
ON ROUGH OSCILLATORY SINGULAR INTEGRAL OPERATORS

AHMAD AL SALMAN AND LOUKAS GRAFAKOS

Abstract. Let P : Rn×Rn→ R be a polynomial mapping where Rn is the n−dimensional
euclidean space (with n ≥ 2). Let h : (0,∞) → R be a measurable function, and let
Ω ∈ L1

(
Sn−1

)
be a homogeneous function of degree zero on Rn with mean value zero

over the unit sphere Sn−1. The aim of this paper is to investigate the long-standing
problem concerning the Lp boundedness of the oscillatory singular integral operator

TP,Ω,hf(x) = p.v.

∫
Rn

eiP (x,y)h(|x− y|) |x− y|−n Ω(x− y)f(y)dy

under the assumption that Ω ∈ L logL(Sn−1) and the radial function h is rough in the
sense that it satisfies an integrability condition in the form

sup
R > 0

1

R

R∫
0

|h (t)|γ dt < ∞

for some γ > 1.

1. Introduction And Statement of Results

This paper deals with the long standing problem of the Lp boundedness of oscillatory
singular integral operators with homogeneous kernels that are rough in the radial direction.
Oscillatory singular integrals have become an active research topic since their appearance
in the works of Ricci and Stein in [RS]. They play an important role in the study of singular
integrals on lower-dimensional varieties, in relation to twisted convolution on Heisenberg
group, and in the theory of singular Radon transform. For a thorough discussion concerning
oscillatory singular integral operators and recent results, we refer the readers to consult
[AlS], [DLY], [FY], [MWW], [P1], [P], [FP], [JL], [LZ], and [RS], among others.

Let n ≥ 2 and Sn−1 be the unit sphere in Rn equipped with the normalized Lebesgue
measure dσ. Let h : (0,∞) → R be a measurable function and let Ω ∈ L1

(
Sn−1

)
be a

homogeneous function of degree zero on Rn that satisfies

(1)

∫
Sn−1

Ω(x′) dσ(x′) = 0.

We let KΩ,h : Rn\{0} → R be the singular kernel of Calderón-Zygmund type defined by

KΩ,h(y) = h(|y|) |y|−nΩ(y).

Let P be the class of all polynomial mappings P : Rn×Rn→ R. The oscillatory singular
integral operator associated to KΩ,h and P is defined by

(2) TP,Ω,hf(x) = p.v.

∫
Rn

eiP (x,y)KΩ,h(x− y)f(y)dy.
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A considerably difficult problem is whether the operators TP,Ω,h map Lp → Lp for some
1 < p < ∞ provided that the radial function h is rough. It is the main aim of this note to
discuss such problem. In the following series of remarks, we shed some light on a number
of related historical results:

(i) When h = 1, the operator TP,Ω = TP,Ω,1 was introduced by Ricci and Stein in [RS].
Since then, various authors have investigated the Lp mapping properties of the class of
operators TP,Ω. It is worth mentioning that the the special operator T0,Ω,1 is the classical
Calderón-Zygmund singular integral operator, often denoted by TΩ. In [CZ1] and [CZ2],
Calderón and Zygmund introduced the method of rotations and proved that the operator
TΩ is bounded on Lp for 1 < p < ∞, given that Ω is either an odd function in L1(Sn−1) or
an even function in L log+ L(Sn−1). Here, Ω ∈ L log+ L(Sn−1) means

(3)

∫
Sn−1

|Ω(y′)| log(2 +
∣∣Ω(y′)∣∣)dσ(y′) < ∞

Moreover, they showed that the condition Ω ∈ L log+ L(Sn−1) is optimal in the sense that
TΩ may fail to be bounded on Lp for any p if the condition Ω ∈ L log+ L(Sn−1) is replaced
by any condition Ω ∈ L(log+ L)1−ε(Sn−1), ε > 0 [CZ1], [CZ2].

(ii) When h = 1, Ricci and Stein proved in [RS] that the operator TP,Ω maps Lp(Rn)
into itself for some 1 < p < ∞ provided that Ω is smooth in C1(Sn−1). Later, Lu-Zhang
[LZ] showed that the operator TP,Ω,h is bounded on Lp(Rn) for 1 < p < ∞ provided that
Ω ∈ Lq(Sn−1) for some q > 1 and that h is of bounded variation. Subsequently, the
condition Ω ∈ Lq(Sn−1) for some q > 1 was relaxed by Jiang and Lu to the condition
Ω ∈ L log+ L(Sn−1) [JL]. In fact, Jiang and Lu proved that TP,Ω,h is bounded on Lp,
1 < p < ∞ provided that Ω ∈ L log+ L(Sn−1) and h is of bounded variation. Here, it is
worth pointing out that L logL(Sn−1) contains the space Lq(Sn−1) (for any q > 1) properly.

(iii) When P = 0, the operator TΩ,h = T0,Ω,h was introduced by R. Fefferman [Fe]. In 1979,
R. Fefferman introduced the class of operators

TΩ,h(f)(x) = p.v.

∫
Rn

h(|x− y|) |x− y|−nΩ(x− y)f(y)dy.

He showed that TΩ,h is bounded on Lp for all 1 < p < ∞, provided that Ω ∈ Lipα(Sn−1)
for some α > 0 and that h ∈ L∞(0,∞). In 1986, J. Namazi showed that Fefferman’s result
still holds under the weaker condition Ω ∈ Lq(Sn−1) for some q > 1 [NA]. Subsequently,
in 1986, Duoandikoetxea and Rubio de Francia improved Namazi’s result by considering
weaker condition on the function h. In fact, they showed that the operator TΩ,h is bounded
on Lp for all 1 < p < ∞, provided that Ω ∈ Lq(Sn−1) for some q > 1 and that h satisfies
the integrability condition

(4) sup
R > 0

1

R

R∫
0

|h (t)|2 dt < ∞.

In [AlSP], Al-Salman and Pan improved the result of Duoandikoetxea and Rubio de Francia
by showing that TΩ,h is bounded on Lp for all 1 < p < ∞, provided that Ω ∈ L log+ L(Sn−1)
and that h lies in the general class ∆γ for some γ > 1. Here, ∆γ is the class of all measurable
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functions h : (0,∞) → R that satisfy (4) with 2 replaced by γ. For γ > 1, we then define

∥h∥∆γ
=

 sup
R > 0

1

R

R∫
0

|h (t)|γ dt


1
γ

.

It can be easily shown that the following inclusions hold

(5) L∞ (R) = ∆∞ ⊂ ∆γ2
⊂ ∆γ1

for γ1 < γ2.

(iv) In general, if TP,Ω,h is of convolution type (i.e., P (x, y) = P (x−y)), the Lp boundedness
properties of TP,Ω,h are well understood for various functions Ω and h. For background
information for such case, we advise readers to consult [AlS], [AlSP], [FP], and references
therein.

However, regarding rough h, there is still very little known about the Lp boundedness
(even for p = 2) of the general operator TP,Ω,h. In the following, we will tackle this problem,
starting with introducing the following class of mappings:

Let α ≥ 1. A mapping Φ : Rn × Rn → R is called α−separable if there exist mappings
φ, g1, g2 : Rn × Rn × R × R → R such that φ = φ(·, ·, ·, ·) is smooth in the third variable
and that

(6) Φ((r + v)y + z, z + uy) = φ(y, z, r, v)uα + g1(y, z, r, v) + g2(y, z, u, v)

for all (y, z, u, v, r) ∈ Sn−1 × Rn × R× R× R with y · z = 0. We let Sα be the class of all
α−separable mappings. For q ≥ 1 and 0 ≤ δ < 1, we let Sα,δ,q be the class of mappings
Φ ∈ Sα that satisfy

(7) ∥Ij,δ,Φ(·)∥Lq(Sn−1) ≤ 2εq,δjCΦ

for some 0 < εq,δ < 2α− 1, where

(8) Ij,δ,Φ(y) = sup
z∈Rn

2j∫
2−j−1

2∫
1

∣∣∣∣ ∂∂rφ(y, z, 2jr,±v)

∣∣∣∣−(1−δ)

drdv.

