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Abstract. We prove the boundedness of a general class of Fourier multipliers, in
particular of the Hilbert transform, on modulation spaces. In general, however, the
Fourier multipliers in this class fail to be bounded on Lp spaces. The main tools
are Gabor frames and methods from time-frequency analysis.

1. Introduction

In this note we explore the boundedness properties of certain translation invariant
operators (initially defined on the class of Schwartz rapidly decreasing smooth func-
tions). Namely, if b > 0 and c = (cn)n∈Z is a bounded sequence of complex numbers,
we are interested in the operator Hb,c (formally) defined by

(1) Hb,c =
+∞∑
n−∞

cn(MbnHM−bn −Mb(n+1)HM−b(n+1)).

Here, Mb denotes the modulation by b and H is the Hilbert transform, that is,

Mbf(t) = e2πit·bf(t)

and

Hf(x) =
1

π
lim
ε→0

∫
|t|>ε

f(x− t)

t
dt.

The operators Hb,c are better understood if viewed on the Fourier side as multiplier
operators

(2) Ĥb,cf = mb,cf̂ ,

with Fourier multipliers

(3) mb,c = −2i
+∞∑

n=−∞

cnχ(bn,b(n+1));

χ(a,b) denotes the characteristic function of the real interval (a, b). It is easy to see
that the Hilbert transform is a particular case of operator 1

2
Hb,c. Indeed, if we recall
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that m(ξ) = −isgn ξ is the multiplier of H, then H = 1
2
Hb,c for any b > 0 and

c = (cn)n∈Z, with cn = 1 for n ≥ 0 and cn = −1 for n < 0.
There are many proofs for the boundedness of H on Lp spaces, 1 < p < ∞. For

example, in the context of Calderón-Zygmund theory, the boundedness of H follows
from its boundedness on L2 (a consequence of Plancherel’s theorem), a weak type
(1, 1) estimate, and interpolation. A natural question then is whether the more
general operators Hb,c are also bounded on the Lebesgue spaces Lp, 1 < p < ∞. We
note right away that the boundedness of the sequence c and Plancherel’s theorem
guarantee that Hb,c maps L2 into L2. But unlike the kernel of the Hilbert transform,
the convolution kernels of the operators Hb,c do not possess the required amount
of smoothness to fall under the scope of Calderón-Zygmund theory. Moreover, the
multipliers mb,c are not of bounded variation in general, nor do they satisfy the
conditions of some Fourier multiplier theorem. In fact, the operators Hb,c fail to be
bounded on Lp, p 6= 2.

Consider for example the operators H1,c, c = (cn)n∈Z ∈ `∞, and assume that an
estimate of the form

(4) ‖H1,cf‖p ≤ C‖c‖`∞ ‖f‖p

were true for some 1 < p < 2 and a constant C independent of c and f . This ineqality
remains true, if we replace cn by ±cn for any choice of sign; in particular we may
replace cn with cnrn(t), where rn(t) is the nth Rademacher function (see [2, p. 177]

for the definition of these functions.) Define the operator Sn by Ŝnf = cnχ[n,n+1]f̂ .
Raising (4) to the power p, integrating over t ∈ [0, 1], and using a key inequality for
the Rademacher functions ([9, Appendix C.2]), we deduce that for every f ∈ Lp

(5) ‖(
∑
n∈Z

|Snf |2)1/2‖Lp ≤ C‖c‖`∞‖f‖Lp .

For the choice cn = 1 this averaging procedure over the plus and minus signs yields a
square function for which estimate (5) is known to hold true only when p ≥ 2; see e.g.
[9, Sec. 10.2]. This contradicts our initial assumption 1 < p < 2. By duality we can
also exclude the case p > 2, because the space of Fourier multipliers on Lp coincides
with those on Lp′ , where p′ = p/(p− 1) is the dual exponent of p. We conclude that
an estimate of the form (4) holds true if and only if p = 2.

