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Abstract

This paper is devoted to the Lp(R) theory of the fractional Fourier transform (FRFT)
for 1 ≤ p < 2. In view of the special structure of the FRFT, we study FRFT properties
of L1 functions, via the introduction of a suitable chirp operator. However, in the L1(R)
setting, problems of convergence arise even when basic manipulations of functions are
performed. We overcome such issues and study the FRFT inversion problem via ap-
proximation by suitable means, such as the fractional Gauss and Abel means. We also
obtain the regularity of fractional convolution and results on pointwise convergence of
FRFT means. Finally we discuss Lp multiplier results and a Littlewood-Paley theorem
associated with FRFT.
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1. Introduction1

In classical Fourier analysis three important classes of operators arise: maximal2

averages, singular integrals, and oscillatory integrals. The Hardy-Littlewood maximal3

operator, the Hilbert transform and the Fourier transform, respectively, are prime ex-4

amples of these classes of operators. In recent decades fractional versions of the first5

two types of operators have been widely studied, but less attention has been paid to6

the mathematical theory of the fractional Fourier transform. In this paper we under-7

take this task, which is strongly motivated by the important role it plays in practical8

applications.9

The Fourier transform is one of the most important and powerful tools in theoretical10

and applied mathematics. Mainly driven by the need to analyze and process non-11

stationary signals, the Fourier transform of fractional order has been proposed and12

developed by several scholars. At present, the fractional Fourier transform (FRFT for13

short) has found applications in many aspects of scientific research and engineering14

technology, such as swept filter, artificial neural network, wavelet transform, time-15

frequency analysis, time-varying filtering, complex transmission and so on (see, e.g.,16

[3, 14, 18, 22, 23, 25]). In addition, it was also used widely in fields of solving partial17

differential equations (cf., [11, 17]), quantum mechanics (cf., [17, 21]), diffraction18

theory and optical transmission (cf., [20]), optical system and optical signal processing19

(cf., [1, 10, 19]), optical image processing (cf., [10, 11]), etc.20

The FRFT is a fairly old mathematical tool. It dates back to work of Wiener [26]21

in 1929, but it was not until the past three decades that significant attention was paid22

to this object starting with Namias’ work [17] in 1980. The approach used by Namias23

relies primarily on eigenfunction expansions. For suitable functions f on the line, the24

classical Fourier transform F is defined as follows25

(F f )(x) =

∫ +∞

−∞

f (t)e−2πixtdt. (1.1)26

It is known that F is a homeomorphism on L2(R) and has eigenvalues27

λn = e−inπ/2, n = 0, 1, 2, . . . .28

with corresponding eigenfunctions29

ψn(x) = e−x2/2Hn(x),30

where Hn is the Hermite polynomial of degree n (see [5]). Since {ψn} is an orthonrmal31

basis of L2(R), it follows that32

F f =
∑

n

e−inπ/2( f , ψn)2ψn, ∀ f ∈ L2(R).33
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This naturally leads to the definition of the fractional order operators {Fα} for α ∈ R1

via2

Fα f =
∑

n

e−inα( f , ψn)2ψn, ∀ f ∈ L2(R). (1.2)3

It is clear that Fα = F when α = π/2.4

In 1987, McBride and Kerr [12] provided a rigorous definition on the Schwartz5

space S (R) of the FRFT in integral form, based on a modification of Namias’ fractional6

operators. For |α| ∈ (0, π), McBride and Kerr defined the FRFT by7

(Fα f )(x) =
ei(α̂π/4−α/2)

√
|sinα|

eiπx2 cotα
∫ +∞

−∞

f (t)e−πi(2xt cscα−t2 cotα)dt, (1.3)8

where α̂ = sgn (sinα). The definition extends to all α ∈ R by periodicity. The authors9

in [12] derive the equivalence between the definition of FRFT in terms of Hermite10

functions (1.2) and that of (1.3). Moreover, they proved that11

Theorem 1.1 ([12]). For all f ∈ S (R) and all α, β ∈ R we have12

(i) Fα : S (R)→ S (R) is a homeomorphism;13

(ii) FαFβ f = Fα+β f .14

Later, Kerr [9] studied the L2(R) theory of Fα. He gave the definition of FRFT on15

L2(R) by interpreting (1.3) as follows:16

(Fα f )(x) =
ei(α̂π/4−α/2)

√
|sinα|

eiπx2 cotα lim
R→∞

∫ R

−R
f (t)e−πi(2xt cscα−t2 cotα)dt (1.4)17

and proved the following result.18

Theorem 1.2 ([9]). For all f , g ∈ L2(R) and all α, β ∈ R we have19

(i) Fα : L2(R)→ L2(R) is a homeomorphism;20

(ii) ‖Fα f ‖2 = ‖ f ‖2;21

(iii) FαFβ f = Fα+β f ;22

(iv)
∫ +∞

−∞
(Fα f )(x)g(x)dx =

∫ +∞

−∞
f (x)(Fαg)(x)dx;23

(v) {Fα : α ∈ R} is a strongly continuous unitary group of operators on L2(R).24

More recently in [30], Zayed used a method similar to Namias’ to produce frac-25

tional versions of a wider class of transforms.26

In [28], Zayed extended the FRFT to different spaces of generalized functions by27

two approaches. The first is analytic and uses the so-called embedding method to28

define the FrFT on the space E′ of distributions with compact support. The second is29

algebraic, and involves the theory of Boehmians. Prior to this, Kerr [6] extended the30

action of the FRFT on the space S′ of tempered distributions via duality. For additional31
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work in this area, refer to [16]. Very recently, Kamalakkannan and Roopkumar [8]1

proved an inversion theorem and Parseval’s identity for the multidimensional fractional2

Fourier transform. In analogy with the existing fractional convolutions on functions of3

a single variable, they introduced a generalized fractional convolution on functions4

of several variables and derived several properties that relate to the multidimensional5

fractional Fourier transform.6

In an attempt to take the theory of FRFT beyond S (R) or L2(R), we discuss in7

this paper (Section 4) the behavior of FRFT on Lp(R) for 1 ≤ p < 2. In Section 2,8

we discuss the elementary properties of FRFT on L1(R). Section 3 is devoted to the9

problem of FRFT inversion, which is established via an approximation in terms of10

FRFT integral means. In Section 5, we discuss Lp multiplier results and a Littlewood-11

Paley theorem associated with FRFT. Using the language of time-frequency analysis,12

this means that an L1 chirp signal, whose FRFT is non-integrable, is recovered from the13

frequency domain as a limit of the inverted Abel means of its FRFT; this is discussed14

in the last section.15

2. FRFT on L1(R)16

It is natural to begin our exposition by defining the FRFT on L1(R); our definition is17

like that in [12]. In L1(R), problems of convergence arise when certain manipulations18

of functions are performed and FRFT inversion is not possible.19

Definition 2.1. For f ∈ L1(R) and α ∈ R, the fractional Fourier transform of order α20

of f is defined by21

(Fα f )(x) =


∫ +∞

−∞
Kα(x, t) f (t) dt, α , nπ, n ∈ N,

f (x), α = 2nπ,
f (−x), α = (2n + 1)π,

(2.1)22

where23

Kα(x, t) = Aα exp
[
2πi

(
t2

2
cotα − xt cscα +

x2

2
cotα

)]
24

is the kernel of FRFT and25

Aα =
√

1 − i cotα. (2.2)26

As the parameter α only appears as an argument of trigonometric functions (see27

(2.1)), it follows that Fα is 2π-periodic with respect to α. Hence, throughout this paper28

we shall always assume α ∈ [0, 2π).29

Notice now that when n ∈ Z, Fnπ/2 f = F n f , where F n is the nth power of the30

classical Fourier operator (1.1). Therefore, Fα can be regarded as the sth power of the31

