. Thus, (3.3)
and Theorem 3.3 imply

‖Tf‖X = ‖f‖∞ ‖T f̃‖X ≤ C ‖f‖∞ ‖f̃‖1 = C ‖f‖1.

To complete the proof let us give the density argument. Let f ∈ L1. As L1 ∩L∞
is dense in L1, there exists a sequence {fk}k ⊂ L1 ∩L∞ such that fk −→ f in L1 as
k → 0. As T is sublinear we have∥∥|Tfj| − |Tfk|∥∥X ≤ ‖T (fj − fk)‖X ≤ C ‖fj − fk‖L1 .

Thus {Tfk}k is a Cauchy sequence on X and hence is convergent in X. This allows
us to define Tf and to conclude that T maps L1 into X. �
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We compare Theorem 2.1 with Corollary 3.4. Note that Theorem 2.1 part (a) and
Corollary 3.4 give the same estimate since Λ(dD) = L1 (in the latter we assume that
T is (ε, δ)-atomic approximable). In Theorem 2.1 part (b) (resp. (c)) we obtain that
T maps Λp(dDp) = L1,p (resp. Λ∗(dD)) into X. These are improved in Corollary
3.4 since L1,p $ L1 for 0 < p < 1 and Λ∗1(dD) $ L1. Therefore, the atomicity
assumption allows one to obtain better estimates.

This reflects that, in principle, the estimates in Theorem 2.1 can be improved when
the operator T is (ε, δ)-atomic approximable. We notice that, once we know that
(3.2) holds, we can take this as our initial assumption. This contains in particular
the restricted type estimate (3.1) and as we start with a more general estimate more
decompositions of the functions are allowed. We follow this approach in Section 3.3
where we consider the functions D(t) = tq, D(t) = tq (1+log+ 1/t)α, etc. Eventually
we apply these results to the bilinear Hilbert Transform.

Remark 3.5. When X is a Banach space and D is concave then (3.1) implies (3.2),
whether or not T is atomic. To see this, let f ∈ L1 with ‖f‖∞ ≤ 1. As X is a
Banach space Galb(X) = `1. This fact, Theorem 2.1 part (a) and the concavity of
D yield

‖Tf‖X ≤ C ‖f‖Λ1(dD) = C

∫ 1

0

D
(
µf (λ)

)
dλ ≤ C D

(∫ 1

0

µf (λ) dλ
)

= C D
(
‖f‖1

)
.

This means that the fact that a given operator is atomic only matters when X is a
quasi-Banach space.

3.2. Atomic and multi-variable case.

Definition 3.6. Given δ > 0, a pair of functions (a1, a2) ∈ L1(Rn) × L1(Rn) is
called a δ-atom if it satisfies the following properties:

(a)

∫
Rn

∫
Rn
a1(x1) a2(x2) dx1 dx2 = 0.

(b) There exist cubes Q1, Q2 with |Q1|, |Q2| ≤ δ such that supp a1 ⊂ Q1, supp a2 ⊂
Q2.

Definition 3.7.

(a) A bi-sublinear operator T is (ε, δ)-atomic if, for every ε > 0, there exists δ > 0
such that for every δ-atom (a1, a2),

‖T (a1, a2)‖L1+L∞ ≤ ε‖a1‖1 ‖a2‖1.

(b) A bi-sublinear operator T is (ε, δ)-atomic approximable if there exists a sequence
(Tn)n of (ε, δ)-atomic operators such that, for all measurable sets E1, E2

|Tn(χE1 , χE2)| ≤ |T (χE1 , χE2)|

and, for all (f1, f2) ∈ L1 × L1 such that ‖f1‖∞, ‖f2‖∞ ≤ 1, and every t > 0,

(T (f1, f2))∗(t) ≤ lim
n

inf(Tn(f1, f2))∗(t)·
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(c) A multi-bilinear operator is “iterative” (ε, δ)-atomic (approximable), if for every
f0 ∈ L1 with ‖f0‖∞ ≤ 1, the sublinear operators T1g = T (g, f0) and T2g =
T (f0, g) are (ε, δ)-atomic (approximable).

Example 3.8. Consider

T (f1, f2)(x) =

∫
Rn

∫
Rn
K(x, y1, y2) f1(y1) f2(y2) dy1 dy2.

Assume that it is well defined for (f1, f2) ∈ L1 × L1 and the kernel K satisfies that

lim
(y1,y2)→(x1,x2)

‖K(·, y1, y2)−K(·, x1, x2)‖L1+L∞ = 0, (3.4)

uniformly in (x1, x2) ∈ Rn×Rn, then T is (ε, δ)-atomic. To see this, observe that if
(a1, a2) is a δ-atom, then

‖T (a1, a2)‖L1+L∞ =
∥∥∥∫

Rn

∫
Rn
K(·, y1, y2) a1(y1) a2(y2) dy1 dy2

∥∥∥
L1+L∞

=
∥∥∥∫

Rn

∫
Rn

(K(·, y1, y2)−K(·, xQ1 , xQ2)) a1(y1) a2(y2) dy1 dy2

∥∥∥
L1+L∞

≤
∫
Q1

∫
Q2

‖K(·, y1, y2)−K(·, xQ1 , xQ2)‖L1+L∞|a1(y1)| |a2(y2)|dy1dy2,

with xQj being the center of the cube Qj where aj is supported. Therefore, given ε,
we can choose δ in such a way that the above quantity is bounded by ε‖a1‖1 ‖a2‖1.

