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Abstract. Let r > 4
3 and let Ω ∈ Lr(S2n−1) have vanishing integral. We show

that the bilinear rough singular integral

TΩ(f, g)(x) = p.v.

∫
Rn

∫
Rn

Ω((y, z)/|(y, z)|)
|(y, z)|2n

f(x− y)g(x− z) dydz,

satisfies a sparse bound by (p, p, p)-averages, where p is bigger than a certain num-
ber explicitly related to r and n. As a consequence we deduce certain quantita-
tive weighted estimates for bilinear homogeneous singular integrals associated with
rough homogeneous kernels.

1. Introduction

In 1952, Calderón and Zygmund [3] established the existence and Lp(Rn) bound-
edness of the following rough singular integrals

TK(f)(x1, x2, . . . , xn) =

∫
Rn

f(s1, . . . , sn)K(x1 − s1, . . . , xn − sn)ds1 · · · dsn,

where f is an integrable function defined on Rn and

K(x1, . . . , xn) = ρ−nΩ(α1, . . . , αn),

with xj = ρ cosαj for all j, ρ > 0, and α1, α2, . . . , αn are the direction angles of
(x1, x2, . . . , xn). Later on, using the method of rotations, Calderón and Zygmund [4]
proved that the operator

TΩ(f)(x) = p.v.

∫
Rn

Ω(y/|y|)
|y|n

f(x− y)dy

is bounded on Lp(Rn) (1 < p < ∞) whenever Ω ∈ L1(Sn−1),
∫
Sn−1 Ω dσ = 0 and if

the even part of Ω belongs to the class L logL(Sn−1).

Since 1956 this area has flourished and has been enriched by a considerable amount
of work, which could not be all listed here. We note however the work of Christ [5],
Christ and Rubio de Francia [6], Seeger [34], Tao [35], Duoandikoetxea and Rubio de
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Francia [14], Grafakos and Stefanov [16] among many others. The weighted theory
of TΩ is also quite rich; here we note the work of Duoandikoetxea [13] and Vargas
[36] and we would like to direct attention to the recent works of [12, 32, 33].

In order to state more known results, we first introduce some notation. A collection
S of cubes in Rn is called η-sparse if for each Q ∈ S there is EQ ⊂ Q such that
|EQ| ≥ η|Q|, and such that EQ ∩ EQ′ = ∅ when Q ̸= Q′ (here 0 < η < 1). For an
η-sparse collection of cubes S we use the notation

PSFS;p1,p2(f1, f2) :=
∑
Q∈S

|Q|⟨f1⟩p1,Q⟨f2⟩p2,Q, ⟨f⟩p,Q := |Q|−
1
p ∥f1Q∥Lp .

It is known that the L1 norm of the bilinear maximal operator plays an important
role in the study of the forms PSF. We refer the readers to [9, 26, 28] for more details.
Such expressions dominate quantities |⟨T (f1), f2⟩| for linear operators T . This type of
domination is called sparse and plays an important role and finds wide applicability
in harmonic analysis. For instance, it was used in the proof of A2 conjecture [23, 24].
Earlier works related to sparse domination can be found in [2, 22, 23, 25, 30, 37] and
the references therein. In 2017, Conde-Alonso et al. [8] obtained the following sparse
domination for TΩ:

|⟨TΩ(f1), f2⟩| ≤
Cp

p− 1
sup
S

PSFS;1,p(f1, f2)

{
∥Ω∥Lr,1 logL(Sd−1), 1 < r < ∞, p ≥ r′;

∥Ω∥L∞(Sd−1), 1 < p < ∞.

As a consequence, the authors in [8] deduced a new sharp quantitative Ap-weighted
estimate for TΩ. Subsequently, for all ϵ > 0, Di Plinio, Hytönen, and Li [11], pro-
vided a sparse bound by (1 + ϵ, 1 + ϵ)-averages with linear growth in ϵ−1 for the
associated maximal truncated singular integrals T∗, i.e., ∥T∗∥(1+ϵ,1+ϵ),sparse ≤ Cϵ−1.
As a corollary, certain novel quantitative weighted norm estimates were given for T∗.

The study of bilinear singular integrals originated in the celebrated work of Coifman
and Meyer [7]. The main object of study is the bilinear operator (which is denoted as
in the linear case without risk of confusion as its linear counterpart will not appear
in the sequel)

TΩ(f, g)(x) = p.v.

∫
Rn

∫
Rn

Ω((y, z)/|(y, z)|)
|(y, z)|2n

f(x− y)g(x− z) dydz,(1.1)

where Ω is an integrable function on S2n−1 with mean value zero. The boundedness of
rough bilinear singular integrals can be derived from uniform bounds for the bilinear
Hilbert transforms (see [17], [15] for details). Let 1 < p1, p2 < ∞ and 1

p
= 1

p1
+ 1

p2
.