Fourier transform, where s = 2α/π, that is,32

F s f = Fsπ/2 f .33
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Figure 2.1: rotation of time-frequency domain

Denote by I the identity operator and P the reflection operator defined by Pg(x) =1

g(−x). We can easily see that (Figure 2.1)2

F 0 = F0 = I;3

F 1 = Fπ/2 = F ;4

F 2 = Fπ = P;5

F 3 = F3π/2 = FP = PF ;6

F 4 = F2π = F 0 = I;7

F 4n±s = F2nπ±α = F±α = F ±s.8
9

Example 2.1. Define the following function on the line:10

f (t) =

∞∑
n=1

ne−iπt2 cotαχ[n,n+ 1
n3 )(t).11

Using (2.1), we can easily calculate the FRFT of this function:12

(Fα f ) (x) =
Aαeiπx2 cotα

2πixcscα

∞∑
n=1

ne−2nπixcscα
(
1 − e−

2πixcscα
n3

)
,13

where Aα is as in (2.2). This function lies in L1(R) but not in L2(R) as14 ∫ +∞

−∞

| f (t)| dt =

∞∑
n=1

∫ n+ 1
n3

n
n dt =

∞∑
n=1

1
n2 =

π2

6
< ∞15
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and1 ∫ +∞

−∞

| f (t)|2 dt =

∞∑
n=1

∫ n+ 1
n3

n
n2 dt =

∞∑
n=1

1
n

= ∞.2

Remark 2.1. Define the chirp operatorMα acting on functions φ in L1(R) as follows:3

Mαφ(x) = eπix2 cotαφ(x).4

Then for α , nπ, let Aα be as in (2.2). Then the FRFT of f ∈ L1(R) can be written as5

(Fα f )(x) = Aαeiπx2 cotαF [eiπt2 cotα f (t)](x cscα)6

= AαMαF [Mα f (t)](x cscα). (2.3)7
8

In view of (2.3), we see that the FRFT of a function (or signal) u(t) can be decom-9

posed into four simpler operators, according to the diagram of Figure 2.2:10

(i) multiplication by a chirp signal, g(t) = eπit2 cotαu(t);11

(ii) Fourier transform, ĝ(x) = (F g)(x);12

(iii) scaling, g̃(x) = ĝ(x cscα);13

(iv) multiplication by a chirp signal, (Fαu)(x) = Aαeπix2 cotαg̃(x).14

u(t) ×

eiπt2cotα

F Scaling ×

Aαeiπx2cotα

(Fαu)(x)
g(t) ĝ(x) g̃(x)

Figure 2.2: the decomposition of the FRFT

In view of the decomposition (2.3) of the FRFT, the boundedness properties of the15

fractional Fourier operator Fα is largely the same of the classical Fourier operator F .16

However, due to the factors eiπx2 cotαand eiπt2 cotα, the convergence properties are not17

trival. We now discuss some basic properties of the FRFT on L1(R).18

Firstly, we consider the behavior of FRFT at infinity. The following is the fractional19

version of the Riemann-Lebesgue lemma.20

Lemma 2.2 (Riemann-Lebesgue lemma). For f ∈ L1(R), we have that21

|(Fα f ) (x)| → 022

as |x| → ∞.23
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Proof. Since Mα f ∈ L1(R), then |F (Mα f )(x)| → 0 as x → ∞ by the Riemann-1

Lebesgue lemma for the classical Fourier transform. Hence, it follows from (2.3) and2

the boundedness ofMα that3

| (Fα f ) (x)| = |AαMαF (Mα f )(x cscα)| → 04

as |x| → ∞. �5

Proposition 2.3. The following statements are valid:6

(i) The FRFT Fα is a bounded linear operator from L1(R)→ L∞(R).7

(ii) For f ∈ L1(R), Fα f is uniformly continuous on R.8

Proof. (i) It is obvious that Fα is linear. Moreover the claimed boundedness holds as9

‖Fα f ‖∞ = |Aα| ‖F (Mα f )‖∞ ≤ |Aα| ‖Mα f ‖1 = |Aα| ‖ f ‖1 .10

(ii) For an arbitrary ε > 0, it follows from Lemma 2.2 that there exists η > 0 such that11

for every xi ∈ R \ [−η, η], | (Fα f ) (xi)| < ε/2, i = 1, 2. Thus12

|(Fα f ) (x1) − (Fα f ) (x2)| < ε.13

For every x1, x2 ∈ [−η−1, η+1], by the Lagrange mean value theorem, there exists14

ξ between x1 and x2 such that15

Kα(x1, t) − Kα(x2, t) =
∂

∂x
Kα (ξ, t) (x1 − x2)16

= 2πiAa (ξ cotα − t cscα) Kα (ξ, t) (x1 − x2) .17
18

There exist N > 0 such that,19 ∫
|t|≥N
| f (t)| dt <

ε

4
.20

Hence,21

|(Fα f ) (x1) − (Fα f ) (x2)| =

∣∣∣∣∣∣
∫ +∞

−∞

(Kα(x1, t) f (t) − Kα(x2, t) f (t)) dt

∣∣∣∣∣∣22

≤ 2
∫
|t|≥N
| f (t)| dt +

∣∣∣∣∣∣
∫
|t|≤N

f (t) (Kα(x1, t) − Kα(x2, t)) dt

∣∣∣∣∣∣23

<
ε

2
+ 2π|Aα|

∫
|t|≤N
| f (t)| |ξ cotα − t cscα| |x1 − x2| dt24

<
ε

2
+ C |x1 − x2|

∫
|t|≤N
| f (t)| dt25

≤
ε

2
+ C |x1 − x2| ‖ f ‖1 ,26
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1

where C is a constant independent of x1, x2. Then for2

|x1 − x2| <
ε

2C ‖ f ‖1
.3

we obtain4

|(Fα f ) (x1) − (Fα f ) (x2)| < ε.5

So, we conclude that Fα f is uniformly continuous on R. �6

Lemma 2.2 and Proposition 2.3 imply that7

f ∈ L1(R)⇒ Fα f ∈ C0(R). (2.4)8

A natural question is whether the reverse implication to (2.4) holds, precisely,9

Question. Given g ∈ C0(R), is there a L1-function f such that Fα f = g?10

The answer to this question is negative as the following example illustrates.11

Example 2.2. Let12

g(x) =


(ln x)−1 eπix2 cotα, x ≥ e,
xeπix2 cotα−1, −e < x < e,
− (ln(−x))−1 eπix2 cotα, x ≤ −e.