In particular we have the following examples:

(A) For functions f1, f2 on Rn define their tensor on R2n by (f1 ⊗ f2)(x, y) =
f1(x)f2(y) for x, y ∈ Rn. If K ∈ Lp(Rn × Rn) for some 1 ≤ p < ∞ and
T (f1, f2)(x) = (K ∗ (f1 ⊗ f2))(x, x), x ∈ Rn, then (3.4) holds since

lim
(y1,y2)→(x1,x2)

‖K(· − (y1, y2))−K(· − (x1, x2))‖L1+L∞ ≤ lim
(y1,y2)→(x1,x2)

‖ . . . ‖Lp = 0.

(B) Consider a family of kernels {Kj}j satisfying (3.4) for each j ∈ N. Let

Tm(f1, f2)(x) = sup
1≤j≤m

∣∣∣∣ ∫
Rn

∫
Rn
Kj(x, y1, y2) f1(y1) f2(y2) dy1 dy2

∣∣∣∣,
where m ∈ N, then Tm is (ε, δ)-atomic. Consequently,

T∗(f1, f2)(x) = sup
j∈N

∣∣∣∣ ∫
Rn

∫
Rn
Kj(x, y1, y2) f1(y1) f2(y2) dy1 dy2

∣∣∣∣,
is (ε, δ)-atomic approximable. In general, T∗(f1, f2)(x) = supn |Tn(f1, f2)(x)|,
where Tn is (ε, δ)-atomic, is (ε, δ)-atomic approximable.

We state our main result concerning bi-sublinear atomic operators:

Theorem 3.9. Let T be a bi-sublinear operator that is (ε, δ)-atomic approximable
or iterative (ε, δ)-atomic approximable.

(i) Assume that for all measurable sets E1, E2,(
T (χE1 , χE2)

)∗
(t) ≤ h(t; |E1|, |E2|), (3.5)
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where, for all s1,s2 > 0, h(t; s1, s2) is continuous as a function of t > 0. Then,
for all f1, f2 ∈ L1 such that ‖f1‖∞, ‖f2‖∞ ≤ 1, we have that

(T (f1, f2))∗(t) ≤ h(t; ‖f1‖1, ‖f2‖1). (3.6)

(ii) Let X be a quasi-Banach r.i. space and assume that, for all measurable sets E1,
E2,

‖T (χE1 , χE2)‖X ≤ D(|E1|, |E2|), (3.7)

where D is increasing in each variable and D(0, ·) = D(·, 0) = 0. Then, for all
f1, f2 ∈ L1 such that ‖f1‖∞, ‖f2‖∞ ≤ 1, we have

‖T (f1, f2)‖X . D(‖f1‖1, ‖f2‖1). (3.8)

Proof. When T is iterative (ε, δ)-atomic approximable, the desired estimates follow
by applying two times the sublinear case (see [6] and [7]): each time we freeze one of
the variables. In the other case, we use the ideas in [6] and [7] with the appropriate
changes.

First of all, let us assume that T is (ε, δ)-atomic. Let {(ai1, ak2)}i,k be a collection
of δ-atoms. For every s > 0 we have(∑

i,k

|T (ai1, a
k
2)|
)∗

(s) ≤ 1

s

∫ s

0

(∑
i,k

|T (ai1, a
k
2)|
)∗

(t) dt

≤ 1

s

∑
i,k

∫ s

0

(T (ai1, a
k
2))∗(t) dt ≤ max(s−1, 1)

∑
i,k

‖T (ai1, a
k
2)‖L1+L∞

≤ max(s−1, 1) ε
∑
i

‖ai1‖1

∑
k

‖ak2‖1. (3.9)

Let (f1, f2) ∈ L1 ×L1 be a pair of positive functions such that ‖fj‖∞ ≤ 1. Given
ε > 0, let δ be the number associated to ε by the property that T is (ε, δ)-atomic.
Let Fδ be any collection of pairwise disjoint cubes {Qi}i such that ∪iQi = Rn, and
|Qi| = δ for every i. Given Qi ∈ Fδ and j = 1 or 2, let f ij = fjχQi . Then,∫

Rn
f ij(x)dx ≤ |Qi|,

and hence, we can take a set Q̃i
j ⊂ Qi (this set can be empty) such that

|Q̃i
j| =

∫
Rn
f ij(x) dx =

∫
Qi
fj(x) dx.

We define gij = f ij − χQ̃ij , which clearly has vanishing integral, and satisfies that

‖gij‖1 ≤
∫
Qi
fj(x) dx+ |Q̃i

j| = 2

∫
Qi
fj(x) dx.

Therefore, ∑
i

‖gij‖1 ≤ 2 ‖fj‖1,
∑
i

‖χQ̃ij‖1 =
∑
i

|Q̃i
j| = ‖fj‖1. (3.10)
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Note that fj =
∑

i f
i
j =

∑
i g

i
j + χEj = Aj + χEj , where Ej = ∪iQ̃i

j. Then, by
sublinearity

|T (f1, f2)| ≤ |T (f1, A2)|+ |T (f1, χE2)|
≤ |T (A1, A2)|+ |T (χE1 , A2)|+ |T (A1, χE2)|+ |T (χE1 , χE2)|

≤
∑
i,k

|T (gi1, g
k
2)|+

∑
i,k

|T (χQ̃i1 , g
k
2)|+

∑
i,k

|T (gi1, χQ̃k2 )|+ |T (χE1 , χE2)|

and therefore,

(T (f1, f2))∗(t) ≤
(∑

i,k

|T (gi1, g
k
2)|
)∗

(α1t) +

(∑
i,k

|T (χQ̃i1 , g
k
2)|
)∗

(α2t)

+

(∑
i,k

|T (gi1, χQ̃k2 )|
)∗

(α3t) + (T (χE1 , χE2))
∗(α4t), (3.11)

for all αj > 0, 1 ≤ j ≤ 4, with
∑4

j=1 αj = 1. Let us point out that (gi1, g
k
2), (χQ̃i1 , g

k
2)

and (gi1, χQ̃k2 ) are δ-atoms.