Nevertheless, we will prove below that the operators Hb,c are bounded on a differ-
ent class of function spaces, the so-called modulation spaces Mp,q, 1 < p < ∞, 1 ≤
q ≤ ∞. These spaces include L2 = M2,2 and are defined by their phase-space dis-
tribution (instead of their Littlewood-Paley decomposition). The modulation spaces
occur naturally in time-frequency analysis (or phase-space analysis) and have found
numerous applications to pseudodifferential operators, signal analysis, non-linear ap-
proximation, and the formulation of uncertainty principles; see, e.g., [8], [11], [12],
[14], [15], [17], [18], [19], [23].

We will prove the boundedness of the Fourier multipliers by studying their matrix
with respect to a so-called Gabor frame (often called Weyl-Heisenberg frame) and by
using the Gabor expansion of functions. In this manner we can convert the question of
boundedness of Fourier multipliers on Mp,q into a problem about the boundedness of
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an infinite matrix acting on certain sequence spaces. It is perhaps not too surprising
that this discretization leads to the discrete Hilbert transform that was first studied
by Hilbert in `2 setting and by M. Riesz [21] and Titchmarsh [22] on general `p spaces.

In particular, we obtain the boundedness of the Hilbert transform on modulation
spaces. This fact was first observed by Okoudjou in [20]. In this paper we treat a
natural extension and also close a gap in the original proof. We also point out that
a similar class of (pointwise) multipliers was considered on the so-called amalgam
spaces in [24]. Since the modulation spaces are the Fourier transforms of certain
amalgam spaces, some of the results in [24, Theorem 3.6] overlap with our main re-
sult. However, our techniques and the ones used in [24] are completely different. In
addition, the use of time-frequency techniques in “hard analysis” seems of indepen-
dent interest. As for the endpoint modulation spaces, the situation is similar to the
case of Lebesgue spaces. For example, the Hilbert transform fails to be bounded on
the Feichtinger algebra M1.

The remainder of the paper is organized as follows. The next section is devoted
to some basic facts about modulation spaces and Gabor frames. The main result is
stated and proved in Section 3, as well as some counter-example.

2. Preliminaries

2.1. General notation. We will be working on the real line R. The operators of
translation and modulation of a function f with domain R are defined by

Txf(t) = f(t− x) and Myf(t) = e2πiyt f(t).

The Fourier transform of f ∈ L1(R) is f̂(ω) =
∫

R f(t) e−2πit·ω dt, ω ∈ R. The Fourier
transform is an isomorphism of the Schwartz space S = S(R) onto itself, and extends
to the space S ′ = S ′(R) of tempered distributions by duality.

The inner product of two functions f, g ∈ L2 is 〈f, g〉 =
∫

R f(t)g(t) dt, and its

extension to S ′ × S will be also denoted by 〈·, ·〉.
The Short-Time Fourier Transform (STFT) of a function f with respect to a win-

dow g is

Vgf(x, y) = 〈f, MyTxg〉 =

∫
R

e−2πiyt g(t− x) f(t) dt,

whenever the integral makes sense. This definition can be extended to f ∈ S ′(R)
and g ∈ S(R) and yields a continuous function Vgf of polynomial growth [10]. In a
less obvious way, the STFT makes sense even in the space of tempered distributions
S ′(R2) when both f ∈ S ′(R) and g ∈ S ′(R), see, e.g., Folland’s book [7, Prop. 1.42].

We let Lp,q = Lp,q(R× R) be the spaces of measurable functions f(x, y) for which
the mixed norm

‖f‖Lp,q =

(∫
R

(∫
R
|f(x, y)|p dx

)q/p

dy

)1/q
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is finite. If p = q, we have Lp,p = Lp, the usual Lebesgue spaces. By `p,q(Z × Z) we
denote the spaces of sequences a = (ak,l)k,l∈Z for which the mixed norm

‖a‖`p,q =

(∑
l∈Z

(∑
k∈Z

|ak,l|p
)q/p)1/q

is finite. If p = q, we recover the sequence spaces `p(Z× Z).