13

Then g ∈ C0(R) and g is not the FRFT of any L1-function. To show this, we need first14

to prove the following.15

Claim. If f ∈ L1(R) and Fα f is odd, then16 ∣∣∣∣∣∣
∫ N

ε

(Fα f )(x)
x

e−πix2 cotαdx

∣∣∣∣∣∣ ≤ 4 |Aα| ‖ f ‖117

for all N > ε > 0.18

Indeed, since Fα f is odd, we have19

(Fα f ) (x) =
1
2

((Fα f ) (x) − (Fα f ) (−x))20

=
1
2

∫ +∞

−∞

f (t) (Kα(x, t) − Kα(−x, t)) dt21

=
Aα

2

∫ +∞

−∞

f (t)eπi(t2+x2) cotα
(
e−2πixt cscα − e2πixt cscα

)
dt22

8



= −iAαeπix2 cotα
∫ +∞

−∞

f (t)eπit2 cotα sin (2πxt cscα) dt.1

2

Then3 ∫ N

ε

(Fα f )(x)
x

e−πix2 cotαdx = −iAα

∫ N

ε

1
x

(∫ +∞

−∞

f (t)eπit2 cotα sin (2πxt cscα) dt
)

dx4

= −iAα

∫ +∞

−∞

f (t)eπit2 cotα
(∫ 2πNt cscα

2πεt cscα

sin x
x

dx
)

dt.5

6

Note that7 ∣∣∣∣∣∣
∫ 2πNt cscα

2πεt cscα

sin x
x

dx

∣∣∣∣∣∣ ≤ 4, ∀ 0 < ε < N < +∞.8

Consequently,9 ∣∣∣∣∣∣
∫ N

ε

(Fα f )(x)
x

e−πix2 cotαdx

∣∣∣∣∣∣ ≤ |Aα|

∫ +∞

−∞

| f (t)|

∣∣∣∣∣∣
∫ 2πNt cscα

2πεt cscα

sin x
x

dx

∣∣∣∣∣∣ dt10

≤ 4 |Aα| ‖ f ‖1 .11
12

So the claim holds. Since g ∈ C0(R) is an odd function and13

lim
t→∞
ε→0+

∣∣∣∣∣∣
∫ t

ε

g(x)
x

e−πix2 cotαdx

∣∣∣∣∣∣ = ∞,14

the above claim implies that g is not the FRFT of any L1-function.15

We conclude this section with a useful identity. We should point out that this16

formula has already been proved in the L2 setting (see [9, Theorem 2.1 (ii)]).17

Theorem 2.4 (Multiplication formula). For every f , g ∈ L1(R) and α ∈ R we have18 ∫ +∞

−∞

(Fα f )(x)g(x)dx =

∫ +∞

−∞

f (x)(Fαg)(x)dx. (2.5)19

Proof. The identity (2.5) is an immediate consequence of Fubini’s theorem. Indeed,20 ∫ +∞

−∞

(Fα f )(x)g(x)dx =

∫ +∞

−∞

g(x)
(∫ +∞

−∞

f (t)Kα (x, t) dt
)

dx21

=

∫ +∞

−∞

f (t)
(∫ +∞

−∞

g(x)Kα (x, t) dx
)

dt22

=

∫ +∞

−∞

f (x)(Fαg)(x)dx,23

24

noting that Kα is a bounded function and Kα (x, t) = Kα (t, x) for all x and t. �25
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3. Fractional approximate identities and FRFT inversion on L1(R)1

In this section, we study FRFT inversion. Namely, given the FRFT of an L1-2

function, how to recover the original function? We naturally hope that the integral3 ∫ +∞

−∞

(Fα f )(x)K−α(x, t)dx (3.1)4

equals f (t). Unfortunately, when f is integrable, one may not necessarily have thatFα f5

is integrable, so the integral (3.1) may not make sense. In fact, F π
2

f is nonintegrable in6

general (cf., [4, pp. 12]).7

Example 3.1. Let8

f (t) =

{
e−π(2t+it2 cotα), t ≥ 0,

0, t < 0.
9

Then f ∈ L1(R) but10

(Fα f ) (x) =
Aαeπix2 cotα

2π (1 + ixcscα)
< L1(R).11

To overcome this difficulty, we employ integral summability methods. We intro-12

duce the fractional convolution and we establish the approximate identities in the frac-13

tional setting. Then we study the Φα means of the fractional Fourier integral, especially14

Abel means and Gauss means. Based on the regularity of the fractional convolution15

and the results of pointwise convergence, we can approximate f by the Φα means of16

the integral (3.1).17

3.1. Fractional convolution and approximate identities18

In order to establish the approximate identities and fractional Fourier integral means19

required in this work, we need to introduce a kind of fractional convolution. Similar20

definitions were introduced by D. Mustard and A. Zayed; see [15, 27].21

Definition 3.1. Let f , g be in L1(R). Define the fractional convolution of order α by22 (
f
α
∗ g

)
(x) = e−πix2 cotα

∫ +∞

−∞

eπit2 cotα f (t)g(x − t)dt =M−α (Mα f ∗ g) (x).23

We reserve the following notation for the L1 dilation of a function φ24

φε(x) :=
1
ε
φ
( x
ε

)
, ∀ε > 0.25

The following is a fundamental result concerning fractional convolution and approxi-26

mate identities.27
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Theorem 3.2. Let φ ∈ L1(R) and
∫ +∞

−∞
φ (x) dx = 1. If f ∈ Lp (R) , 1 ≤ p < ∞, then1

lim
ε→0

∥∥∥∥( f
α
∗ φε

)
− f

∥∥∥∥
p

= 0.2

Proof. Note that3 (
f
α
∗ φε

)
(x) − f (x) = e−πix2 cotα

∫ +∞

−∞

eπit2 cotα f (t)φε(x − t)dt −
∫ +∞

−∞

φε (t) f (x) dt4

=

∫ +∞

−∞

(
eπi((x−t)2−x2) cotα f (x − t) − f (x)

)
φε(t)dt.5

6

By Minkowski’s integral inequality, we obtain7

∥∥∥∥( f
α
∗ φε

)
− f

∥∥∥∥
p

=

(∫ +∞

−∞

∣∣∣∣∣∣
∫ +∞

−∞

(
eπi((x−t)2−x2) cotα f (x − t) − f (x)

)
φε(t)dt

∣∣∣∣∣∣p dx
) 1

p

8

≤

∫ +∞

−∞

(∫ +∞

−∞

∣∣∣∣eπi((x−t)2−x2) cotα f (x − t) − f (x)
∣∣∣∣p dx

) 1
p

|φε(t)| dt9

=

∫ +∞

−∞

(∫ +∞

−∞

∣∣∣∣eπi((x−εt)2−x2) cotα f (x − εt) − f (x)
∣∣∣∣p dx

) 1
p

|φ(t)| dt.10

11

We first prove that12

Jε :=
(∫ +∞

−∞

∣∣∣∣eπi((x−εt)2−x2) cotα f (x − εt) − f (x)
∣∣∣∣p dx

) 1
p

→ 0 (3.2)13

as ε→ 0.14

In fact, for an arbitrary η > 0, since the space of continuous functions with compact15

support Cc (R) is dense in Lp(R), there exists g ∈ Cc (R) such that16

‖ f − g‖p <
η

2
.17

Since g is uniformly continuous,18

lim
ε→0
|g (x − εt) − g (x)| = 0.19

Note that20

|Jε| ≤
∥∥∥∥eπi(((·)−εt)2−(·)2) cotα f ((·) − εt) − eπi(((·)−εt)2−(·)2) cotαg((·) − εt)