Here, j is a positive integer.
It is clear that Sα,δ1,q1 ⊂ Sα,δ2,q2 whenever δ1 ≤ δ2 and q2 ≤ q1. Examples of mappings

in Sα,δ,q are widely available. A particular example is the mapping Φ(x, y) = |x|2 |y|2 which
lies inS2,δ,q for 1/2 < δ < 1. Furthermore, we can show that the mapping Φ(x, y) = |x|

5
4 |y|2

is inS2,0,q. In section 2, we shall present a class of of polynomial mappings that is contained
in Sα,δ,q. Our results are the following:

Theorem A. Let Ω ∈ L log+ L(Sn−1) be a homogeneous function of degree zero on Rn and
satisfying (1). Let α ≥ 1, 0 ≤ β < 1, and q ≥ 1 . Suppose that Φ ∈ Sα,β,q and that
h ∈ ∆ 4α

2α+β−2
. Let

(9) T∞,β
Φ,Ω,hf(x) =

∫
|x−y|≥1

eiΦ(x,y) |x− y|−n h(|x− y|)Ω(x− y)(1 + |y|2)−βf(y)dy.

Then for 1 < p < ∞, there exists a constant Cp > 0 independent of Ω and h such that

(10)
∥∥∥T∞,β

Φ,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 4α

2α+β−2

∥Ω∥L logL ∥f∥p

for f ∈ Lp(Rn).
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Theorem B. Let Ω ∈ L log+ L(Sn−1) be a homogeneous function of degree zero on Rn and

satisfying (1). Suppose that PQ(x, y) = Q(x) |y|2 or PQ(x, y) = Q(y) |x|2, where Q is a
real valued polynomial on Rn. Suppose that 1 − 1/dq < β ≤ 1 and that h ∈ ∆ 8

2+β
where

d = deg(Q). Then for 1 < p < ∞, there exists a constant Cp > 0 independent of Ω and h
such that the operator

(11) T β
PQ,Ω,hf(x) =

∫
Rn

eiP (x,y) |x− y|−n h(|x− y|)Ω(x− y)(1 + |y|2)−βf(y)dy

satisfies

(12)
∥∥∥T β

PQ,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

∥Ω∥L logL ∥f∥p

for f ∈ Lp(Rn). The constant Cp may depend on the degree of the polynomial mapping Q.
But it is independent of the coefficients.

Theorem C. Let Ω ∈ L log+ L(Sn−1) be a homogeneous function of degree zero on Rn

and satisfying (1). Suppose that P (x, y) = Q(x)(a · y) or P (x, y) = Q(y)(a · x), where
Q is a real valued polynomial on Rn of degree d and a is a point in Rn. Suppose that
1 − 1/(d + 1)q < β ≤ 1 and that h ∈ ∆ 4

β
. Then for 1 < p < ∞, there exists a constant

Cp > 0 independent of Ω and h such that the operator

T β
P,Ω,hf(x) =

∫
Rn

eiP (x,y) |x− y|−n h(|x− y|)Ω(x− y)(1 + |y|2)−βf(y)dy.

satisfies ∥∥∥T β
P,Ω,hf

∥∥∥
p
≤ Cp ∥h∥∆ 4

β

∥Ω∥L logL ∥f∥p

for f ∈ Lp(Rn). The constant Cp may depends on the degree of the polynomial mapping
Q. But it is independent of the coefficients of Q the point a.

It should be noted that since the class L∞ is contained in ∆ 4
β
and ∆ 8

2+β
, the results

of Theorems A, B, and C hold for h ∈ L∞. This demonstrates that Theorems B and C
represent substantial improvements over the corresponding result in [JL] for the discussed
classes of polynomials. One can easily observe that Theorem C implies that the operator
TP,Ω,h is bounded on the subclass Lp

−β(R
n) = (1 + |y|2)−βLp(Rn) where 1 − 1/(d + 1)q <

β ≤ 1.
Finally, we shall prove the following result:

Theorem D. Let Ω ∈ L log+ L(Sn−1) be a homogeneous function of degree zero on Rn and
satisfy (1) and let a be a point in Rn. Suppose that for some 0 ≤ γ ≤ 1, the mapping
satisfies any of the following conditions
(i) Φ(x, y) = |x|γ (a · y)
(ii) Φ(x, y) = |y|γ (a · x)
(iii) Φ(x, y) = |x|γ |y|2

(iv) Φ(x, y) = |y|γ |x|2 .
If h ∈ ∆4, then for 1 < p < ∞, there exists a constant Cp > 0 independent of Ω and h
such that the operator TΦ,Ω,h satisfies

∥TΦ,Ω,hf∥p ≤ Cp ∥h∥∆4
∥Ω∥L logL ∥f∥p
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for f ∈ Lp(Rn). The constant Cp is independent of the point a in case the mapping Φ
satisfies (i) or (ii).

It should be noted that Theorem D is not previously known, even in the case of smooth
radial functions h. It represents a substantial development in the effort to resolve the Lp

boundedness problem for the class of operators in (2) when the radial function h is rough. To
prove the results in this paper, we rely on orthogonality arguments as in [RS]. However, due
to the presence of the rough radial function h in the one-dimensional oscillatory integrals,
it is not possible to apply Van der Corput’s lemma. Therefore, we will prove an alternative
lemma in the next section, enabling us to obtain good L2 estimates. We believe that this
lemma may have applications beyond those discussed in this paper.

2. A Lemma

As highlighted in the introduction, the aim of this section is to introduce an alternative
to Van der Corput’s lemma.

Lemma 2.1. Suppose that φ is a continuously differentiable function on (a, b) whose
derivative has N0 zeros on (a, b). Then for all 0 ≤ β < 1 and α ≥ 1, we have that
(13)∫ ∞

−∞

∣∣∣∣∫ b

a
e2π i|λ|αϕ(t)h(t) dt

∣∣∣∣2 dλ

(1 + |λ|)β
≤ Cβ,αN0 ∥h∥2

L
2α

(2α+β−2) [a,b]

(∫ b

a

∣∣φ′∣∣−(1−β)
dt

) 1
α

Proof. We shall prove (13) for α > 1. The case α = 1 follows by minor modifications.
Since φ′ has only a finite number of zeros on (a, b), there exist finitely many subintervals
of (a, b) on which φ′ has constant sign. Let (a′, b′) be such a subinterval of (a, b) on which
φ′ > 0 or φ′ < 0. Then a change of variables gives∫ b′

a′
e2π i|λ|αϕ(t)h(t) dt =

∫ φ(b′)

φ(a′)
e2π i|λ|αu h(φ−1(u))

φ′(φ−1(u))
du = Ĥ(− |λ|α),

where

H(u) = χ[φ(a′),φ(b′)]
h(φ−1(u))

φ′(φ−1(u))
.

Now (1 + |λ|)β/2 ≈ (1 + 4π2|λ|2α)(β/2α)/2, and the inverse Fourier transform in λ of this
function is the Bessel potential Gβ/2α acting on |λ|α. Then the left hand side of (13) is
comparable to∫ ∞

−∞

∣∣∣∣∣ Ĥ(− |λ|α)
(1 + 4π2|λ|2α)(β/2α)/2

∣∣∣∣∣
2

dλ =

∫ ∞

−∞

∣∣∣Ĥ(− |λ|α)Ĝβ/2α(|λ|α)
∣∣∣2 dλ

= 2

∫ ∞

0

∣∣∣Ĥ(−λα)Ĝβ/2α(λ
α)
∣∣∣2 dλ

=
2 (2π)

α−1
α

α

∫ ∞

0

∣∣∣Ĥ(−λ)Ĝβ/2α(λ) |2πλ|−
α−1
2α

∣∣∣2 dλ
=

(2π)
α−1
α

α

∫ ∞

−∞

∣∣∣Ĥ(− |λ|)Ĝβ/2α(|λ|) |2πλ|−
α−1
2α

∣∣∣2 dλ
≤ 1

α

∫ ∞

−∞

∣∣∣Iα−1
2α

(H ∗Gβ/2α)(λ)
∣∣∣2 dλ
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by Plancherels’ theorem. Where Iα−1
2α

is Riesz potential of order α−1
2α . Since the Riesz

potential maps Lp to L2 when 1/p− 1/2 = α−1
2α we get∫ ∞

−∞

∣∣∣∣∣ Ĥ(−λm)

(1 + 4π2|λ|2m)(β/2m)/2

∣∣∣∣∣
2

dλ ≤
(∫ ∞

−∞

∣∣H ∗Gβ/2m)(λ)
∣∣ 2m
2m−1 dλ

) 2m−1
m

.