We first prove (i). Using (3.11), (3.9), (3.10), and (3.5) we have

(T (f1, f2))∗(t) ≤
( 3∑

j=1

4 max
( 1

αj t
, 1
))

ε ‖f1‖1 ‖f2‖1 + (T (χE1 , χE2))
∗(α4t)

≤
( 3∑

j=1

4 max
( 1

αj t
, 1
))

ε ‖f1‖1 ‖f2‖1 + h(α4 t; |E1|, |E2|),

and, since |Ej| = ‖fj‖1 by (3.10), we obtain

(T (f1, f2))∗(t) ≤
( 3∑

j=1

4 max
( 1

αjt
, 1
))

ε ‖f1‖1 ‖f2‖1 + h(α4t; ‖f1‖1, ‖f2‖1).

Letting first ε→ 0 and then α4 → 1, we obtain the desired estimate for T .
Next we obtain (ii). We take α1 = α2 = α3 = 1/(3N2) and α4 = 1− 1/N2 with

N ≥ 2. Then, for t ∈ (1/N,N) we have that 0 ≤ t− 1/N ≤ (1− 1/N2) t = α4 t and

RN(t) = (T (χE1 , χE2))
∗(α4t)χ(1/N,N)(t) ≤ (T (χE1 , χE2))

∗(t− 1/N)χ(1/N,N)(t).

This yields that R∗N(t) ≤ (T (χE1 , χE2))
∗(t) for every t > 0. Let X be the quasi-

Banach r.i. space given by the Luxemburg representation theorem such that ‖h‖X =
‖h∗‖X . Then, using (3.7) and that |Ej| = ‖fj‖1 we have

‖RN‖X ≤ ‖(T (χE1 , χE2))
∗‖X = ‖T (χE1 , χE2)‖X ≤ D(|E1|, |E2|) = D(‖f1‖1, ‖f2‖1).

On the other hand by (3.11), (3.9) and (3.10) we obtain for every t ∈ (1/N,N)

(T (f1, f2))∗(t) ≤
(∑

i,k

. . .

)∗
(1/(3N3)) +

(∑
i,k

. . .

)∗
(1/(3N3))

+

(∑
i,k

. . .

)∗
(1/(3N3)) +RN(t)
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≤ 24N3 ε ‖f1‖1 ‖f2‖1 +RN(t).

Therefore,

‖(T (f1, f2))∗ χ(1/N,N)‖X . N3 ε ‖f1‖1 ‖f2‖1 ‖χ(1/N,N)‖X + ‖RN‖X
≤ N3 ε ‖f1‖1 ‖f2‖1 ‖χ(1/N,N)‖X +D(‖f1‖1, ‖f2‖1).

Letting first ε → 0 and then N → ∞, we deduce the desired estimate as a conse-
quence of the Fatou property for X (hN ↑ h a.e. implies ‖hN‖X ↑ ‖h‖X).

To finish, we consider the case when T is (ε, δ)-atomic approximable. Let (Tn)n
be the corresponding sequence of (ε, δ)-atomic operators given in Definition 3.7.

To obtain (i) we observe that

(Tn(χE1 , χE2))
∗(t) ≤ (T (χE1 , χE2))

∗(t) ≤ h(t, |E1|, |E2|),
and hence (Tn(f1, f2))∗(t) ≤ h(t, ‖f1‖1, ‖f2‖1), for all pairs of positive functions
(f1, f2) such that ‖fj‖∞ ≤ 1. Using (T (f1, f2))∗(t) ≤ lim infn(Tn(f1, f2))∗(t), the
desired estimate for T follows at once.

To derive (ii) we notice that

‖Tn(χE1 , χE2)‖X ≤ ‖T (χE1 , χE2)‖X ≤ D(|E1|, |E2|),
and we deduce that Tn satisfies (3.8). Thus we conclude the same estimate for T
using that (T (f1, f2))∗(t) ≤ lim infn(Tn(f1, f2))∗(t) and the Fatou property. �

As a consequence of Theorem 3.9, we can improve Theorem 2.6 (and also Corollary
2.7) when D(t, s) = t s.

Corollary 3.10. Let T be a bi-sublinear operator that is (ε, δ)-atomic approximable
or iterative (ε, δ)-atomic approximable. Let X be quasi-Banach r.i. space. Assume
that for all measurable sets E1, E2 with |E1|, |E2| <∞ we have

‖T (χE1 , χE2)‖X ≤ C |E1| |E2|. (3.12)

Then,

‖T (f1, f2)‖X ≤ C ‖f1‖1 ‖f2‖1, f1, f2 ∈ L1 ∩ L∞,
and thus T : L1 × L1 −→ X.

This gives a bilinear (and thus multilinear) version of Moon’s theorem improving
the result in [10], where only the case X = Lq,∞ with q > 0 was considered.