∥∥∥∥
p

21

+
∥∥∥∥eπi(((·)−εt)2−(·)2) cotαg((·) − εt) − g((·) − εt)

∥∥∥∥
p

22
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+ ‖g((·) − εt) − g‖p + ‖ f − g‖p1

≤2 ‖ f − g‖p + ‖g‖∞
∥∥∥∥eπi(((·)−εt)2−(·)2) cotα − 1

∥∥∥∥
Lp(supp g)

+ ‖g((·) − εt) − g‖p .2

3

Consequently, it follows from Lebesgue’s dominated convergence theorem that4

lim
ε→0
|Jε| ≤η + lim

ε→0
‖g((·) − εt) − g‖p5

+ ‖g‖∞ lim
ε→0

∥∥∥∥eπi(((·)−εt)2−(·)2) cotα − 1
∥∥∥∥

Lp(supp g)
= η.6

7

Therefore (3.2) holds. In view of8 (∫ +∞

−∞

∣∣∣∣eπi((x−εt)2−x2) cotα f (x − εt) − f (x)
∣∣∣∣p dx

) 1
p

≤ 2 ‖ f ‖p < ∞,9

and using Lebesgue’s dominated convergence theorem again, we deduce that10

lim
ε→0

∥∥∥∥( f
α
∗ φε

)
− f

∥∥∥∥
p

= 0.11

�12

Next, we discuss the pointwise convergence of approximate identities with respect13

to fractional convolution.14

Theorem 3.3. Let φ ∈ L1(R) and
∫ +∞

−∞
φ (x) dx = 1. Denote the decreasing radial15

dominant functions of φ by ψ (x) = sup
|t|≥|x|
|φ (t)|. If ψ ∈ L1(R) and f ∈ Lp(R), 1 ≤ p < ∞,16

then17

lim
ε→0

(
f
α
∗ φε

)
(x) = f (x) , a.e. x ∈ R.18

Proof. Since ψ is decreasing and nonnegative, we have19

|xψ(x)| ≤ 2

∣∣∣∣∣∣
∫ x

x/2
ψ(s)ds

∣∣∣∣∣∣→ 020

as x→ 0 or x→ ∞. Moreover, there is a constant A > 0 such that21

|xψ(x)| ≤ A, ∀x ∈ R.22

AsMα f ∈ Lp(R), it follows from Lebesgue’s differentiation theorem that, for almost23

all x ∈ R we have24

lim
r→0

1
r

∫ r

−r

∣∣∣∣eπi(x−t)2 cotα f (x − t) − eπix2 cotα f (x)
∣∣∣∣ dt = 0.25

12



Let1

Ω =

{
x : lim

r→0

1
r

∫ r

−r

∣∣∣∣eπi((x−t)2−x2) cotα f (x − t) − f (x)
∣∣∣∣ dt = 0

}
,2

and3

Gx(t) :=
∫ t

0

∣∣∣∣eπi((x−τ)2−x2) cotα f (x − τ) − f (x)
∣∣∣∣ dτ.4

Given x ∈ Ω and δ > 0, there exists η > 0 such that5 ∣∣∣∣∣1t Gx(t)
∣∣∣∣∣ < δ6

whenever 0 < |t| ≤ η. Consider7 (
f
α
∗ φε

)
(x) − f (x) =

∫ +∞

−∞

(
eπi((x−t)2−x2) cotα f (x − t) − f (x)

)
φε(t)dt8

=

(∫
|t|≤η

+

∫
|t|≥η

) (
eπi((x−t)2−x2) cotα f (x − t) − f (x)

)
φε(t)dt9

=: I1 + I2.10
11

For I1 an integration by parts yields12

I1 ≤

∫ η

−η

∣∣∣∣eπi((x−t)2−x2) cotα f (x − t) − f (x)
∣∣∣∣ ∣∣∣∣∣1εφ( t

ε

)∣∣∣∣∣ dt13

≤

∫ η

−η

∣∣∣∣eπi((x−t)2−x2) cotα f (x − t) − f (x)
∣∣∣∣ 1
ε
ψ
( t
ε

)
dt14

=
1
t
G(t)

t
ε
ψ
( t
ε

)∣∣∣∣∣η
−η

−

∫ η/ε

−η/ε

1
ε

G(εs)dψ(s)15

≤ Aδ −
∫ η/ε

−η/ε

1
εs

G(εs)sdψ(s)16

≤ Aδ + 2δ
∫ +∞

0
sdψ(s)17

≤ Aδ + 2δsψ(s)|+∞0 + 2δ
∫ ∞

0
ψ(s)ds18

= δ

(
A + 2

∫ ∞

0
ψ(s)ds

)
=: δA1.19

20

Here, we used that fact that ψ(x) ≥ |φ(x)| and xψ(x)→ 0 as x→ 0 or x→ ∞21

On the other hand, it follows from Hölder’s inequality that22

I2 ≤

∫
|t|≥η

∣∣∣∣eπi((x−t)2−x2) cotα f (x − t) − f (x)
∣∣∣∣ |ψε(t)| dt23

13



≤

∫
|t|≥η
| f (x − t)ψε(t)| dt+ | f (x)|

∫
|t|≥η

ψε(t)dt1

≤ ‖ f ‖p

∥∥∥χηψε∥∥∥p′
+ | f (x)|

∫
|t|≥ ηε

ψ(t)dt → 0.2

3

as ε → 0, where χη is the characteristic function of the set {x : |x| ≥ η}. As δ is4

arbitrary, the theorem is proved. �5

Remark 3.1. Using the maximal function approach as in Duoandikoetxea in [4, Propo-6

sition 2.7 and Theorem 2.2], we can obtain another proof of Theorem 3.3 that extends7

to functions in weighted spaces with Muckenhoupt weights.8

Let φ be a function which is positive, radial, decreasing and integrable. Then9

sup
ε>0
|(φε

α
∗ f )(x)| ≤ ‖φ‖1M f (x), (3.3)10

where M f (x) is the Hardy-Littlewood maximal function of f , defined by11

M f (x) = sup
r>0

1
2r

∫ r

−r
| f (x − y)|dy.12

(i) If |φ(x)| ≤ ψ(x) almost everywhere, where ψ is positive, radial, decreasing and13

integrable, it follows from (3.3) and the weighted boundedness of M that the14

maximal function supε>0 |(φε
α
∗ f )(x)| is weighted weak (1, 1) and weighted strong15

(p, p) for 1 < p ≤ ∞. We refer to [4, Chap. 7] for this direction.16

(ii) Combining the result in (i) and Theorem 2.2 in [4], we can get the pointwise17

convergence result Theorem 3.3.18

3.2. Fractional Fourier integral means19

Definition 3.4. Given Φ ∈ C0(R) and Φ(0) = 1, a function f , and ε > 0 we define20

Mε,Φα
( f )(t) :=

∫ +∞

−∞

(Fα f )(x)K−α(x, t)Φα(εx)dx,21

where22

Φα (x) := Φ (x cscα) .23

The expressions Mε,Φα
( f ) (with varying ε) are called the Φα means of the fractional24