2.2. Modulation spaces.

Definition 1. Given 1 ≤ p, q ≤ ∞, and given a window function g ∈ S, the mod-
ulation space Mp,q = Mp,q(R) is the space of all distributions f ∈ S ′ for which the
following norm is finite:

(6) ‖f‖Mp,q =

(∫
R

(∫
R
|Vgf(x, y)|p dx

)q/p

dy

)1/q

= ‖Vgf‖Lp,q ,

with the usual modifications if p and/or q are infinite. When p = q, we will write
Mp for the modulation space Mp,p.

Remark 1. The definition is independent of the choice of the window g in the sense
of equivalent norms. If 1 ≤ p, q < ∞, then M1 is densely embedded into Mp,q. In
fact, the Schwartz class S is dense in Mp,q for 1 ≤ p, q < ∞. One can also show that
the dual of Mp,q is Mp′,q′ , where 1 ≤ p, q < ∞ and 1

p
+ 1

p′
= 1

q
+ 1

q′
= 1. We refer to

[10] and the references therein for more details about modulation spaces.

Remark 2. The modulation spaceM1, also called the Feichtinger algebra, is a Banach
algebra under both pointwise multiplication and convolution and is invariant under
Fourier transform. It plays also an important role in the theory of Gabor frames
where it serves as a convenient class of windows that generate Gabor frames for the
whole class of modulation spaces.

2.3. Gabor Frames.

Definition 2. Given a window function φ ∈ L2(R) and constants α, β > 0, we say
that {MβnTαkφ}k,n∈Z is a Gabor frame for L2(R) if there exist constants A, B > 0
(called frame bounds) such that

A ‖f‖2
L2(R) ≤

∑
k,n∈Z

|〈f, MβnTαkφ〉|2 ≤ B ‖f‖2
L2(R), ∀f ∈ L2(R).

We refer to the works by Daubechies [1], Gröchenig [10], and Heil and Walnut [16]
for extensive treatments of frames and Gabor frames.

The theory of Gabor frames can be generalized from the pure L2-theory to the
whole class of modulation spaces. The next theorem taken from [5], [6], and [10]
provides a characterization of modulation spaces by means of Gabor frames and will
be used heavily in the sequel.

Theorem A. Let φ ∈ M1 be such that {MβnTαkφ}k,n∈Z is a Gabor frame for L2,
and let 1 ≤ p, q ≤ ∞. Then there exists a (canonical) dual γ ∈ M1 such that every
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tempered distribution in Mp,q has a Gabor expansion that converges unconditionally
(or weak* unconditionally if p = ∞ or q = ∞), namely

f =
∑

k,n∈Z

〈f, MβnTαkγ〉MβnTαkφ, ∀f ∈Mp,q(R);

moreover, we have the following norm equivalences

‖f‖Mp,q � ‖〈f, MβnTαkφ〉‖`p,q � ‖〈f, MβnTαkγ〉‖`p,q .

To summarize, a tempered distribution f belongs to the modulation space Mp,q(R)
if and only if the sequence of its Gabor coefficients defined as

Cφf = (〈f, MβnTαkφ〉)k,n∈Z

belongs to the sequence space `p,q(Z× Z). Moreover, the norm of f is equivalent to
the norm of its Gabor coefficients.

3. Boundedness of Hb,c on modulation spaces

Our main result can be stated as follows:

Theorem 1. For any b > 0 and c ∈ `∞, the operators Hb,c are bounded from Mp,q

into Mp,q for 1 < p < ∞, 1 ≤ q ≤ ∞ with a norm estimate

‖Hb,cf‖Mp,q ≤ C ‖c‖∞ ‖f‖Mp,q

for some constant depending only on b, p, and q. In particular, the Hilbert transform
H is bounded on Mp,q for 1 < p < ∞ and 1 ≤ q ≤ ∞

Proof. Since the modulation spaces are invariant under dilations, we may assume
without loss of generality that b = 1 by conjugating Hb,c with a suitable dilation.
Thus from now on we will only consider the multiplier (1) with b = 1.