But the Bessel potential operator acts like the Riesz potential and maps Lp to L
2α

2α−1 when
1/p− 2α−1

2α = β/2α. Thus the last expression is bounded by a constant multiple of

Cβ,α ∥H∥2L2α/(2α+β−1) =

(∫ φ(b′)

φ(a′)

∣∣∣∣ h(φ−1(u))

φ′(φ−1(u))

∣∣∣∣
2α

2α+β−1

du

) 2α+β−1
α

=

(∫ b′

a′

∣∣∣∣ h(t)φ′(t)

∣∣∣∣ 2α
2α+β−1

|φ′(t)| dt

) 2α+β−1
α

=

(∫ b′

a′
|h(t)|

2α
2α+β−1 |φ′(t)|

β−1
2α+β−1 dt

) 2α+β−1
α

.

Apply Hölder’s inequality with exponents (2α + β − 1)/(2α + β − 2) and 2α + β − 1 to
bound the above by a constant multiple of(∫ b′

a′
|h(t)|

2α
(2α+β−2)dt

) (2α+β−2)
α

(∫ b′

a′

∣∣φ′∣∣−(1−β)
dt

) 1
α

.

We now split up the interval (a, b) as a union of intervals (a′, b′) in such a way that the
endpoints of these intervals are exactly the zeros of φ′ on (a, b) union the points a and
b. Then the Cauchy-Schwarz inequality yields the required inequality (13) with the extra
factor of N0.

3. Certain Class of Polynomials

The purpose of this section is to present two classes of polynomials that lie in the class
Sα,δ,q. We start by recalling the following lemma in [RS]:

Lemma 3.1. ([RS]). Let P (x) =
∑

|α|≤d aαx
α be a polynomial mapping in Rn of degree at

most d. Suppose that ε < 1/d. Then∫
|x|<1

|P (x)|−ε dx ≤ Aε

∑
|α|≤d

|aα|

−ε

.

The bound Aε depends on ε (and the dimension), but not on the coefficients {aα}.
Now, we prove the following proposition:

Proposition 3.2. Let Q(x) =
∑

|β|≤d
aβx

β : Rn→ R be a polynomial mapping of degree

d ≥ 1. Then the mapping ΦQ(x, y) = Q(x) |y|2 belongs to the class S2,δ,q where q ≥ 1 and
1− 1/dq < δ ≤ 1. Moreover, the following inequality holds

(14)
∥∥Ij,δ,ΦQ

(·)
∥∥
Lq(Sn−1)

≤ C2−(1−δ)dj+j

(∑
|β|=d

|aβ|
)−(1−δ)

.
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Proof. We begin by observing that

ΦQ((r + v)y + z, z + uy) = φ(y, z, r, v)u2 + g1(y, z, r, v)

where φ(y, z, r, v) = Q((r + v)y + z) and g1(y, z, r, v) = |z|2Q((r + v)y + z). Notice that

φ(y, z, r, v) =
∑

|β|≤d
aβ((r + v)y + z)β

=
∑

|β|=d
aβ((r + v)y + z)β +

∑
|β|<d

aβ((r + v)y + z)β

=
∑

|β|=d
aβ

n∏
l=1

((r + v)yl + zl)
βl +

∑
|β|<d

aβ((r + v)y + z)β

=

(∑
|β|=d

aβy
β

)
rd +

d−1∑
l=1

al(y, z, v)r
l(15)

where al(y, z, v) is a polynomial in the variables y, z, and v. Thus, the equation (15),
combined with an application of Lemma 2.1 implies that

Ij,δ,ΦQ
(y) = sup

z∈Rn

2j∫
2−j−1

2∫
1

∣∣∣∣ ∂∂rφ(y, z, 2jr, v)
∣∣∣∣−(1−δ)

drdv

= sup
z∈Rn

2j∫
2−j−1

2∫
1

∣∣∣∣∣d
(∑

|β|=d
aβy

β

)
2djrd−1 +

d−1∑
l=1

2ljlal(y,±z, v)rl−1

∣∣∣∣∣
−(1−δ)

drdv

≤ C sup
z∈Rn

2j∫
2−j−1

∣∣∣∣∣
∣∣∣∣d(∑|β|=d

aβy
β

)
2dj
∣∣∣∣+ d−1∑

l=1

∣∣∣2ljlal(y,±z, v)
∣∣∣∣∣∣∣∣
−(1−δ)

dv

≤ C2−(1−δ)dj+j

∣∣∣∣∑|β|=d
aβy

β

∣∣∣∣−(1−δ)

.(16)

By applying Lemma 2.1 one more time, we get

∥∥Ij,δ,ΦQ
(y)
∥∥
q

≤ C2−(1−δ)dj+j

(∫
Sn−1

∣∣∣∣∑|β|=d
aβy

β

∣∣∣∣−(1−δ)q
) 1

q

≤ C2−(1−δ)dj+j

(∑
|β|=d

|aβ|
)−(1−δ)

.

This completes the proof of Proposition 3.2.

Our second example of polynomials that lie in the class Sα,δ,q is the following, whose
verification follows a similar argument to that in Proposition 3.2:

Proposition 3.3. Let Q(x) =
∑

|β|≤d
aβx

β : Rn→ R be a polynomial mapping of degree

d ≥ 1 and let a be a point in Rn. Then the mapping ΦQ(x, y) = Q(x)(a · y) belongs to the

class S1,δ,q where q ≥ 1 and 1 − 1/(d + 1)q < δ ≤ 1. Moreover, the following inequality
holds

(17)
∥∥Ij,δ,ΦQ

(·)
∥∥
Lq(Sn−1)

≤ C2−(1−δ)dj+j

(
∥a∥

∑
|β|=d

|aβ|
)−(1−δ)

.
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4. An Extrapolation Theorem

In order to prove results in this paper, we shall make use of the decomposition of Ω in
[AlSP]. To this end, it suffices to prove the following version of Theorem A:

Theorem 4.1. Let Ω ∈ Lq(Sn−1), q > 1, be a homogeneous function of degree zero on Rn

and satisfy (1). Let α ≥ 1 and 0 ≤ β < 1. Suppose that Φ ∈ Sα,β,q′ and that h ∈ ∆ 4α
2α+β−2

.

Then for1 < p < ∞, there exists a constant Cp > 0 independent of Ω and h such that∥∥∥T∞,β
Φ,Ω,h

∥∥∥
p
≤ ln(e+ ∥Ω∥q) ∥h∥∆ 4α

2α+β−2

∥Ω∥
ln(e+∥Ω∥q)−1

ln(e+∥Ω∥q)
1 Cp(1 + CΦ) ∥f∥Lp

for f ∈ Lp(Rn), 1 < p < ∞.

Proof. For j ∈ N, let Ij be the interval Ij = (2j−1, 2j ]. Let

(18) Kβ
Ω,h(x, y) = |x− y|−nΩ(x− y)h(|x− y|)(1 + |y|2)−β

and

(19) Kβ
Ω,h,j(x, y) = Kβ

Ω,h(x, y)χIj
(|x− y|),

where χIj
is the characteristic function of the interval Ij . Then,

(20) T∞,β
Φ,Ω,h(f)(x) =

∞∑
j=1

T∞,β
Φ,Ω,h,j(f)(x).

where

T∞,β
Φ,Ω,h,j(f)(x) = p.v.

∫
Rn

eiΦ(x,y)Kβ
Ω,h,j(x, y)f(y)dy.

By similar argument as in [LZ], for fixed y′ ∈ Sn−1, let Y be the hyperplane through the
origin orthogonal to y′. Then for x ∈ Rn, there exist s ∈ R and z ∈ Y such that x = z+sy′.
Therefore,

(21) T∞,β
Φ,Ω,h,j(f)(x) =

∫
Sn−1

Ω(y′)Nj,y′,z(f(z + ·y′)(t)dtdσ(y′),

where Nj,y′,z is the operator defined on L2 (R) by

Nj,y′,z(g)(s) =

∫
2j−1≤s−t<2j

eiΦ(z+sy′,z+ty′) h(s− t)

(s− t)(1 + |z|2 + t2)β
g(t)dt.