Fourier integral of f .25

Theorem 3.5. Let f ,Φ ∈ L1(R). Then for any ε > 0 and t ∈ R we have26

Mε,Φα
( f )(t) = ( f

α
∗ ϕ̃ε)(t),27

28

where ϕ := FΦ and ϕ̃ (x) = ϕ (−x)29

14



Proof. Taking advantage of identity (2.3) and the multiplication formular of the clas-1

sical Fourier transform, we write2

Mε,Φα
( f ) (t) =

∫ +∞

−∞

(Fα f ) (x)K−α(x, t)Φα (εx) dx3

= A−αe−iπt2 cotα
∫ +∞

−∞

(Fα f ) (x)e−iπx2 cotαe2πitx cscαΦα (εx) dx4

= A−αAαe−iπt2 cotα
∫ +∞

−∞

F
[
eiπt2 cotα f (t)

]
(x cscα)e2πitx cscαΦ (εx cscα) dx5

= e−iπt2 cotα
∫ +∞

−∞

F
[
eiπt2 cotα f (t)

]
(x)e2πitxΦ (εx) dx6

= e−iπt2 cotα
∫ +∞

−∞

eiπx2 cotα f (x)F
[
e2πit(·)Φ (ε(·))

]
(x) dx7

= e−iπt2 cotα
∫ +∞

−∞

eiπx2 cotα f (x)ϕε (x − t) dx8

=
(

f
α
∗ ϕ̃ε

)
(t).9

10

The desired result is proved. �11

In the sequel we will make use of the following well-known results.12

Proposition 3.6 ([24]). Let ε > 0. Then13

(a) F
[
e−2πε| · |

]
(x) = 1

π
ε

ε2+x2 =: Pε (x) (Poisson kernel);14

(b) F
[
e−4π2ε| · |2

]
(x) = 1

(4πε)1/2 e−x2/4ε =: Wε (x) ( Gauss–Weierstrass kernel).15

Lemma 3.7 ([4]). For every ε > 0, the Weierstrass and Poisson kernels satisfy16

(i) Wε, Pε ∈ L1(R);17

(ii)
∫ +∞

−∞
Wε(x) dx =

∫ +∞

−∞
Pε(x) dx = 1.18

Definition 3.8. For f ∈ Lp(R), 1 ≤ p < ∞, and ε > 0, the expressions19

uα (t, ε) :=
(

f
α
∗ P̃ε

)
(t) =Mα

[∫ +∞

−∞

Mα f (x)Pε((·) − x) dx
]

(t)20

are called the fractional Poisson integrals of f . The expressions21

S α (t, ε) :=
(

f
α
∗ W̃ε

)
(t) =Mα

[∫ +∞

−∞

Mα f (x)Wε((·) − x)dx
]

(t)22

are called and fractional Gauss-Weierstrass integrals of f .23

15



We now focus on two functions that give rise to special Φα means. Denote by1

pα (x) = e−2πε|cscα||x| and wα (x) = e−4π2εx2 csc2 α.2

Definition 3.9. The Φα means3

Mε,pα( f ) =

∫ +∞

−∞

(Fα f ) (x)K−α(x, ·)e−2πε|cscα||x| dx4

are called the Abel means of the fractional Fourier integral of f , while5

Mε,wα
( f ) =

∫ +∞

−∞

(Fα f ) (x)K−α(x, ·)e−4π2ε2 x2 csc2 αdx6

are called the Gauss means of the fractional Fourier integral of f .7

By Theorem 3.5 and Proposition 3.6, the Poisson integrals and Gauss-Weierstrass8

integrals of f are the Abel and Gauss means, respectively. It is straightforward to verify9

the following identities.10

Proposition 3.10. If f ∈ L1(R), then for any ε > 0, the following identities are valid11

(a) uα (t, ε) = Mε,pα( f )(t);12

(b) S α(t, ε2) = Mε,wα
( f )(t).13

3.3. FRFT inversion14

We now address the FRFT inversion problem. In view of Theorems 3.2, 3.3 and15

3.5, we can derive the following conclusions.16

Theorem 3.11. If Φ, ϕ := FΦ ∈ L1(R) and
∫ +∞

−∞
ϕ (x) dx = 1, then the Φα means of the17

Fourier integral of f are convergent to f in the sense of L1 norm, that is,18

lim
ε→0

∥∥∥∥∥∥
∫ +∞

−∞

(Fα f ) (x)K−α(·, x)Φα (εx) dx − f (·)

∥∥∥∥∥∥
1

= 0.19

Theorem 3.12. If Φ, ϕ := FΦ ∈ L1(R), ψ = sup
|t|≥|x|
|ϕ (t)| ∈ L1(R) and

∫ +∞

−∞
ϕ (x) dx = 1,20

then the Φα means of the Fourier integral of f are a.e. convergent to f , that is,21 ∫ +∞

−∞

(Fα f ) (x)K−α(t, x)Φα (εx) dx→ f (t)22

as ε→ 0 for almost all t ∈ R.23

16



In particular, in view of Theorem 3.11-3.12, Proposition 3.10 and the properties of1

Weierstrass kernel and Poisson kernel (Lemma 3.7), we deduce the following result.2

Corollary 3.13. If f ∈ L1(R), then the Gauss and Abel means of the fractional Fourier3

integral of f converge to f in L1 and a.e., that is,4

lim
ε→0

∥∥∥Mε,pα( f ) − f
∥∥∥

1
= 0, lim

ε→0

∥∥∥Mε,wα
( f ) − f

∥∥∥
1

= 0,5

and6

Mε,pα( f )(t)→ f (t), Mε,wα
( f )(t)→ f (t)7

for almost all t ∈ R as ε→ 0.8

Remark 3.2. We now understand Proposition 3.10 and Corollary 3.13 from the per-9

spective of partial differential equations as in [4, pp. 19]. The Abel–Poisson and10

Gauss–Weierstrass summability methods arise from solving the Laplace and heat equa-11

tions, respectively.12

(i) Consider the Dirichlet boundary value problem on the upper half plane R2
+:13 {

∆
(
eiπx2 cotαu(x, t)

)
= L1u(x, t) = 0, (x, t) ∈ R2

+,

u(x, 0) = f (x), x ∈ R.
(3.4)14

where L1 = −∆ + b(x) ∂
∂x + c(x), b(x) = −2πx cotα and c(x) = 4π2x2 cot2 α −15

2πi cotα. If f ∈ Lp(R) (1 ≤ p < ∞), the fractional Poisson integral of f , uα(x, t) ,16

is a solution of the Dirichlet problem (3.4). When the boundary value f satisfies17

different conditions, Proposition 3.10 and Corollary 3.13 show the relationship18

between the limit of solution and the boundary value f , in the sense of Lp norm19

and the sense of a.e..20

(ii) Similarly, consider the intitial value problem on the upper half plane R2
+:21 { (

∂
∂t −

∂2

∂x2

) (
eiπx2 cotαu(x, t)