3.3. Decompositions into level sets and estimates on Orlicz spaces. If T is
an operator as in Theorem 3.3, then (3.1) implies (3.2). At this point, we make this
latter condition our starting assumption. That is, from now on we will be working
with sublinear operators T for which (3.2) holds. Whether this condition follows
from the assumption that T is atomic or not plays no role in the arguments below.
Let us emphasize that in (3.1) we only allow characteristic functions while in (3.2)
a wider a class of functions is considered (f ∈ L1 with ‖f‖∞ ≤ 1). Notice that
in Theorem 2.1, functions are decomposed as linear combinations of characteristic
functions. Starting with (3.2) we can use more general decompositions: charac-
teristic functions can be replaced by L1-functions bounded by 1. In the following
argument we will use decompositions based on the level sets of the functions. As
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mentioned before in Remark 3.5, only the case where X is quasi-Banach matters,
since being atomic or not makes a difference.

Next we explain the general scheme that we are going to follow:

Step 0. We start from

‖Tf‖X ≤ C D(‖f‖1), ‖f‖∞ ≤ 1. (3.13)

Step 1. Given f ≥ 0 and an increasing sequence of non-negative numbers {dk}
such that dk −→ 0 as k → −∞ and dk −→ +∞ as k → +∞, we write

f =
∑
k

dk f̃k, f̃k =
1

dk
f χ{dk−1<f≤dk}.

Let us observe that in some cases we will take dk = 0 for k ≤ −1 and d0 = 1.
Thus, the summation runs for k ≥ 0 and f̃0 = f χ{f≤1}.

Step 2. We use (3.13) (as ‖f̃k‖∞ ≤ 1) and the definition of the Galb:

‖Tf‖X ≤
∥∥∥∑

k

dk |T f̃k|
∥∥∥
X
.
∥∥{dkD(‖f̃k‖1)}k

∥∥
Galb(X)

=
∥∥{Ak}k∥∥Galb(X)

.

Step 3. We pick a non-negative function ϕ that it is essentially constant in the
intervals [dk−1, dk] and write ck = ϕ(dk). Then, setting ak =

∫
dk−1<f≤dk

f ϕ(f) we

have

Ak = dkD
( 1

dk

∫
dk−1<f≤dk

f
)
≈ dkD

( 1

dk ck

∫
dk−1<f≤dk

f ϕ(f)
)

= dkD
( ak
dk ck

)
.

Step 4. We show that for every non-negative sequence {ak}k ∈ `1 with ‖{ak}k‖`1 =
1, we have ∥∥∥{dkD( ak

dk ck

)}
k

∥∥∥
Galb(X)

. 1. (3.14)

Step 5. If we are able to check all the steps in this procedure, then we will get

‖Tf‖X . 1

for all f such that

1 =
∑
k

ak =
∑
k

∫
dk−1<f≤dk

f ϕ(f) =

∫
Rn
f ϕ(f).

Therefore, T maps Lψ into X where Lψ is the Orlicz-type space defined by the
function ψ(t) = t ϕ(t).

Looking at all these steps, the strategy consists in finding an appropriate function
ϕ as in Step 3 such that the estimate in Step 4 holds. The choice of ϕ should depend
on the sequence {dk}k (as ϕ has to be essentially constant in the intervals defined by
the sequence) and also on the function D and Galb(X). Motivated by the restricted
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estimates for the bilinear Hilbert transform we consider quasi-Banach spaces X with
Galb(X) = `q for 0 < q < 1. We start with functions D(t) = t (1 + log+ 1/t)α. For
every k ≥ 1 we write εk = k (1 + log k)1+ε with ε > 0.

Example 3.11. Let D(t) = t (1 + log+ 1/t)α and Galb(X) = `q with 0 < q < 1.
We take dk = 2k for k ≥ 1, d0 = 1 and dk = 0 for k ≤ −1. We pick

ϕ(t) = (1 + log+ t)α
(
(1 + log+ t) (1 + log+ log+ t)1+ε

) 1−q
q

with ε > 0. Then, ck ≈ kα
(
k (1 + log k)1+ε

) 1−q
q = kα ε

1−q
q

k . We have to estimate∥∥∥dkD( ak
dk ck

)∥∥∥q
Galb(X)

≈ D(a0)q +
∑
k≥1

2k qD
( ak

2k kα ε
(1−q)/q
k

)q
≤ 1 + ΣI + ΣII ,

where ΣI , ΣII are the corresponding sums where the indices run over the following
sets

I = {k ≥ 1 : ak ≤ ε−1
k }, II = {k ≥ 1 : ak > ε−1

k }.
Then,

ΣI ≤
∑
k≥1

2k qD
( 1

2k kα ε
1/q
k

)q
≤
∑
k≥1

(
2k

1

2k kαε
1/q
k

(1 + log+ 2k kαε
1/q
k )α

)q
.
∑
k≥1

1

εk
. 1.

Also,

ΣII ≤
∥∥∥{ ak

kα ε
(1−q)/q
k

(
1 + log+ 2k kα ε

(1−q)/q
k

ak

)α}
k∈II

∥∥∥q
`q

≤
∥∥∥{ ak

kα ε
(1−q)/q
k

(
1 + log+ 2k kα ε

1/q
k

)α}
k∈II

∥∥∥q
`q

.
∥∥∥{ak ε−(1−q)/q

k

}
k∈II

∥∥∥q
`q
.
∑
k≥1

ak = 1.

Thus we have shown (3.14) and therefore for every ε > 0 we obtain

T : L (logL)α+ 1−q
q (log logL)(1+ε) 1−q

q −→ X.

Let us observe that taking a little bigger sequence in `1, that is, εk = k1+ε we can

replace the first space by L (logL)α+ 1−q
q

(1+ε).