Next we choose a Gabor frame that is tailored to the analysis of our particular
class of Fourier multipliers. Let

φ(x) =
(sin πx

πx

)2
, or equivalently, φ̂(ω) = χ[−1/2,1/2] ∗χ[−1/2,1/2](ω) = max(0, 1−|ω|).

It follows that φ ∈ M1 [3] or [10, Prop. 12.1.6], and that {MnT k
2
φ}k,n∈Z is a Gabor

frame for L2(R) [10, Thm. 6.4.1].
We expand f with respect to a Gabor frame, i.e., f =

∑
k,n∈Z〈f, MβnTαkγ〉MβnTαkφ,

and then take the coefficients of H1,c. We find that

(CφH1,cf)(k, n) = 〈H1,cf, MnT k
2
φ〉(7)

=
∑

k′,n′∈Z

〈f, Mn′T k′
2
γ〉 〈H1,cMn′T k′

2
φ,MnT k

2
φ〉 .

Recall that by Theorem A, f ∈ Mp,q if and only if Cγf =
(
〈f, MnT k

2
γ〉
)

k,n∈Z ∈
`p,q(Z2) and H1,cf ∈Mp,q if and only if CφH1,cf =

(
〈H1,cf, MnT k

2
φ〉
)

k,n∈Z ∈ `p,q(Z2).
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Consequently to verify the boundedness of H1,c, it suffices to show that the matrix
Υ whose entries are defined by

Υ(k,n),(k′,n′) = 〈H1,cMn′T k′
2
φ,MnT k

2
φ〉

is bounded on `p,q(Z2). The commutative diagram (8) illustrates the situation.

(8)
Mp,q H1,c−→ Mp,q

↓ Cγ ↓ Cφ

`p,q Υ−→ `p,q

We now compute the entries of the matrix Υ. Here we exploit the special properties
of the basic function φ and the algebra of time-frequency shifts. We have:

Υ(k,n),(k′,n′) = 〈H1,cMn′T k′
2
φ,MnT k

2
φ〉

= 〈(H1,cMn′T k′
2
φ)∧, (MnT k

2
φ)∧〉

= 〈
∑
m∈Z

cm χ[m,m+1] · Tn′M− k′
2
φ̂, TnM− k

2
φ̂〉

=
∑
m∈Z

cm eπik′(n′−n) 〈(T−nχ[m,m+1]) M k−k′
2

Tn′−nφ̂, φ̂〉

=
∑
m∈Z

cm (−1)k′(n′−n) 〈M k−k′
2

χ[m−n,m−n+1] Tn′−nφ̂, φ̂〉.(9)

Because the function φ̂ is compactly supported on [−1, 1], the sum in (9) is finite,
and only the terms m = n− 1 and m = n occur:

Υ(k,n),(k′,n′) = cn−1 (−1)k′(n′−n) 〈M k−k′
2

χ[−1,0]Tn′−nφ̂, φ̂〉

+ cn (−1)k′(n′−n) 〈M k−k′
2

χ[0,1]Tn′−nφ̂, φ̂〉.(10)

Furthermore, the support condition on φ̂ implies that the indices n, n′ are related
by n−1 ≤ n′ ≤ n+1 and we only need to calculate the following integrals explicitly:

〈M l
2
χ[0,1]φ̂, φ̂〉 = 〈M− l

2
χ[−1,0]φ̂, φ̂〉 =

∫ 1

0

(1− ω)2eπilω dω ,

〈M l
2
χ[0,1]T1φ̂, φ̂〉 = 〈M− l

2
χ[−1,0]T−1φ̂, φ̂〉 =

∫ 1

0

ω (1− ω) eπilω dω ,

whereas

〈M l
2
χ[0,1]T−1φ̂, φ̂〉 = 〈M− l

2
χ[−1,0]T1φ̂, φ̂〉 = 0 .