)
= L2u(x, t) = 0, (x, t) ∈ R2

+,

u(x, 0) = f (x), x ∈ R.
(3.5)22

where L2 = −∂
2

x2 + ∂
∂t + b(x) ∂

∂x + c(x), b(x) = −2πx cotα and c(x) = 4π2x2 cot2 α−23

2πi cotα. If f ∈ Lp(R) (1 ≤ p < ∞), the fractional Gauss–Weierstrass inte-24

gral of f , S α(x, t) , is a solution of the Cauchy problem (3.5). Proposition 3.1025

and Corollary 3.13 show the relationship between the limit of solution and the26

boundary value f in different senses.27

Corollary 3.14. If f ,Fα f ∈ L1, then for almost all x ∈ R, we have28

f (t) =

∫ +∞

−∞

(Fα f )(x)K−α(x, t) dx.29

17



Proof. Consider the Gauss mean of the fractional Fourier integral Fα f . On one hand,1

it follows from Corollary 3.13 that2

Mε,wα
( f )(t) =

∫ +∞

−∞

(Fα f )(x)K−α(x, t)e−4π2εx2 csc2 αdx→ f (t)3

for almost all t ∈ R, as ε → 0. On the other hand, as Fα f ∈ L1(R), by the Lebesgue4

dominated convergence theorem we obtain that5 ∫ +∞

−∞

(Fα f ) (x)K−α(x, t)e−4π2εx2 csc2 αdx→
∫ +∞

−∞

(Fα f ) (x)K−α(x, t) dx6

as ε→ 0. This proves the desired result. �7

Corollary 3.15. Let f ∈ L1(R). If Fα f ≥ 0 and f is continuous at t = 0, then8

Fα f ∈ L1(R). Furthermore,9

f (t) =

∫ +∞

−∞

(Fα f )(x)K−α(x, t) dx, for almost all t ∈ R.10

In particular,
∫ +∞

−∞
(Fα f ) (x) dx = f (0).11

Remark 3.3. (i) Even if Fα f < L1(R), the Gauss and Abel means of the integral12 ∫ +∞

−∞

(Fα f )(x)K−α(x, t) dx13

may make sense. For example, if Fα f < L1(R) and Fα f is bounded, then14

Mε,pα( f )(t),Mε,wα
( f )(t) < ∞ ∀ε > 0.15

(ii) Even if Fα f < L1(R), the limits lim
ε→0

uα (t, ε) and lim
ε→0

S α(t, ε2) may exist. For16

example, this is the case when (Fα f )(x) = sin x/x.17

Theorem 3.16 (Uniqueness of FRFT on L1(R)). If f1, f2 ∈ L1(R) and (Fα f1) (x) =18

(Fα f2) (x) for all x ∈ R, then19

f1 (t) = f2 (t) , a.e. t ∈ R. (3.6)20

Proof. Let g = f1 − f2. Then21

Fαg = Fα f1 − Fα f2.22

It follows from Corollary 3.14 that23

g (x) =

∫ +∞

−∞

(Fαg)(t)K−α(x, t) dt = 024

18



a.e. on R, which implies (3.6). �1

4. FRFT on Lp(R) (1 < p < 2)2

Having set down the basic facts concerning the action of the FRFT on L1(R) and3

L2(R), we now extend its definition on Lp(R) for 1 < p < 2. Note that Lp(R) is4

contained in L1(R) + L2(R) for 1 < p < 2, where5

L1(R) + L2(R) =
{
f1 + f2 : f1 ∈ L1(R), f2 ∈ L2(R)

}
.6

Definition 4.1. For f ∈ Lp(R), 1 < p < 2, with7

f = f1 + f2, f1 ∈ L1(R), f2 ∈ L2(R),8

the FRFT of order α of f defined by Fα f = Fα f1 + Fα f2.9

Remark 4.1. The decomposition of f as f1 + f2 is not unique. However, the definition10

of Fα f is independent on the choice of f1 and f2. If f1 + f2 = g1 + g2 for f1, g1 ∈ L1(R)11

and f2, g2 ∈ L2(R), we have f1 − g1 = g2 − f2 ∈ L1(R) ∩ L2(R). Since those functions12

are equal, their FRFT are also equal, and we obtain Fα f1 − Fαg1 = Fαg2 − Fα f2, using13

the linearity of the FRFT, which yields Fα( f1 + f2) = Fα(g1 + g2).14

We have the following result concerning the action of the FRFT on Lp(R).15

Theorem 4.2 (Hausdorff-Young inequality). Let 1 < p ≤ 2, p′ = p/(p − 1). Then Fα16

are bounded linear operators from Lp(R) to Lp′(R). Moreover,17

‖Fα f ‖p′ ≤ A
2
p−1
α ‖ f ‖p . (4.1)18

Proof. By Proposition 2.3 (i) Fα maps L1 to L∞ (with norm bounded by Aα) and The-19

orem 1.2 (ii), it maps L2 to L2 with (with norm 1). It follows from the Riesz-Thorin20

interpolation theorem Hausdorff-Young inequality (4.1) holds. �21

FRFT inversion also holds on Lp(R) (1 < p < 2) and this can be proved by an22

argument similar to that for L1(R) via the use of Theorems 3.2-3.3. We won’t go into23

much detail here.24

5. Multiplier theory and Littlewood-Paley theorem associated with the FRFT25

5.1. Fractional Fourier transform multipliers26

Fourier multipliers play an important role in operator theory, partial differential27

equations, and harmonic analysis. In this section, we study some basic multiplier28

theory results in the FRFT context.29

19



Definition 5.1. Let 1 ≤ p ≤ ∞ and mα ∈ L∞(R). Define the operator Tmα
as1

Fα
(
Tmα

f
)

(x) = mα (x) (Fα f ) (x) , ∀ f ∈ L2(R) ∩ Lp(R).2

The function mα is called the Lp Fourier multiplier of order α, if there exist a constant3

Cp,α > 0 such that4 ∥∥∥Tmα
f
∥∥∥

p
≤ Cp,α ‖ f ‖p , ∀ f ∈ L2(R) ∩ Lp(R). (5.1)5

As L2(R) ∩ Lp(R) is dense in Lp(R), there is a unique bounded extension of Tmα
in6

Lp(R) satisfying (5.1). This extension is also denoted by Tmα
.7

In view of Definition 5.1, many important fractional integral operators can be ex-8

pressed in terms of fractional Lp multiplier.9

ω

Im U

Re U

ω′
π
2 − α

(a) the original signal: U =Fα(u)(ω′)

ω

Im V

Re V

ω′
π
2 − α

(b) after Hilbert transform: V =Fα(Hαu)(ω′)

Figure 5.1: Hilbert transform of order α in frequency domain

Example 5.1. Recall that the classical Hilbert transform is defined as10

(Hu) (ω) = p.v.
1
π

∫ +∞

−∞

u(t)
ω − t

dt. (5.2)11

The Hilbert transform of order α is defined as (cf., [29])12

(Hαu)
(
ω′

)
= p.v. e−iπω′2 cotα 1

π

∫ +∞

−∞

u(t)eiπt2 cotα

ω′ − t
dt. (5.3)13

For 1 < p < ∞, the operator Hα is bounded from Lp(R) to Lp(R). By [29, Theorem14

4], we see that mα = −isgn ((π − α)ω′) is a fractional Lp multiplier and the associated15

20



operator Tmα
is the fractional Hilbert transform, that is,1

(FαHαu)
(
ω′

)
= −isgn

(
(π − α)ω′

)
(Fαu)