In order to estimate
∥∥Nj,y′,z

∥∥
2
, we use orthogonality argument. We consider the operator

(Nj,y′,z)
∗Nj,y′,z which has the kernel

(22) Mj(u, v) =
1

(1 + |z|2 + v2)
β
2 (1 + |z|2 + u2)

β
2

1∫
1
2

eiEj(y
′,z,u,v,r)bj(r, v − u)dr,

where

Ej(y
′, z, u, v, r) = Φ((2jr + v)y′ + z, z + vy′)− Φ((2jr + v)y′ + z, z + uy′)

and

(23) bj(r, v) = h(2jr)h(2jr + v)r−1(2jr + v)−1χ
[2j−1,2j ]

(2jr + v).
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Notice that

(24) Mj(u, v) = 0 if |v − u| > 2j−1.

Now, we write (Nj,y′,z)
∗Nj,y′,z as

(25) (Nj,y′,z)
∗Nj,y′,z = Lj,y′,z +Rj,y′,z

where Lj,y′,z is the operator with kernel Mj(u, v)χ
[0,2−j ]

(|v − u|) and Rj,y′,z is the operator

with kernel Mj(u, v)χ
[2−j ,2j−1]

(|v − u|).
First, we observe that∣∣∣Mj(u, v)χ

[0,2−j ]
(|v − u|)

∣∣∣
≤ 2−2j+1

 2j∫
2j−1

h(r)h(r + v)χ
[2j−1,2j ]

(r + v)dr

χ
[0,2−j ]

(|v − u|)

≤ 2−2j+1

 2j∫
2j−1

|h(r)|
4α

2α+β−2 dr


2α+β−2

4α
 2j∫
2j−1

|h(r)|
4α

2α−β+2 dr


2α−β+2

4α

χ
[0,2−j ]

(|v − u|)

≤ 2−2j+12(
2−β
2α

)j

 2j∫
2j−1

|h(r)|
4α

2α+β−2 dr


2α+β−2

2α

χ
[0,2−j ]

(|v − u|)

≤ 2−j+1 ∥h∥2∆ 4α
2α+β−2

χ
[0,2−j ]

(|v − u|).

Thus, we immediately obtain

(26) sup
u

u+2−j∫
u−2−j

∣∣∣Mj(u, v)χ
[0,2−j ]

(|v − u|)
∣∣∣ dv ≤ 2−2j+1 ∥h∥2∆ 4α

2α+β−2

and

(27) sup
v

v+2−j∫
v−2−j

∣∣∣Mj(u, v)χ
[0,2−j ]

(|v − u|)
∣∣∣ du ≤ 2−2j+1 ∥h∥2∆ 4α

2α+β−2

.

Therefore, we get the following L2−norm of the operator Lj,y′,z :

(28)
∥∥Lj,y′,z

∥∥
L2→L2 ≤ 2−2j+1 ∥h∥2∆ 4α

2α+β−2

.
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Next, we estimate the L2 norm of the operator Nj,y′,z. Notice that

∞∫
−∞

∞∫
−∞

∣∣∣Mj(u, v)χ
[2−j ,2j−1]

(|v − u|)
∣∣∣2 dvdu

=

∞∫
−∞

∞∫
−∞

∣∣∣Mj(u, v + u)χ
[2−j ,2j−1]

(|v|)
∣∣∣2 dvdu

=

∞∫
−∞

2j−1∫
2−j

|Mj(u, v + u)|2 dvdu+

∞∫
−∞

−2−j∫
−2j−1

|Mj(u, v + u)|2 dvdu

=

2j−1∫
2−j

∞∫
−∞

|Mj(u, v + u)|2 dudv +
−2−j∫

−2j−1

∞∫
−∞

|Mj(u, v + u)|2 dudv.

Now by the decomposition (6), we have

∣∣∣∣∣∣∣
1∫

1
2

eiEj(y
′,z,u,v+u,r)bj(r, v)dr

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1∫

1
2

eiφ(y,z,2
jr,v)uα

ei(g1(y,z,2
jr,v)+g2(y,z,u,v))bj(r, v)dr

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1∫

1
2

eiφ(y,z,2
jr,v)uα

eig1(y,z,2
jr,v)bj(r, v)dr

∣∣∣∣∣∣∣ .(29)

Therefore, (29) and the definition of the kernel Mj imply that

|Mj(u, v + u)| = 1

(1+|z|2+(u+v)2)
β
2 (1+|z|2+u2)

β
2

∣∣∣∣∣∣∣
1∫

1
2

eiφ(y,z,2
jr,v)uα

eig1(y,z,2
jr,v)bj(r, v)dr

∣∣∣∣∣∣∣ .
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Thus, by Lemma 2.1 along with the observation that∥∥∥eig1(j,v,·,z)bj(·, v)∥∥∥2
L

2α
2α+β−2 [ 1

2
,1]

≤

 1∫
1
2

∣∣∣h(2jr)h(2jr + v)r−1(2jr + v)−1χ
[2j−1,2j ]

(2jr + v)
∣∣∣ 2α
2α+β−2


2α+β−2

α

≤ 2−2j+4

 1∫
1
2

∣∣∣h(2jr)h(2jr + v)χ
[2j−1,2j ]

(2jr + v)
∣∣∣ 2α
2α+β−2


2α+β−2

α

≤ 2−2j+4

 1

2j

2j∫
2j−1

|h(r)|
4α

2α+β−2


2α+β−2

α

≤ 2−2j+4 ∥h∥4∆ 4α
2α+β−2

,

we get
∞∫

−∞

∞∫
−∞

∣∣∣Mj(u, v)χ
[2−j ,2j−1]

(|v − u|)
∣∣∣2 dvdu

≤ 2−2j+4 ∥h∥4∆ 4α
2α+β−2



2j−1∫
2−j

 1∫
1
2

∣∣ d
drφ(y, z, 2

jr, v)
∣∣−(1−β)

dr

 1
α

dv+

−2−j∫
−2j−1

 1∫
1
2

∣∣ d
drφ(y, z, 2

jr,−v)
∣∣−(1−β)

dr

 1
α

dv



≤ 2−2j+4 ∥h∥4∆ 4α
2α+β−2

2
1
α
j+1



2j−1∫
2−j

1∫
1
2

∣∣ d
drφ(y, z, 2

jr, v)
∣∣−(1−β)

drdv

 1
α

+

 −2−j∫
−2j−1

1∫
1
2

∣∣ d
drφ(y, z, 2

jr,−v)
∣∣−(1−β)

drdv

 1
α


≤ 2(−2+ 1

α
)j ∥h∥4∆ 4α

2α+β−2

C (Ij,δ,Φ(y))
1
α .

In the above step, we used the observation that |Mj(u, v)| ≤ C(1 + |u|)−β. Thus, we have∥∥Nj,y′,z

∥∥
L2→L2 ≤ 2(−1+ 1

2α
)j ∥h∥2∆ 4α

2α+β−2

C (Ij,δ(y))
1
2α ;

when combined with (25) and (28) imply∥∥(Nj,y′,z)
∗Nj,y′,z

∥∥
L2→L2 ≤ 2Cmax

(
2(−1+ 1

2α
)j (Ij,δ(y))

1
2α , 2−j

)
∥h∥2∆ 4α

2α+β−2

.

Therefore, we arrive at the following L2−norm of Nj,y′,z :

(30)
∥∥Nj,y′,z

∥∥
L2→L2 ≤ Cmax

(
2(−

1
2
+ 1

4α
)j (Ij,δ(y))

1
4α , 2−

1
2
j
)
∥h∥∆ 4α

2α+β−2

.
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Now, by the boundedness of the Hardy Littlewood maximal function on Lp for all 1 <
p < ∞, the following inequality holds

(31)
∥∥Nj,y′,z

∥∥
Lp→Lp ≤ C ∥h∥∆ 4α

2α+β−2

for p > 4α
2α−β+2 .

By interpolation between (30) and (31), we have

∥∥Nj,y′,z

∥∥
Lp→Lp ≤ Cmax

(
2(−

1
2
+ 1

4α
)θpj (Ij,δ(y))

θp
4α , 2−

θp
2
j

)
∥h∥∆ 4α

2α+β−2

≤ Cmax
(
2(−

1
2
+ 1

4α
)θpj (1 + Ij,δ(y)) , 2

− θp
2
j
)
∥h∥∆ 4α

2α+β−2

(32)

for some 0 < θp < 1 and p > 4α
2α−β+2 . Notice here that 4α

2α−β+2 is less than 2.