The evaluation of these elementary integrals (with integration by parts) yields
∫ 1

0
(1−

ω)2eπilω dω = ρl + δl/3 and
∫ 1

0
ω(1− ω)eπilω dω = εl + δl/6, where

δk =

{
0 if k 6= 0
1 if k = 0,
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ρk =

{
− 1

πik
+ 2

π2k2 + 2((−1)k−1)
(iπk)3

if k 6= 0

0 if k = 0

and

εk =

{
− (−1)k+1

π2k2 + 2((−1)k−1)
(iπk)3

if k 6= 0

0 if k = 0.

Using these sequences we can compute the entries of Λ as follows:

• Case 1: If n′ = n, then

Υ(k,n),(k′,n) = cn−1 (ρk′−k +
1

3
δk−k′) + cn (ρk−k′ +

1

3
δk′−k).

• Case 2: If n′ = n + 1, then

Υ(k,n),(k′,n′) = cn (−1)k′ (εk−k′ +
1

6
δk−k′).

• Case 3: If n′ = n− 1, then

Υ(k,n),(k′,n′) = cn−1 (−1)k′ (εk′−k +
1

6
δk′−k).

Consequently, letting ak′,n′ = 〈f, Mn′T k′
2
γ〉, we can rewrite (7) as follows:

(CφH1,c(f))(k, n) =
∑

k′,n′∈Z

Υ(k,n),(k′,n′) ak′,n′

=
∑
k′∈Z

ak′,n cn(ρk−k′ +
1

3
δk′−k) +

∑
k′∈Z

ak′,n cn−1(ρk′−k +
1

3
δk−k′)

+
∑
k′∈Z

ak′,n+1 cn (−1)k′ (εk−k′ +
1

6
δk−k′)

+
∑
k′∈Z

ak′,n−1 cn−1 (−1)k′ (εk′−k +
1

6
δk′−k).(11)

The action of the matrix Υ can now be expressed in terms of convolutions with
the sequences ρ, ε and δ defined above. More precisely,

(CφH1,c(f))(k, n) = cn(a·,n ∗ ρ(k) +
1

3
ak,n) + cn−1(a·,n ∗ ρ̃(k) +

1

3
ak,n)

+ cn((−1)·a·,n+1 ∗ ε(k) +
1

6
ak,n+1)

+ cn−1((−1)·a·,n−1 ∗ ε̃(k) +
1

6
ak,n−1),(12)

where x̃(k) = x(−k) and (−1)·a·,n ∗ ε denotes the sequence

(∑
k′∈Z

(−1)k′ ak′,nεk−k′

)
k∈Z

for any fixed n.
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The sequence ε belongs to `1(Z), thus we can use Young’s inequality to take care
of the convolution terms involving ε. However, ρ is the sum of three sequences, two
of which are in `1(Z), but the third one, 1

πik
, is clearly not summable. Fortunately,

the convolution with 1
πik

(the discrete Hilbert transform) is bounded on `p(Z) for
1 < p < ∞; see the book by Hardy, Littlewood and Pólya [13, Section 8.12], also
[21], [22]. Consequently, convolution with ρ is also bounded on `p(Z) for 1 < p < ∞,
and using Young’s inequality we obtain(∑

k∈Z

|CφH1,c(f)(k, n)|p
)1/p ≤ K ‖c‖∞ ‖a·,n‖p

for some positive constant K and every n ∈ Z. Hence, by taking the q-norm with
respect to the variable n we obtain

‖CφH1,c(f)‖`p,q(Z2) ≤ K ‖c‖∞ ‖a‖`p,q(Z2),

for all 1 ≤ q ≤ ∞. This concludes the proof. �

Remark 3. In general, the operators Hb,c are not bounded on M1. In fact, this is
already the case for the Hilbert transform H. Assume on the contrary that Hf ∈M1

for every f ∈ M1. Since M1 is invariant under the Fourier transform, this would

imply that Ĥf = −isgn (·)f̂ ∈ M1 and Ĥf would have a discontinuity at the origin

whenever f̂(0) 6= 0. But this contradicts the fact that every function in M1 is
uniformly continuous. By duality, H cannot be bounded from M∞ into M∞ either.
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