(
ω′

)
. (5.4)2

Without loss of generality, assume that α ∈ (0, π). It can be seen from (5.4) that3

the Hilbert transform of order α is a phase-shift converter that multiplies the positive4

frequency portion of the original signal by −i, that is, maintaining the same amplitude,5

shifts the phase by −π/2, while the negative frequency portion is shifted by π/2. As6

shown in Fig. 5.1.7

Example 5.2. Let mα = e−2πε|cscα||x|. Then the corresponding operator Tmα
is the frac-8

tional Poisson integral (see Definition 3.8). In view of the Young’s inequality and9

Lamma 3.7, we know that mα is a fractional Lp multiplier for 1 ≤ p < ∞. Simi-10

larly, the fractional Gauss-Weierstrass integral is the operator Tma associated with the11

fractional Lp multiplier mα = e−4π2εx2 csc2 α.12

Example 5.3. Let a, b ∈ R and a < b. Denote the characteristic function of the interval13

[a, b] by χ[a,b]. Later, in the proof of Littlewood-Paley theorem (Theorem 5.5), equality14

(5.8) will show that χ[a,b] is a Lp (1 < p < ∞) multiplier in the FRFT context. The15

associated operator Tχ[a,b] acting on a signal u is equivalent to making a truncation in16

the frequency domain of the original signal.17

The following theorem provides a sufficient condition for judging Lp multiplier,18

which is the Hörmander-Mikhlin multiplier theorem in the fractional setting.19

Theorem 5.2. Let mα be a bounded function. If there exists a constant B > 0 such that20

one of the following condition holds:21

(a) (Mikhlin’s condition)22 ∣∣∣∣∣ d
dx

mα(x)
∣∣∣∣∣ ≤ B |x|−1 ; (5.5)23

(b) (Hörmander’s condition)24

sup
R>0

1
R

∫
R<|x|<2R

∣∣∣∣∣ d
dx

mα(x)
∣∣∣∣∣2 dx ≤ B2. (5.6)25

Then mα is a fractional Lp multiplier for 1 < p < ∞, that is, there exist a constant26

C > 0 such that27 ∥∥∥Tmα
f
∥∥∥

p
=

∥∥∥F−α [
mα (Fα f )

]∥∥∥
p
≤ C ‖ f ‖p , ∀ f ∈ Lp(R).28

Proof. In view of the decomposition (2.3), we have29

Fα
(
Tmα

f
)

(x) = Aαeiπx2 cotαF [eiπ(·)2 cotα (
Tmα

f
)
](x cscα)30

21



and1

mα(x) (Fα f ) (x) = mα(x)Aαeiπx2 cotαF [eiπ(·)2 cotα f ](x cscα).2

Then3

F [eiπ(·)2 cotα (
Tmα

f
)
](x) = m̃α(x)F [eiπ(·)2 cotα f ](x),4

where m̃α(x) = mα(x sinα). Namely,5

Tmα
f = e−iπ(·)2 cotαF −1

[
m̃αF

(
eiπ(·)2 cotα f

)]
, ∀ f ∈ Lp(R).6

It is obvious that m̃α satisfies (5.5) or (5.6) and g := eiπ(·)2 cotα f ∈ Lp(R). Therefore,7

it follows from the classical Hörmander-Mihlin multiplier theorem (cf., [5, 7, 13]) that8

m̃α is an Lp Fourier multiplier. Consequently,9 ∥∥∥Tmα
f
∥∥∥

p
=

∥∥∥∥e−iπ(·)2 cotαF −1
[
m̃αF

(
eiπ(·)2 cotα f

)]∥∥∥∥
p

10

=
∥∥∥F −1 [

m̃α(F g)
]∥∥∥

p
11

≤ C ‖g‖p = C ‖ f ‖p12
13

for some positive constant C. �14

The proof of the following two FRFT multiplier theorems is obtained in a similar15

fashion.16

Theorem 5.3 (Bernstein multiplier theorem). Let mα ∈ C1(R\{0}) be bounded. If17

‖mα‖2, ‖m′α‖2 < ∞, then there exists a constant C > 0 such that18 ∥∥∥F−α [
mα (Fα f )

]∥∥∥
p
≤ C ‖mα‖

1
2
2 ‖m

′
α‖

1
2
2 ‖ f ‖p ,19

for f ∈ Lp(R) (1 ≤ p < ∞).20

Theorem 5.4 (Marcinkiewicz multiplier theorem). Let mα ∈ L∞(R) ∩ C1(R\{0}). If21

there exists a constant B > 0 such that22

sup
I∈I

∫
I

∣∣∣∣∣ d
dx

mα(x)
∣∣∣∣∣ dx ≤ B,23

where I : ={[2 j, 2 j+1], [−2 j+1,−2 j]} j∈Z is the set of binary intervals in R, then, for24

f ∈ Lp(R) (1 < p < ∞), there exist a constant C > 0 such that25 ∥∥∥F−α [
mα (Fα f )

]∥∥∥
p
≤ C ‖ f ‖p .26

5.2. Littlewood-Paley theorem in the FRFT context27

In this subsection we study the Littlewood-Paley theorem in the FRFT context.28

The Littlewood-Paley is not only a powerful tool in Fourier analysis, but also plays an29

important role in other areas, such as partial differential equations.30

22



Let j ∈ Z. Define the binary intervals in R as1 {
Iαj := [2 j sinα, 2 j+1 sinα],−Iαj := [−2 j+1 sinα,−2 j sinα], α ∈ (0, π),
Iαj := [2 j+1 sinα, 2 j sinα],−Iαj := [−2 j sinα,−2 j+1 sinα], α ∈ (π, 2π).2

Then those binary intervals internally disjoint and3

R\{0} =
⋃
j∈Z

(−Iαj ∪ Iαj ).4

Let Iα := {Iαj ,−Iαj } j∈Z. Define the partial summation operator S ρα corresponding to5

ρα ∈ Iα by6

Fα(S ρα f )(x) = χρα(x) (Fα f ) (x), ∀ f ∈ L2(R) ∩ Lp(R),7

where χρα denote the characteristic function of the interval ρα. It is obvious that8 ∑
ρα∈Iα

∥∥∥S ρα( f )
∥∥∥2

2
= ‖ f ‖22 , ∀ f ∈ L2(R). (5.7)9

For general Lp(R) functions, we have the following result, which is the Littlewood-10

Paley theorem in the fractional setting.11

Theorem 5.5. Let f ∈ Lp(R), 1 < p < ∞. Then12  ∑
ρα∈Iα

∣∣∣S ρα( f )
∣∣∣2

1/2

∈ Lp(R)13

and there exists constants C1,C2 > 0 independent of f such that14

C1 ‖ f ‖p ≤

∥∥∥∥∥∥∥∥
 ∑
ρα∈Iα

∣∣∣S ρα( f )
∣∣∣2

1/2
∥∥∥∥∥∥∥∥

p

≤ C2 ‖ f ‖p .15

Proof. Without loss of generality, suppose that α ∈ (0, π) and ρα = [aα, bα], where16

aα = a sinα, bα = b sinα and a < b. Then17

χρα(x) =
sgn(x − aα) − sgn(x − bα)