By (21), (32), and Minkowaski inequality, we obtain

∥∥∥T∞,β
Φ,Ω,h,j(f)

∥∥∥
p

≤ 2(−
1
2
+ 1

4α
)θpj

 ∫
Sn−1

∣∣Ω(y′)∣∣ (1 + Ij,δ,Φ(y)) dσ(y
′)

 ∥f∥p

≤ 2(−
1
2
+ 1

4α
)θpj

(
∥Ω∥q ∥Ij,δ,Φ∥q′ + ∥Ω∥L1

)
∥f∥p

≤ 2(−
1
2
+

1+εq′
4α

)θpj ∥Ω∥q ∥h∥∆ 4α
2α+β−2

∥f∥pCCΦ(33)

for p > 4α
2α−β+2 .

On the other hand, by (21), (31), and Minkowaski inequality, we have

(34)
∥∥∥T∞,β

Φ,Ω,h,j(f)
∥∥∥
p
≤ ∥Ω∥1 ∥h∥∆ 4α

2α+β−2

∥f∥pC.

Thus, by interpolation between (33) and (34), we get

∥∥∥T∞,β
Φ,Ω,h,j(f)

∥∥∥
p

≤ 2
(− 1

2
+ 1

4α
)

θp
ln(e+∥Ω∥q)

j
∥Ω∥

1
ln(e+∥Ω∥q)
q ∥Ω∥

ln(e+∥Ω∥q)−1

ln(e+∥Ω∥q)
1 ∥h∥∆ 4α

2α+β−2

(1 + CΦ)
∥∥∥(1 + |y|2)−βf

∥∥∥
p

≤ 2
(− 1

2
+ 1

4α
)

θp
ln(e+∥Ω∥q)

j
∥Ω∥

1
ln(e+∥Ω∥q)
q ∥Ω∥

ln(e+∥Ω∥q)−1

ln(e+∥Ω∥q)
1 ∥h∥∆ 4α

2α+β−2

(1 + CΦ) ∥f∥p

≤ 2
(− 1

2
+ 1

4α
)

θp
ln(e+∥Ω∥q)

j
∥Ω∥

ln(e+∥Ω∥q)−1

ln(e+∥Ω∥q)
1 ∥h∥∆ 4α

2α+β−2

(1 + CΦ) ∥f∥p .
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Thus, ∥∥∥T∞,β
Φ,Ω,h(f)

∥∥∥
p

≤
∑∞

j=1

∥∥∥T∞,β
Φ,Ω,h,j(f)

∥∥∥
Lp

≤ ∥Ω∥
ln(e+∥Ω∥q)−1

ln(e+∥Ω∥q)
1 ∥h∥∆ 4α

2α+β−2

(1 + CΦ) ∥f∥p
∑∞

j=1
2
(− 1

2
+ 1

4α
)

θp
ln(e+∥Ω∥q)

j

≤ ln(e+ ∥Ω∥q) ∥h∥∆ 4α
2α+β−2

∥Ω∥
ln(e+∥Ω∥q)−1

ln(e+∥Ω∥q)
1 Cp(1 + CΦ) ∥f∥Lp(35)

for p > 4α
2α−β+2 . Since

4α
2α−β+2 < 2, duality implies that the Lp bounds hold for all 1 < p <

∞. This completes the proof.

5. Some Reduction Lemmas

Lemma 5.1. Let Ω ∈ L∞(Sn−1) be a homogeneous function of degree zero on Rn satisfying
(1), ∥Ω∥1 ≤ 1, and ∥Ω∥∞ ≤ 2A for some A > 1. Suppose that h ∈ ∆ 4

β
for some 1/2 <

β ≤ 1. Let a, b ∈ Rn and let Kβ
Ω,h be given by (18). Then the operator

Sβ
a,b,Ω,hf(x) =

∫
Rn

ei(b·x)(a·y)Kβ
Ω,h(x, y)f(y)dy

satisfies

(36)
∥∥∥Sβ

a,b,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

A ∥f∥p

for f ∈ Lp(Rn), 1 < p < ∞ with constant Cp independent of A and the vectors a and b.

Proof. By dilation invariance, we may assume that ∥a∥ ∥b∥ = 1. We decompose Sβ
a,b,Ω,h as

follows

(37) Sβ
a,b,Ω,h = Sβ,0

a,b,Ω,h + Sβ,∞
a,b,Ω,h

where

(38) Sβ,0
a,b,Ω,h(f)(x) =

∫
|x−y|<1

ei(b·x)(a·y)Kβ
Ω,h(x, y)f(y)dy

and

(39) Sβ,∞
a,b,Ω,h(f)(x) =

∫
|x−y|≥1

ei(b·x)(a·y)Kβ
Ω,h(x, y)f(y)dy.

Now, since the function g(y) = (1+ |y|2)−βf(y) satisfies ∥g∥p ≤ ∥f∥p, it follows by Theorem

1.3 in [AlSP] that the operator

(40) Sβ
Ω,h(f)(x) =

∫
Rn

Kβ
Ω,h(x, y)f(y)dy

satisfies

(41)
∥∥∥Sβ

Ω,h(f)
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

∥Ω∥L logL ≤ Cp ∥h∥∆ 4
β

A ∥f∥p
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for all 1 < p < ∞. Here, we used the fact that ∥Ω∥L logL ≤ CA. By replacing h in (40)

with h(t)χ|t|<1, the inequality (41) implies that the local operator

(42) Sβ,0
Ω,h(f)(x) =

∫
Rn

Kβ
Ω,h(x, y)f(y)dy

satisfies

(43)
∥∥∥Sβ,0

Ω,h(f)
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

∥Ω∥L logL ∥f∥p ≤ Cp ∥h∥∆ 4
β

A ∥f∥p

for all 1 < p < ∞.
Now, for any given w ∈ Rn, we have

(44) (b · x)(a · y) = (b · (x− w))(a · (y − x)) + (b · (x− w))(a · x) + (b · w)(a · y).

Let

(45) Rβ,0
a,b,Ω,h(f)(x) = Sβ,0

a,b,Ω,h(f)(x)− ei(b·(x−w))(a·x)Sβ,0
Ω,h(e

−(b·w)(a·y)f)(x).

Thus, the operator Sβ,0
a,b,Ω,h can be dominated as

(46)
∣∣∣Sβ,0

a,b,Ω,h(f)(x)
∣∣∣ ≤ ∣∣∣Rβ,0

a,b,Ω,h(f)(x)
∣∣∣+ ∣∣∣ei(b·(x−w))(a·x)Sβ,0

Ω,h(e
−(b·w)(a·y)f)(x)

∣∣∣ .
Now, |x− y| < 1 and |x− w| < 1/4, we have∣∣∣Rβ,0

a,b,Ω,h(f)(x)
∣∣∣

≤
∫

|x−y|<1

|(b · (x− w))(a · (y − x))|
∣∣∣Kβ

Ω,h(x, y)
∣∣∣ |f(y)| dy

≤
∫

|x−y|<1

|x− w| |x− y|−n+1 |h(|x− y|)| |Ω(x− y)| |f(y)| dy.

Thus, ∫
|x−w|< 1

4

∣∣∣Rβ,0
a,b,Ω,h(f)(x)

∣∣∣p dx
≤ C{(

∫
|z|<1

|h(|z|)| |z|1−n |Ω(z)| dz)p}
∫
|y−w|< 5

4

|f(y)|p dy

≤ C ∥Ω∥p
L1

∫
|y−w|< 5

4

|f(y)|p dy.(47)

By (45), (42), and (47) along with ∥Ω∥L1 ≤ 1, we have

(48)

∫
|x−w|< 1

4

∣∣∣Sβ,0
a,b,Ω,hf(x)

∣∣∣p dx ≤ Cp ∥h∥∆ 4
β

A ∥f∥pp + Cp

∫
|y−w|< 5

4

|f(y)|p dy.

Since w ∈ Rn is arbitrary, (48) implies

(49)
∥∥∥Sβ,0

a,b,Ω,h(f)
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

A ∥f∥p

for all 1 < p < ∞.
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Next, we move to estimate
∥∥∥Sβ,∞

a,b,Ω,h

∥∥∥. However, this is a consequence of Theorem 4.1

since the mapping P (x, y) = (b · x)(a · y) belongs to S1,δ,1 for 1/2 < δ ≤ 1. Thus, by
Theorem 4.1, (17), and the assumption ∥a∥ ∥b∥ = 1, we get

(50)
∥∥∥Sβ,∞

a,b,Ω,h(f)
∥∥∥
p
≤ CpA ∥h∥∆ 4

β

∥f∥p

for all 1 < p < ∞ with constant Cp independent of the essential variables. Hence, by (49),
(50), (37), Minkowaski inequality, we obtain (36). This completes the proof.