Example 3.12. We proceed as in the previous example but now we choose a dif-
ferent sequence dk. Let D(t) = t (1 + log+ 1/t)α and Galb(X) = `q with 0 < q < 1.

We take dk = 22k for k ≥ 1, d0 = 1 and dk = 0 for k ≤ −1. We pick

ϕ(t) = (1 + log+ t)α
(
(1 + log+ log+ t) (1 + log+ log+ log+ t)1+ε

) 1−q
q

with β > 0. Then, ck ≈ 2k α ε
1−q
q

k . The sets I and II are the same and we estimate
ΣI and ΣII :

ΣI ≤
∥∥∥{22k D

( ak

22k 2k α ε
(1−q)/q
k

)}
k∈I

∥∥∥q
`q
≤
∥∥∥{22k D

( 1

22k 2k α ε
1/q
k

)}
k≥1

∥∥∥q
`q
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.
∑
k≥1

1

εk
. 1,

and

ΣII ≤
∥∥∥{ ak

2k α ε
(1−q)/q
k

(
1 + log+ 22k 2k α ε

(1−q)/q
k

ak

)α}
k∈II

∥∥∥q
`q
.
∥∥∥{ak ε− 1−q

q

k

}
k∈II

∥∥∥q
`q

.
∑
k≥1

ak = 1.

Thus we have shown (3.14) and therefore, for every ε > 0, we obtain

T : L (logL)α (log logL)
1−q
q (log log logL)(1+ε) 1−q

q −→ X.

As before, the space of origin can be replaced by L (logL)α (log logL)
1−q
q

(1+ε) or even
more by L (logL)α+ε. Note that these improve what was obtained in the previous

example, thus the sequence 22k gives better estimates than 2k.

Let us observe that taking dk = 222k

then (1 + log+ t)α is not essentially constant
on the interval [dk−1, dk]. In some sense, as we have started with a restricted weak
type associated with the space L(logL)α we should take sequences dk for which the
function (1 + log+ t)α is essentially constant on the intervals [dk−1, dk].

In the following two examples we want to illustrate how this method behaves with
respect to different logarithms. We give the final results leaving the details to the
interested reader.

Example 3.13. Let D(t) = t (1 + log+ 1/t)α (1 + log+ log+ 1/t)β and Galb(X) = `q

with 0 < q < 1. We take dk = 2k for k ≥ 1, d0 = 1 and dk = 0 for k ≤ −1. The

ideas used before lead to the space L (logL)α+ 1−q
q (log logL)β+(1+ε) 1−q

q . A better

result is proved by choosing the sequence dk = 22k for k ≥ 1, d0 = 1 and dk = 0

for k ≤ −1 in which case one gets L (logL)α (log logL)β+ 1−q
q (log log logL)(1+ε) 1−q

q .

Let us emphasize that as before we cannot take dk = 222k

since (1 + log+ t)α is not
essentially constant on the interval [dk−1, dk].

Example 3.14. Let D(t) = t (1+log+ log+ 1/t)α and Galb(X) = `q with 0 < q < 1.
The previous ideas indicate that one should find sequences for which the function
(1 + log+ log+ t)α is essentially constant in the interval [dk−1, dk]. In this way, we

take dk = 222k

for k ≥ 1 (notice that we cannot work with dk = 2222
k

), and then the
space obtained by this method is

L (log logL)α (log log logL)
1−q
q (log log log logL)(1+ε) 1−q

q .

Note that if we had taken the sequences dk = 2k, dk = 22k , we would have obtained
the smaller spaces, respectively

L (logL)
1−q
q (log logL)α+(1+ε) 1−q

q , L (log logL)α+ 1−q
q (log log logL)(1+ε) 1−q

q .

As in the case on the bilinear Hilbert transform, we also have functions of the
form D(t) = t1/p (1 + log+ 1/t)α with 1 < p < ∞, and we investigate what spaces
one obtains via this method. Note that this function is associated with an Orlicz
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space near Lp (indeed Lp (logL)αp), thus we look for sequences dk for which tp−1 is
essentially constant in the intervals [dk−1, dk], that is, dk ≈ 2k. Notice that in the
previous examples the Orlicz functions satisfy ψ(t) = t for t ≤ 1. Thus, it was not
necessary to decompose the function f χ{f≤1} into level sets. Here, as the Orlicz
function is going to be near tp, we investigate whether decomposing this function
leads or not to a better estimate.

We start with the simpler case α = 0.

Example 3.15. Let D(t) = t1/p with 1 < p <∞ and Galb(X) = `q with 0 < q < 1.
We first take dk = 2k for k ≥ 1, d0 = 1 and dk = 0 for k ≥ −1. We take
ϕ(t) = 1 for t ≥ 1 and ϕ(t) = tp−1 (1 + log+ t)p/q−1 (1 + log+ log+ t)(p/q−1) (1+ε). Then

ck ≈ 2k (p−1) ε
p/q−1
k . We have to estimate∥∥∥dkD( ak
dk ck

)∥∥∥q
Galb(X)

≈ D(a0)q +
∑
k≥1

2k qD
( ak

2k pε
p/q−1
k

)q
≤ 1 +

∑
k≥1

a
q/p
k

ε
1−q/p
k

and we split the sum in the right-hand side as ΣI + ΣII (with the same definition
of I and II). Note that we trivially have that ΣI ≤