2
.18

For f ∈ L2(R) ∩ Lp(R), by (5.7) we have19

Fα(S ρα f )(x) = χρα(x) (Fα f ) (x)20

=
i
2

[(
−isgn(x − aα)

)
−

(
−isgn(x − bα)

)]
(Fα f ) (x)21

23



=
i
2

[(
−isgn(x − aα) (Fα f ) (x)

)
−

(
−isgn(x − bα) (Fα f ) (x)

)]
1

=
i
2

[
τaα

(
−isgnx · τ−aα (Fα f ) (x)

)
− τbα

(
−isgnx · τ−bα (Fα f ) (x)

)]
,2

3

where τs f (x) = f (x − s). In view of the decomposition (2.3), we have4

τ−aα (Fα f ) (x) = Aατ−aα

[
eiπx2 cotαF [eiπt2 cotα f (t)](x cscα)

]
5

= Aα sinα · τ−aα

[
eiπx2 cotαF [eiπt2 sinα cosα f (t sinα)](x)

]
6

= Aα sinα · eiπ(x+aα)2 cotα · τ−aαF [eiπt2 sinα cosα f (t sinα)](x)7

= Aα sinα · eiπ(x+aα)2 cotαF [e2πi(−aα)teiπt2 sinα cosα f (t sinα)](x).8
9

Recall that F (H f )(x) = −isgnxF ( f )(x). Hence,10

− isgnx · τ−aα (Fα f ) (x)11

= Aα sinα · eiπ(x+aα)2 cotα
(
−isgnxF [e2πi(−aα)teiπt2 sinα cosα f (t sinα)](x)

)
12

= Aα sinα · eiπ(x+aα)2 cotαF
[
H

(
e2πi(−aα)(·)eiπ(·)2 sinα cosα f ((·) sinα)

)
(t)

]
(x).13

14

Thus15

τaα
(
−isgnx · τ−aα (Fα f ) (x)

)
16

= Aα sinα · eiπx2 cotατaαF
[
H

(
e2πi(−aα)(·)eiπ(·)2 sinα cosα f ((·) sinα)

)
(t)

]
(x)17

= Aα sinα · eiπx2 cotαF
[
e2πiaαtH

(
e2πi(−aα)(·)eiπ(·)2 sinα cosα f ((·) sinα)

)
(t)

]
(x)18

= Aαeiπx2 cotαF
[
e2πiaα(·) cscαH

(
e−2πiaα(·) cscαeiπ(·)2 cotα f

)]
(x cscα)19

= Fα
[
e−iπ(·)2 cotαe2πia(·)H

(
e−2πia(·)eiπ(·)2 cotα f

)]
(x).20

21

The definition of the fractional Hilbert transform (5.3) implies that22

Hα f = e−iπ(·)2 cotαH
(
eiπ(·)2 cotα f

)
.23

Therefore,24

τaα
(
−isgnx · τ−aα (Fα f ) (x)

)
= Fα

[
e2πia(·)Hα

(
e−2πia(·) f

)]
(x),25

and similarly,26

τbα
(
−isgnx · τ−bα (Fα f ) (x)

)
= Fα

[
e2πib(·)Hα

(
e−2πib(·) f

)]
(x).27
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Consequently,1

Fα(S ρα f )(x) =
i
2

[
Fα

[
e2πia(·)Hα

(
e−2πia(·) f

)]
(x) − Fα

[
e2πib(·)Hα

(
e−2πib(·) f

)]
(x)

]
2

=
i
2
Fα

[
e2πia(·)Hα

(
e−2πia(·) f

)
− e2πib(·)Hα

(
e−2πib(·) f

)]
(x).3

4

Namely,5

S ρα( f )(x) =
i
2

[
e2πiaxHα

(
e−2πia(·) f

)
(x) − e2πibxHα

(
e−2πib(·) f

)
(x)

]
. (5.8)6

SinceHα is bounded from Lp(R) to Lp(R), S ρα can be extended to be a bounded oper-7

ator on Lp(R).8

Finally, the classical partial summation operator S ρ corresponding to ρ = [a, b] is9

defined by10

F (S ρ f )(x) = χρ(x) (F f ) (x),11

and S ρ can be expressed as (refer to [2, Example 5.4.6])12

S ρ( f )(x) =
i
2

[
e2πiaxH

(
e−2πia(·) f

)
(x) − e2πibxH

(
e−2πib(·) f

)
(x)

]
. (5.9)13

Comparing (5.8) and (5.9) and applying the classical Littlewood-Paley theorem to14

(5.8), we easily conclude that Theorem 5.5 holds. �15

6. Applications to chirps16

A chirp is a non-stationary signal in which the frequency increases (up-chirp) or17

decreases (down-chirp) with time. As the FRFT reflects information about the signal18

in the time and frequency domains simultaneously, the FRFT is more effective than19

the classical Fourier transform in the spectrum analysis of non-stationary signals, es-20

pecially of chirp signals. In this section, we will demonstrate the use of Theorems21

3.11-3.12 and Corollary 3.13 in the signal recovery of L1 \ L2-signals. For example, let22

u(t) =

 e−πit2
√
|t|
, 0 < |t| < 1,

e−πit2

t2 , |t| ≥ 1.
23

Then u is a chirp signal and u ∈ L1(R) but u < L2(R). The real and imaginary part24

graphs of u(t) in time domain are shown in Fig. 6.1.25

Consider the FRFT of u of order π/4:26

(Fπ/4u)(w) = 2eiπw2

C
(
25/4√|w|

)
21/4
√
|w|

−
√

2π2 |w| + 2
√

2πw Si
(
2
√

2πw
)

+ cos
(
2
√

2πw
) ,27

25



(a) real part graph of u(t) (b) imaginary part graph of u(t)

Figure 6.1: real and imaginary part graphs of u(t) in time domain.

where C(x) and Si(x) denote the Fresnel integral and sine integral, respectively. Namely,1

C(x) =

∫ x

0
sin t2dt =

∞∑
n=0

(−1)n x4n+1

(2n)!(4n + 1)
,2

Si(x) =

∫ x

0

sin t
t

dt =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!(2n + 1)
.3

The real and imaginary part graphs of (Fπ/4u)(w) in frequency domain are shown in4

Fig 6.2.5

(a) real part graph of (Fπ/4u)(w) (b) imaginary part graph of
(Fπ/4u)(w)

Figure 6.2: real and imaginary part graphs of (Fπ/4u)(w) in frequency domain.

It is obvious that Fπ/4u < L1(R). The inverse FRFT6 ∫ +∞

−∞

(Fπ/4u)(w)K−π/4(x, t)dw (6.1)7

do not make sense. In order to recover the original signal u(t), we should use the8

approximating method. Fig. 6.3 shows the Abel means of the integral (6.1) with9

26



ε = 1, 0.1, 0.01, that is,1

uε(t) =

∫ +∞

−∞

(Fπ/4u)(w)K−π/4(x, t)e−2πε|cscα||w|dw.2

By Theorems 3.11-3.12 and Corollary 3.13 we know that uε(t)→ u(t) for a.e. t ∈ R as3

ε→ 0.4

(a) real part graph of uε(t) (b) imaginary part graph of uε(t)

Figure 6.3: real and imaginary part graphs of uε(t)
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