Lemma 5.2. Let Ω ∈ L∞(Sn−1) be a homogeneous function of degree zero on Rn satisfying
(1), ∥Ω∥ ≤ 1, and ∥Ω∥∞ ≤ A for some A > 1. Suppose that d ≥ 1 and that h ∈ ∆ 4

β
for

some 1− 1/(d+1)q < β ≤ 1. Then for any polynomial mappings P with degree d and any
vector a ∈ Rn, the operator

(51) Sβ
a,P,Ω,hf(x) =

∫
Rn

eiP (x)(a·y)Kβ
Ω,h(x, y)f(y)dy

satisfies

(52)
∥∥∥Sβ

a,P,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

A ∥f∥p

for f ∈ Lp(Rn), 1 < p < ∞ with constant Cp independent of A, the of the coefficients of
the polynomial mapping P , and the vector a.

Proof. We argue by induction on d. If d = 1, then for some constant c, we have

(53) Sβ
a,P,Ω,hf(x) =

∫
Rn

ei(b·x)(a·y)Kβ
Ω,h(x, y)e

ic(a·y)f(y)dy.

Thus, (52) follows by Lemma 5.1. Next, assume that (52) holds for all polynomial mappings
P of degree at most d − 1 and vectors a ∈ Rn. Let P (x) =

∑
|α|=d

aαx
α be a polynomial

of degree d and let a be a vector in Rn. By dilation invariance, we may assume that(∑
|α|=d |aα|

)
∥a∥ = 1. We let

(54) Sβ,∞
a,P,Ω,hf(x) =

∫
|x−y|≥1

eiP (x)(a·y)Kβ
Ω,h(x, y)f(y)dy

and

(55) Sβ,0
a,P,Ω,hf(x) =

∫
|x−y|<1

eiP (x)(a·y)Kβ
Ω,h(x, y)f(y)dy.

Then

(56) Sβ
a,P,Q,Ω,hf(x) = Sβ,∞

a,P,Ω,hf(x) + Sβ,0
a,P,Ω,hf(x).

By assumptions and Theorem 4.1, we have

(57)
∥∥∥Sβ,∞

a,P,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

A ∥f∥p

for all 1 < p < ∞ with constant Cp independent of A, the of the coefficients of the
polynomial mapping P , and the vector a.



16 AHMAD AL SALMAN AND LOUKAS GRAFAKOS

Now, we turn to estimate
∥∥∥Sβ,0

a,P,Ω,h

∥∥∥
p
. For any given w ∈ Rn, we have

(58) P (x)(a·y) =

∑
|α|=d

aα(x− w)α

 (a·(y−x))+

∑
|α|=d

aα(x− w)α

 (a·x)+P̃w(x)(a·y)

where P̃w is a polynomial of degree at most d− 1. Thus,

∣∣∣Sβ,0
a,P,Q,Ω,h(f)(x)

∣∣∣ ≤

∣∣∣∣∣∣∣Sβ,0
a,P,Ω,h(f)(x)− e

i

( ∑
|α|=d

aα(x−w)α

)
(a·x)

Sβ,0

a,P̃ ,Ω,h
(f)(x)

∣∣∣∣∣∣∣+
∣∣∣Sβ,0

a,P̃ ,Ω,h
(f)(x)

∣∣∣
=

∣∣∣Rβ,0
a,P,Ω,h(f)(x)

∣∣∣+ ∣∣∣Sβ,0

a,P̃ ,Ω,h
(f)(x)

∣∣∣(59)

By induction assumption, we have

(60)
∥∥∥Sβ,0

a,P̃ ,Ω,h
(f)
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

A ∥f∥p

for all 1 < p < ∞. The constant Cp is independent of A, the of the coefficients of the

polynomial mapping P̃ , and the vector a. Hence, it is independent of w.
Next, for |x− y| < 1 and |x− w| < 1

4 , we have∣∣∣∣∣∣P (x)(a · y)−

∑
|α|=d

aα(x− w)α

 (a · x)− P̃w(x)(a · y)

∣∣∣∣∣∣
≤

∑
|α|=d

|aα| |x− w|d
 ∥a∥ |y − x| ≤

(
1

4
)d ∥a∥

∑
|α|=d

|aα|

 |y − x|

≤ C |y − x| .

Thus, by similar argument as in the steps (46) to (49), we obtain

(61)
∥∥∥Rβ,0

a,P,Ω,h(f)
∥∥∥
p
≤ Cp ∥h∥∆ 4

β

A ∥f∥p

for all 1 < p < ∞. Hence, (52) follows by (56), (57), (59), (60), (61), and Minkowaski
inequality. This competes the proof.

We end this section by proving the following lemma, which will be used to prove Theorem
D.

Lemma 5.3. Let Ω ∈ L∞(Sn−1) be a homogeneous function of degree zero on Rn satisfying
(1), ∥Ω∥ ≤ 1, and ∥Ω∥∞ ≤ A for some A > 1, and let a be a point in Rn. Suppose that
for some 0 ≤ γ ≤ 1, the mapping satisfies any of the following conditions
(i) Φ(x, y) = |x|γ (a · y)
(ii) Φ(x, y) = |y|γ (a · x)
(iii) Φ(x, y) = |x|γ |y|2

(iv) Φ(x, y) = |y|γ |x|2 .
If h ∈ ∆4, then for 1 < p < ∞, there exists a constant Cp > 0 independent of Ω and h
such that the operator TΦ,Ω,h satisfies

∥TΦ,Ω,hf∥p ≤ Cp ∥h∥∆4
∥Ω∥L logL ∥f∥p
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for f ∈ Lp(Rn). The constant Cp is independent of the point a in case the mapping Φ
satisfies (i) or (ii).

Proof (of Lemma 5.3). We shall present the proof for the cases (i) and (iii). The other
cases follow by considering the adjoint operator. We start by the case Φ(x, y) = |x|γ (a · y).
By dilation invariance, we may assume that ∥a∥ = 1. First, we observe that Φ ∈ S1,0,∞.
Thus, by Theorem 4.1, we have that the operator

T∞
Φ,Ω,hf(x) =

∫
|x−y|>1

eiΦ(x,y) |x− y|−n h(|x− y|)Ω(x− y)f(y)dy

satisfies

(62)
∥∥T∞

Φ,Ω,h

∥∥
p
≤ CpA ∥f∥Lp

for f ∈ Lp(Rn), 1 < p < ∞, with constant Cp independent of the point a.
Next, by similar argument as in the proof of Lemma 5.2 along with the observation that

|tγ − sγ | ≤ C |t− s|, we can show that the local operator

T 0
Φ,Ω,hf(x) =

∫
|x−y|≤1

eiΦ(x,y) |x− y|−n h(|x− y|)Ω(x− y)f(y)dy

satisfies

(63)
∥∥T 0

Φ,Ω,h

∥∥
p
≤ CpA ∥f∥Lp

for f ∈ Lp(Rn), 1 < p < ∞, with constant Cp independent of the point a. Hence, by (62),
(63), and Minkowaski inequality, we obtain

(64) ∥TΦ,Ω,h∥p ≤ CpA ∥f∥Lp

for f ∈ Lp(Rn), 1 < p < ∞, with constant Cp independent of the point a.

Now, we turn to the case Φ(x, y) = |x|γ |y|2 Since Φ ∈ S2,0,∞, we get that the cor-
responding global operator T∞

Φ,Ω,h satisfies (62). Thus, we only need to prove that the

corresponding local operator T 0
Φ,Ω,h satisfies (63). For any given w ∈ Rn, we have

Φ(x, y) = (|x|γ − |w|γ) |y − x|2 + |x|γ+2

+2(|x|γ − |w|γ)(y − x) · x+ |w|γ |y|2 − |w|γ |x|2 .
Let

Hw(x, y) = |x|γ+2 + 2(|x|γ − |w|γ)(y − x) · w + |w|γ |y|2 − |w|γ |x|2

=
(
|x|γ+2 − 2 |w|γ (y · w)− 2(|x|γ − |w|γ)(x · w) + |w|γ |y|2 − |w|γ |x|2

)
+ 2 |x|γ (y · w).