∑
k≥1 ε

−1
k . 1. On the other

hand, since 0 < q < 1 < p, we have that ΣII ≤
∑

k≥1 ak = 1. Then we obtain that

T maps Lψ into X where ψ(t) = t for t ≤ 1 and

ψ(t) = tp (1 + log+ t)p/q−1 (1 + log+ log+ t)(p/q−1) (1+ε)

for t ≥ 1.
Next, we take dk = 2k for every k ∈ Z. Consider the function

ϕ̃(t) = tp−1 (1 + | log t|)p/q−1 (1 + log+ | log t|)(p/q−1) (1+ε)

and then ck ≈ 2k (p−1) ε
(p/q−1)
|k| for k 6= 0, and c0 = 1. Since ϕ̃(t) = ϕ(t) for t ≥ 1, we

only have to estimate the terms k ≤ 0. Proceeding as before (now we compare ak
with 1/ε|k|) we conclude that∑

k≤0

dqkD
( ak
dk ck

)q
. 1 +

∑
k≤−1

a
q/p
k

ε
1−q/p
|k|

. 1.

Then we obtain that T maps L
eψ into X where

ψ̃(t) = tp (1 + | log t|)p/q−1 (1 + log+ | log t|)(p/q−1) (1+ε).

Let us observe that ψ̃(t) ≤ ψ(t) = t for t ≤ 1 (as p > 1) and also that ψ̃(t) = ψ(t) for

t ≥ 1. Thus, Lψ ⊂ L
eψ. Therefore, decomposing f χ{f≤1} leads to a better estimate.

Example 3.16. Let D(t) = t1/p (1 + log+ 1/t)α with 1 < p < ∞ and Galb(X) =
`q with 0 < q < 1. We take dk = 2k for every k ∈ Z. Consider the function
ϕ̃(t) = tp−1 (1 + log+ t)α (1 + | log t|)p/q−1 (1 + log+ | log t|)(p/q−1) (1+ε) and then ck ≈
2k (p−1) max(1, k)α ε

(p/q−1)
|k| for k 6= 0, and c0 = 1. The same ideas allow us to show

that T is bounded from Lψ into X where

ψ(t) = tp (1 + log+ t)α (1 + | log t|)p/q−1 (1 + log+ | log t|)(p/q−1) (1+ε).
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Remark 3.17. We would like to emphasize that the method used in this section,
of picking the sequence dk = ak, a > 1, cannot improve Theorem 2.1. Indeed, going
back to Step 2, we need to estimate ‖{Ak}k‖Galb(X). Notice that if a is big enough,

‖{Ak}k‖Galb(X) =
∥∥{akD(‖f̃k‖1)}k

∥∥
Galb(X)

≈
∥∥{akD(|{|f | ≈ ak}|

)
}k
∥∥

Galb(X)

≈
∥∥{akD(µf (ak))}k∥∥Galb(X)

.

We observe that the last quantity is a discretized version of the norms appearing in
Theorem 2.1.

Therefore, the approach developed in this section becomes meaningful when dk
growths faster (when dk = 22k , 22k , . . . the previous quantities are no longer com-
parable since dk 6≈ dk+1). This shows that the spaces obtained in Examples 3.15,
3.16 are worse than the ones that follow from Theorem 2.1. We will use this when
working with the bilinear Hilbert transform.

3.3.1. The multi-variable case. As observed before, having some extra information
about the operator leads us, in some cases, to better estimates. Thus we will
study different cases for which the previous arguments in the linear case can be also
exploited. For simplicity we first consider the case where D can be broken up into
two functions. We start with a bi-sublinear operator satisfying

‖T (f, g)‖X ≤ C D1(‖f‖1)D2(‖g‖1), ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1.

This occurs when T is (ε, δ)-atomic approximable or when it is iterative (ε, δ)-atomic
approximable. Once we have the last inequality we will not use these properties
anymore. For these operators we can freeze one of the variables and work with the
other one. Thus, there is no difference with the 1-sublinear case considered before.

In the case general case where D is not split we have to work with two sequences
at the same time, one for each variable. We take {dk}k and ck = ϕ1(dk) with
ϕ1 essentially constant in the intervals [dk−1, dk]. This sequence is related to the
function f . For the function g we take δj and ηj = ϕ2(δj) with ϕ2 essentially constant
in the intervals [δj−1, δj]. We define Ak, ak and Bj, bj as in Step 3 (Ak is for f , dk,
ck; Bj is for g, δj, ηj). Everything reduces to show the following analog of Step 4:
for all non-negative sequences {ak}k, {bj}j ∈ `1 with ‖{ak}k‖`1 = ‖{bj}j‖`1 = 1 we
have ∥∥∥{dk δj D( ak

dk ck
,
bj
δj ηj

)}
k,j

∥∥∥
Galb(X)

. 1. (3.15)

If we are able to show this, we obtain that T maps Lψ1×Lψ2 into X, where ψ1(t) =
t ϕ1(t) and ψ2(t) = t ϕ2(t).

4. The Bilinear Hilbert Transform

We start with the basic estimate proved in [3] (see also [4]):

sup
t

Φ(t)H
(
χE1 , χE2

)∗
(t) . D(|E1|, |E2|), (4.1)

where

Φ(t) = t3/2 (1 + log+ t)−2, D(s, t) =
(
s tmin(s, t)

)1/2
(

1 + log+ 1

s tmin(s, t)

)2

.
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Notice that for any α, β ∈ [0, 1] with α + β = 1, we have D(s, t) ≤ D1(s)D2(t)
where

D1(s) = s
1+α

2

(
1 + log+ 1

s

)2

, D2(t) = t
1+β

2

(
1 + log+ 1

t

)2

.