Notice that

THw,Ω,hf(x) = eik(x)
∫
Rn

ei2|x|
γ(w·y) |x− y|−n (h(|x− y|)) Ω(x−y)e−i(2|w|γ(w·y)−|w|γ |y|2)f(y)dy

where

k(x) = |x|γ+2 − 2(|x|γ − |w|γ)(x · w)− |w|γ |x|2 .
Thus, by result in case (i), we have

(65) ∥THw,Ω,h∥p ≤ CpA ∥f∥Lp
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for f ∈ Lp(Rn), 1 < p < ∞, with constant Cp independent of the point w. The estimate
(65) implies that the local operator corresponding to Hw satisfies

(66)
∥∥T 0

Hw,Ω,h

∥∥
p
≤ CpA ∥f∥Lp

for f ∈ Lp(Rn), 1 < p < ∞, with constant Cp independent of the point w. By noticing
that

|Φ(x, y)−Hw(x, y)|
≤ ||x|γ − |w|γ | |y − x|2 + 2 ||x|γ − |w|γ | |y − x| |x− w| ≤ c |y − x|

for |x− y| < 1 and |x− w| < 1
4 , an argument similar to that in the proof of Lemma 5.2

implies that the operator T 0
Φ,Ω,h satisfies (63). This completes the proof of the lemma.

Finally, we end this section by proving the following lemma:

Lemma 5.4. Let Ω ∈ L∞(Sn−1) be a homogeneous function of degree zero on Rn satisfying

(1), ∥Ω∥ ≤ 1, and ∥Ω∥∞ ≤ A for some A > 1. Suppose that 0 ≤ β < 1. Let Kβ
Ω,h be given

by (18). Suppose also that for all polynomial mappings L with degree at most d − 1 and
h ∈ ∆ 8

2+β
, the operator

(67) T β
L,Ω,hf(x) =

∫
Rn

eiL(x)|y|
2

Kβ
Ω,h(x, y)f(y)dy

satisfies

(68)
∥∥∥T β

L,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

A ∥f∥p

for f ∈ Lp(Rn), 1 < p < ∞ with constant Cp independent of A and the of the coefficients
of the polynomial mapping L. Then for any polynomial mapping P : Rn → Rn of degree
at most d ≥ 1 and any polynomial mapping Q with degree at most d− 1, the local operator

(69) Sβ,0
a,P,Q,Ω,hf(x) =

∫
|x−y|<1

eiP (x)·y+Q(x)|y|2Kβ
Ω,h(x, y)f(y)dy

satisfies

(70)
∥∥∥Sβ,0

a,P,Q,Ω,hf
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

A ∥f∥p

for f ∈ Lp(Rn), 1 < p < ∞ with constant Cp independent of A, the of the coefficients of
the polynomial mappings L and P .

Proof. We argue by induction on d. If d = 1, then for some constant c and vectors a, b,
and b̃ in Rn, we have

Sβ
a,P,Q,Ω,hf(x) =

∫
Rn

ei(b·x)(a·y)Kβ
Ω,h(x, y)e

i(b̃·y)+c2|y|2)f(y)dy.

Thus, (52) follows by Lemma 5.2 and the observation that h(t)χ|t|<1 ∈ ∆ 8
2+β

. Next, assume

that (68) and (70) hold for polynomial mappings P of degree at most d and polynomials
L and Q of degrees at most d − 1. Let P (x) = (

∑
|α|≤d+1 aα,jx

α)1≤j≤n be a polynomial
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mapping of degree d + 1 and and let Q(x) =
∑

|α|=d bαx
α be a polynomial mapping of

degree at most d. By dilation invariance, we may assume that n∑
j=1

∣∣∣∣∣∣
∑

|α|=d+1

aα,j

∣∣∣∣∣∣
2

1
2

+
∑
|α|=d

|bα| = 1.

For any given w ∈ Rn, we have

P (x) · y +Q(x) |y|2

=

 ∑
|α|=d+1

aα,j(x− w)α


1≤j≤n

· y + P̃ (x,w) · y +Q(x) |y|2

=

 ∑
|α|=d+1

aα,j(x− w)α


1≤j≤n

· y +

∑
|α|=d

bα(x− w)α

 |y − w|2 + 2

∑
|α|=d

bα(x− w)α

 (w · y)

+

∑
|α|=d

bα(x− w)α

 |w|2 + P̃ (x,w) · y + Q̃(x) |y|2

=

 ∑
|α|=d+1

aα,j(x− w)α


1≤j≤n

· (y − x) +

∑
|α|=d

bα(x− w)α

 |y − w|2 +O(x,w) · y + Q̃(x) |y|2

+

∑
|α|=d

bα(x− w)α

 |w|2(71)

where P̃ (x,w) : Rn → Rn is a polynomial of degree at most d in the x variable, Q̃(x) is a
polynomial of degree at most d − 1, and O(x,w) : Rn → Rn is a polynomial of degree at
most d in the x variable.

Thus,

∣∣∣Sβ,0
a,P,Q,Ω,h(f)(x)

∣∣∣ ≤

∣∣∣∣∣∣∣Sβ,0
a,P,Q,Ω,h(f)(x)− e

i

( ∑
|α|=d

bα(x−w)α

)
|w|2

Sβ,0

a,O,Q̃,Ω,h
(f̃)(x)

∣∣∣∣∣∣∣+
∣∣∣Sβ,0

a,P̃ ,Q,Ω,h
(f)(x)

∣∣∣
=

∣∣∣Rβ,0
a,P,Q,Ω,h(f)(x)

∣∣∣+ ∣∣∣Sβ,0

a,P̃ ,Q,Ω,h
(f)(x)

∣∣∣(72)

where

f̃(y) = eig(y)f(y)

and

g(y) = exp

i

∑
|α|=d

bα(y − w)α

 |y − w|2
 .

By induction assumption, we have

(73)
∥∥∥Sβ,0

a,P̃ ,Q,Ω,h
(f)
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

A ∥f∥p

for all 1 < p < ∞.
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Now, notice that∣∣∣∣∣∣P (x) · y +Q(x) |y|2 −

∑
|α|=d

bα(y − w)α |y − w|2 +O(x,w) · y + Q̃(x) |y|2 +

∑
|α|=d

bα(x− w)α

 |w|2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
 ∑

|α|=d+1

aα,j(x− w)α


1≤j≤n

· (y − x) +

∑
|α|=d

bα(x− w)α

 |y − w|2
∣∣∣∣∣∣

≤

 n∑
j=1

∣∣∣∣∣∣
∑

|α|=d+1

aα,j(x− w)α

∣∣∣∣∣∣
2

1
2

|x− y|+ 25

16

∑
|α|=d

|bα(x− w)α − bα(y − w)α|

≤

(
1

4
)d

 n∑
j=1

∣∣∣∣∣∣
∑

|α|=d+1

aα,j

∣∣∣∣∣∣
2

1
2

+ C
∑
|α|=d

|bα|

 |x− y| ≤ C |x− y| .(74)

Thus, by (71), (74), and similar argument as in the steps (46) to (49), we obtain

(75)
∥∥∥Rβ,0

a,P,Q,Ω,h(f)
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

A ∥f∥p

for all p > 8
6−β . Hence, (52) follows by (75), (73), (73), Minkowaski inequality, and duality.

This competes the proof.

6. Proof of Main Results

We start by the proof of Theorem A:

Proof (of Theorem A). By the same argument in [AlSP], we construct a sequence {Am :
m ∈ N} of functions on Sn−1 and a sequence {λm : m ∈ N} ⊂ R such that

(76)

∫
Sn−1

Am(u′)dσ(u′) = 0

(77) Am(ru′) = Am(u′), r > 0,

(78) ∥Am∥1 ≤ 4, ∥Am∥∞ ≤ 22m+2,

(79) Ω(x) =

∞∑
m=1

λmAm(x),

and

(80)

∞∑
m=1

(m+ 2)λm ≤ ∥Ω∥L(logL)(Sn−1).