We define X to be the space given by the quasi-norm

‖f‖X = sup
t>0

Φ(t) f ∗(t).

It is known (see [7]) that Galb(X) = `
2
3 .

4.1. Estimates on Lorentz spaces. Applying Corollary 2.7 we obtain

‖H(f, g)‖X . ‖f‖Λ2/3(dD
2/3
1 )
‖g‖

Λ2/3(dD
2/3
2 )

.

It remains to identify these Λ-Lorentz spaces. We have:

‖f‖2/3

Λ2/3(dD
2/3
1 )

=

∫ ∞
0

f ∗(t)2/3 dD
2/3
1 (t) ≈

∫ ∞
0

(
f ∗(t) t

1+α
2

(
1 + log+ 1

t

)2) 2
3 dt

t

= ‖f‖
2
3

L
2

(1+α)
, 23 (logL)

4
3

.

Considering the extreme cases α = 1 and β = 0, or vice versa, we obtain

H : L1, 2
3 (logL)

4
3 × L2, 2

3 (logL)
4
3 −→ X,

H : L2, 2
3 (logL)

4
3 × L1, 2

3 (logL)
4
3 −→ X.

We see below that in the extreme case α = 1 and β = 0 the previous estimate can
be “improved” exploiting the fact that the bilinear Hilbert transform is atomic.

We can also use Theorem 2.6 with the original function D and then

‖H(f, g)‖X .
∫ ∞

0

∫ ∞
0

s2/3 t2/3D
(
µf (s), µg(t)

)2/3 ds dt

s t

.
∫ ∞

0

∫ ∞
0

f ∗(s)2/3 g∗(t)2/3 dD2/3(s, t),

with

D(s, t) =
(
s tmin(s, t)

)1/2
(

1 + log+ 1

s tmin(s, t)

)2

.

As observed in Remark 2.8, here we do not lose any information in the following
sense:

‖H(χE, χF )‖X . D(|E|, |F |), |E|, |F | <∞ ⇐⇒ H : ~Λ2/3(dD2/3) −→ X.

4.2. Atomicity and estimates on Orlicz spaces. We show that the following
truncations of H

HN(f, g) =

∫
1/N<|t|<N

f(x− t) g(x+ t)
dt

t
=

∫
R
f(x− t) g(x+ t) kN(t) dt

are iterative (ε, δ)-atomic. Let g ∈ L1 be such that ‖g‖∞ ≤ 1 and consider the
1-linear operator TNf defined by TNf(x) = HN(f, g). We obtain that TN is (ε, δ)-
atomic (the other case in which f is frozen can be obtained in the same manner).
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We write TN in the following way,

TNf(x) =

∫
R
f(t) g(2x− t) kN(x− t) dt =

∫
R
f(t)KN(x, t) dt.

Given ε > 0, let a be a δ-atom with δ > 0 to be chosen. Then supp a ⊂ I0 for some
interval I0 with |I0| ≤ δ. Let t0 be the center of I0.

We first show that there exists δ = δ(ε, g,N) such that∥∥KN(·, s)−KN(·, s0)
∥∥
L1 ≤ ε, for all s, s0 ∈ R with |s− s0| < δ/2. (4.2)

Using that ‖g‖∞ ≤ 1 it follows that∥∥KN(·, s)−KN(·, s0)
∥∥
L1 ≤

∫
R
|g(2x− s) kN(x− s)− g(2x− s0) kN(x− s0)| dx

≤
∫

R
|kN(x− s)| |g(2x− s)− g(2x− s0)| dx

+

∫
R
|g(2x− s0)| |kN(x− s)− kN(x− s0)| dx

≤ N

∫
R
|g(x+ (s− s0))− g(x)| dx+

∫
R
|kN(x+ (s− s0))− kN(x)| dx.

Thus, since g, kN ∈ L1(R), using properties of the translation operator in L1(R),
there exists δ = δ(ε, g,N) such that for every |∆| < δ

N

∫
R
|g(x+ ∆)− g(x)| dx+

∫
R
|kN(x+ ∆)− kN(x)| dx ≤ N

ε

2N
+
ε

2
= ε.

Applying this with ∆ = s − s0, we obtain (4.2). In this way, using that a has
vanishing integral and (4.2), we conclude that

‖TNa‖L1+L∞ ≤ ‖TNa‖1 ≤
∥∥∥∫

R
a(t)KN(·, t) dt

∥∥∥
1

=
∥∥∥∫

R
a(t) (KN(·, t)−KN(·, t0)) dt

∥∥∥
1

≤
∫
|t−t0|<δ/2

|a(t)|
∥∥KN(·, t)−KN(·, t0)

∥∥
L1 dt ≤ ε‖a‖1.

Therefore, we have shown that TN is (ε, δ)-atomic and HN is iterative (ε, δ)-atomic.
We observe that HN satisfies (4.1) uniformly in N . Thus, by (ii) in Theorem 3.9
we conclude that for all ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1,

‖HN(f, g)‖X = sup
t

Φ(t)HN

(
f, g
)∗

(t) . D(‖f‖1, ‖g‖1),

where the constants involved are uniform in N , and

Φ(t) = t3/2 (1 + log+ t)−2, D(s, t) =
(
s tmin(s, t)

)1/2
(

1 + log+ 1

s tmin(s, t)

)2

.