By the identity (79), it follows that

(81) T∞,β
Φ,Ω,hf =

∞∑
m=1

λmT∞,β
Φ,Am,hf
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where T∞,β
Φ,Am,h is the operator given by (9) with Ω is replaced by Am. By Theorem 4.1 with

Ω is replaced by Am and q = ∞, we get∥∥∥T∞,β
Φ,Am,hf

∥∥∥
p

≤ ln(e+ ∥Am∥∞) ∥h∥∆ 4α
2α+β−2

∥Ω∥
ln(e+∥Ω∥∞)−1

ln(e+∥Ω∥∞)

1 Cp(1 + CΦ) ∥f∥Lp

≤ (2m+ 2) ∥h∥∆ 4α
2α+β−2

Cp(1 + CΦ) ∥f∥Lp(82)

for all 1 < p < ∞. Hence, by (81), Minkowski inequality, (80), and (82), we obtain (10).
This completes the proof of Theorem A.

Next, we prove Theorem B:

Proof (of Theorem B). We shall prove the case where PQ(x, y) = Q(x) |y|2. The case

PQ(x, y) = Q(y) |x|2 follows by considering the adjoint operator. Assume that PQ(x, y) =

Q(x) |y|2. We let {Am : m ∈ N} and {λm : m ∈ N} be as in the proof of Theorem A. Then
by (79), we get

(83) T β
PQ,Ω,hf(x) =

∞∑
m=1

λmT β
P,Am,hf

where T β
PQ,Am,h has the same definition as T β

PQ,Ω,h with Ω is replaced by Am. By Minkowski

inequality, (80), and (81), we only need to prove the following

(84)
∥∥∥T β

PQ,Am,hf
∥∥∥
p
≤ m ∥h∥∆ 8

2+β

Cp ∥f∥p

for all 1 < p < ∞ and h ∈ ∆ 8
2+β

with constants Cp independent of m and the coefficients

of the polynomial mapping Q.
We argue by induction on the degree d = deg(Q). If d = 0, then

T β
PQ,Am,hf(x) = TAm,hg(x)

where

g(x) = eic|x|
2

(1 + |x|2)−βf(x).

Thus, by Theorem 1.3 in [AlSP] and (78), it follows that∥∥∥T β
PQ,Am,hf

∥∥∥
p
≤ Cp ∥Am∥L log+ L ∥h∥∆ 8

2+β

∥g∥p ≤ mCp ∥f∥p

for all 1 < p < ∞ and h ∈ ∆ 8
2+β

with constants Cp independent of m.

Next, assume that the inequality (12) holds for all polynomials Q with degree less than

d and h ∈ ∆ 8
2+β

. Let Q(x) =
∑

|γ|≤d
aγx

γ be of degree d and let h ∈ ∆ 8
2+β

. By dilations

invariance, we may assume that

(85)
∑
|γ|=d

|aγ | = 1.

We let T β,0
P,Am,h be the local operator

(86) T β,0
PQ,Am,hf(x) =

∫
|x−y|<1

eiPQ(x,y)Kβ
Am,h(x, y)f(y)dy.
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where Kβ
Am,h is given by (18) with Ω is replaced by Am. Thus,

(87) T β
PQ,Am,hf(x) = T β,0

PQ,Am,hf(x) + T β,∞
PQ,Am,hf(x).

Let

Qd−1(x) =
∑

|γ|≤d−1
aγx

γ

and

Pd−1(x, y) = Qd−1(x) |y|2 .

Let T β
Pd−1,Ω,h and T β,0

P−1,Ω,hbe the operators given by (11) and (86) respectively with PQ is

replaced by Pd−1. By induction assumption, we have

(88)
∥∥∥T β

Pd−1,Am,bf
∥∥∥
p
≤ m ∥b∥∆ 8

2+β

Cp ∥f∥p

for all 1 < p < ∞ and b ∈ ∆ 8
2+β

with constants Cp independent of m and the coefficients

of the polynomial mapping Qd−1. By noting that h(t) = h(t)χ|t|<1
(t) is in ∆ 8

2+β
, it follows

from the induction assumption that

(89)
∥∥∥T β,0

PQ,Am,hf
∥∥∥
p
=
∥∥∥T β

PQ,Am,h
f
∥∥∥
p
≤ m ∥h∥∆ 8

2+β

Cp ∥f∥p

for all 1 < p < ∞, h ∈ ∆ 8
2+β

, and polynomials Q with degree less than d, where Cp is

independent of m and the coefficients of the polynomial mapping Q In particular, we have

(90)
∥∥∥T β,0

Pd−1,Am,hf
∥∥∥
p
≤ m ∥h∥∆ 8

2+β

Cp ∥f∥p

for all 1 < p < ∞ with constants Cp independent of m and the coefficients of the polynomial
mapping Qd−1. By Theorem 4.1 and (85), we get∥∥∥T β,∞

PQ,Am,hf(x)
∥∥∥
p

≤ ln(e+ ∥Am∥∞) ∥h∥∆ 8
2+β

∥Am∥
ln(e+∥Am∥∞)−1

ln(e+∥Am∥∞)

1 Cp ∥f∥Lp

≤ m ∥h∥∆ 8
2+β

Cp ∥f∥Lp(91)

for all 1 < p < ∞ with constants Cp independent of m the coefficients of the polynomial
mapping Q.

Next, we move to estimate
∥∥∥T β,0

PQ,Am,hf
∥∥∥
p
. For w ∈ Rn, we have

PQ(x, y) =

(∑
|γ|=d

aγ(x− w)γ
)
|y|2 + Q̃(x,w) |y|2

=

(∑
|γ|=d

aγ(x− w)γ
)
|y − w|2 −

(∑
|γ|=d

aγ(x− w)γ
)
|w|2 + Q̃(x,w) |y|2

+

(∑
|γ|≤d

aγ(x− w)γ
)
(2w · y)(92)

where Q̃ is a polynomial of degree less than or equal d− 1 in the x−variable. Set

Hd,w(x) =

(∑
|γ|=d

aγ(x− w)γ
)
.
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Let

R
(w,0)

Q̃,Am,h
(f)(x) =

∫
|x−y|<1

eiHd,w(x)(2w·y)+Q̃(x,w)|y|2Kβ
Ω,h(x, y)f(y)dy

Thus,by induction assumption and Lemma 5.4, we get

(93)
∥∥∥R(w,0)

Q̃,Am,h
f
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

m ∥f∥p

for f ∈ Lp(Rn), 1 < p < ∞ with constant Cp independent of m, the of the coefficients of

the polynomial mappings Hd,w, Q̃, and the point w.
Now

(94)
∣∣∣T β,0

PQ,Am,h(f)(x)
∣∣∣ ≤ ∣∣∣T β,0

PQ,Am,h(f)(x)− eig(x)R
(w,0)

Q̃,Am,h
(f̃)(x)

∣∣∣+ ∣∣∣R(w,0)

Q̃,Am,h
(f)(x)

∣∣∣
where

g(x) =

(∑
|γ|=d

aγ(x− w)γ
)
|w|2

and

f̃(y) = exp

(
i

(∑
|γ|=d

aγ(y − w)γ
)
|y − w|2

)
.

Notice that for |x− y| < 1 and |x− w| < 1
4 , we have∣∣∣∣PQ(x, y)−Hd,w(x)− Q̃(x,w) |y|2 − g(x)−

(∑
|γ|=d

aγ(x− w)γ
)
|y − w|2

∣∣∣∣
≤ 16

25

∑
|γ|=d

|aγ | |(x− w)γ − (y − w)γ |

≤ C

(∑
|β|=d

|aβ|
)
|x− y| = C |x− y| .(95)

Thus by (92), (93), (94), (95), Minkowaski inequality, and similar argument as that led to
(49) in the proof of Lemma 5.1, we obtain

(96)
∥∥∥T β,0

PQ,Am,hf
∥∥∥
p
≤ Cp ∥h∥∆ 8

2+β

m ∥f∥p

for f ∈ Lp(Rn), 1 < p < ∞ with constant Cp independent of m, the of the coefficients of
the polynomial mapping Q. By (87), (91), (96), Minkowaski inequality, and (80), we get
the (12). This completes the proof.

Proof (of Theorem C). Theorem C is an immediate consequence of Lemma 5.2 and similar
argument as in the proof of Theorem B. We omit details.

Finally, we move to the proof of Theorem D:

Proof (of Theorem D). Theorem D is an immediate consequence of Lemma 5.3 and similar
argument as in the proof of Theorem B. We omit details.
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