Notice that for any α, β ∈ [0, 1] with α + β = 1, we have D(s, t) ≤ D1(s)D2(t)
where

D1(s) = s
1+α

2

(
1 + log+ 1

s

)2

, D2(t) = t
1+β

2

(
1 + log+ 1

t

)2

.
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As mentioned before Galb(X) = `
2
3 . We have already observed that the method

presented in Section 3.3 is useful when Di(t) is of the form t (1 + log+ t)2. Hence,
we fix α = 1, β = 0 and then

D1(s) = s
(

1 + log+ 1

s

)2

, D2(t) = t
1
2

(
1 + log+ 1

t

)2

.

Working with the first variable and applying Example 3.12 with q = 2/3 and α = 2,

we deduce that the domain space for f is L (logL)2 (log logL)
1
2 (log log logL)

1
2

+ε

for any ε > 0. We can take smaller spaces such as L (logL)2 (log logL)
1
2

+ε or
L (logL)2+ε for any ε > 0.

For the other variable, we use the non-atomic approach and obtain that the
domain space is L2, 2

3 (logL)4/3. Thus, using the symmetry of the problem, we have

HN : L (logL)2 (log logL)
1
2 (log log logL)

1
2

+ε × L2, 2
3 (logL)

4
3 −→ X,

HN : L2, 2
3 (logL)

4
3 × L (logL)2 (log logL)

1
2 (log log logL)

1
2

+ε −→ X.

From here one can interpolate by the complex method to conclude some other
estimates. Notice that all these estimates are uniform in N .

Next we are going to show how to derive these estimates for H. By density (in the
domain spaces), it suffices to consider Schwartz functions f , g. In that case we have
limN→∞HN(f, g) = H(f, g) a.e. and consequentlyH

(
f, g
)∗ ≤ lim infN→∞HN

(
f, g
)∗

.
Then, for any 0 < t <∞ we have

Φ(t)H
(
f, g
)∗

(t) ≤ lim inf
N→∞

Φ(t)HN

(
f, g
)∗

(t) ≤ lim inf
N→∞

sup
t

Φ(t)HN

(
f, g
)∗

(t)

= lim inf
N→∞

‖HN(f, g)‖X .

Taking the supremum for 0 < t <∞ we conclude that

‖H(f, g)‖X ≤ lim inf
N→∞

‖HN(f, g)‖X .

This, the uniform estimates obtained before forHN and a standard density argument
lead us to

H : L (logL)2 (log logL)
1
2 (log log logL)

1
2

+ε × L2, 2
3 (logL)

4
3 −→ X,

H : L2, 2
3 (logL)

4
3 × L (logL)2 (log logL)

1
2 (log log logL)

1
2

+ε −→ X.

We finish this section by comparing the different spaces that we have obtained
using the two approaches. When α = 1 and β = 0, the two methods have led us to
the following spaces

X1 = L1, 2
3 (logL)

4
3 , X2 = L (logL)2 (log logL)

1
2 (log log logL)

1
2

+ε.

We see that X1, X2 are not comparable. Our first function is given by

h∗(t) =
1

t (1 + log+ 1/t)7/2
χ(0,e−ee )(t).

Then,

‖h∗‖
2
3
X1

=

∫ ∞
0

(
h∗(t) t

(
1 + log+ 1/t

)2) 2
3
dt

t
=

∫ e−e
e

0

1

(1 + log 1/t)

dt

t
=∞.
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On the other hand, we have that X̃2 = L (logL)9/4 ↪→ X2 and therefore

‖h∗‖X2 ≤ ‖h∗‖ eX2
=

∫ ∞
0

h∗(t) t
(
1 + log+ 1/t

)9/4dt

t

=

∫ e−e
e

0

1

(1 + log 1/t)5/4

dt

t
<∞.

Next, we consider a second function

h∗(t) =
∞∑
j=1

Aj χ(aj+1,aj)(t), Aj = ee
j4

j−3, aj = e−(ej
4
+2 j4).

Notice that Aj is increasing and aj decreasing. We set m(t) = t (1 + log+ 1/t)2 and
notice that

m(aj) ≈ e−(ej
4
+2 j4) (ej

4

+ 2 j4)2 ≈ e−e
j4

= A−1
j j−3

Then,

‖h∗‖
2
3
X1

=
∞∑
j=1

A
2
3
j

∫ aj

aj+1

m(t)
2
3
dt

t
.

∞∑
j=1

A
2
3
j m(aj)

2
3 ≈

∞∑
j=1

1

j2
<∞.

On the other hand, let us observe that X2 ↪→ X̂2 = L (logL)2 (log logL)1/2. We
write ϕ(t) = m(t) (1 + log+ log+ 1/t)1/2. Observe that aj ≥ e aj+1 and∫ aj

aj+1

ϕ(t)
dt

t
≥
∫ aj

aj/e

ϕ(t)
dt

t
≥ ϕ(aj/e) ≈ m(aj) (log+ log+ a−1

j )1/2 ≈ A−1
j j−1.

Therefore,

‖h∗‖X2 ≥ ‖h∗‖ bX2
=
∞∑
j=1

Aj

∫ aj

aj+1

ϕ(t)
dt

t
&

∞∑
j=1

1

j
=∞.

These two examples show that the symmetric difference of X1 and X2 is nonempty
and hence the two approaches developed in the present paper give independent es-
timates. Consequently, combining both methods, we obtain estimates for functions
in the larger space X1 +X2, that is, the bilinear Hilbert transform H satisfies

H : (X1 +X2)× L2, 2
3 (logL)

4
3 −→ X, H : L2, 2

3 (logL)
4
3 × (X1 +X2) −→ X.
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