In 2015, Grafakos, He and Honźık [17] obtained the Lp1(Rn) × Lp2(Rn) to Lp(Rn)
boundedness for TΩ when Ω ∈ L∞(S2n−1). Additionally, these authors showed that
TΩ is bounded from L2(Rn)× L2(Rn) to L1(Rn) if Ω ∈ Lr(S2n−1) for r ≥ 2. In 2018,
Grafakos, He, and Slav́ıková [19] gave a criterion for L2(Rn) × L2(Rn) to L1(Rn)
boundedness for certain bilinear operators. As an application, these authors improved
the results in [17] as follows:
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Theorem A. ([19]) Let r > 4/3 and Ω ∈ Lr(S2n−1) with
∫
S2n−1 Ω dσ = 0. Then

∥TΩ∥Lp1 (Rn)×Lp2 (Rn)→Lp(Rn) < ∞ whenever 2 ≤ p1, p2 ≤ ∞, 1 ≤ p ≤ 2, and 1
p
= 1

p1
+ 1

p2
.

For Ω in Lr(S2n−1), it is natural to ask for the exact range of (p1, p2, p) such
that TΩ maps Lp1(Rn) × Lp2(Rn) to Lp(Rn). This problem is quite delicate. A
counterexample of Grafakos, He and Slav́ıková [18] shows that there exists an Ω
in Lr(S2n−1), 1 ≤ r < ∞, which satisfies the Hörmander kernel condition on R2n,
such that the associated TΩ is unbounded from Lp1(Rn) × Lp2(Rn) to Lp(Rn) when
1
p
= 1

p1
+ 1

p2
, 1 ≤ p1, p2 ≤ ∞ and 1

p
+ 2n−1

r
> 2n. However, it is unknown whether TΩ

is bounded when the last condition fails.

In this work, we focus on the sparse domination of TΩ for rough functions Ω. Note
that the authors in [10] established a uniform domination of the family of trilinear
multiplier forms with singularity over an one-dimensional subspace. Later Barron
[1] considered the sparse domination for rough bilinear singular integrals with Ω in
L∞(S2n−1).

Theorem B. ([1]) Suppose TΩ is the rough bilinear singular integral operator defined
by (1.1), with Ω ∈ L∞(S2n−1) and

∫
S2n−1 Ω dσ = 0. Then for any 1 < p < ∞, there is

a constant Cp,n > 0 so that

|⟨TΩ(f1, f2), f3⟩| ≤ Cp,n∥Ω∥L∞(S2n−1) sup
S

PSF
(p,p,p)
S (f1, f2, f3),

where the sparse (p1, p2, p3)-averaging form is defined as

PSF
(p1,p2,p3)
S (f1, f2, f3) :=

∑
Q∈S

|Q|
3∏

i=1

⟨fi⟩pi,Q, for 1 ≤ pi < ∞, i = 1, 2, 3.

In this paper, we establish sparse domination for bilinear rough operator TΩ with
Ω ∈ Lr(S2n−1) for r < ∞. These Ω produce rougher singular integrals than the ones
previously studied. As a result we deduce certain quantitative weighted estimates for
rough bilinear singular integral operators. The main result of this paper is as follows:

Theorem 1.1. Let Ω ∈ Lr(S2n−1), r > 4/3, and
∫
S2n−1 Ω = 0. Let TΩ be the rough

bilinear singular integral operator defined in (1.1). Then for p > max{24n+3r−4
8n+3r−4

, 24n+r
8n+r

}
there exists a constant C = Cp,n,r such that

|⟨TΩ(f1, f2), f3⟩| ≤ C∥Ω∥Lr(S2n−1) sup
S

PSF
(p,p,p)
S (f1, f2, f3).

Remark 1.1. Letting r → ∞, the restriction on p in Theorem 1.1 becomes p > 1
for Ω ∈ L∞(S2n−1). Thus Theorem 1.1 coincides with the sparse domination result
of Theorem B when r = ∞. Thus our work essentially extends that of [1] and all
the weighted results it implies. Whether there is an explicit dependence of Cp,n,r

in Theorem 1.1 on p, even in the limiting case r = ∞, is still an interesting open
problem.

In order to state our corollaries, we recall some background and introduce notation
relevant to certain classes of weights. Let p′ = p/(p − 1) be the dual exponent of p.
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We recall the definition of the Ap weight classes: We say w ∈ Ap for 1 < p < ∞ if
w > 0, w ∈ L1

loc and

[w]Ap := sup
Q

( 1

|Q|

∫
Q

w
)( 1

|Q|

∫
Q

w− 1
p−1

)p−1

< ∞.

In 2002 Grafakos and Torres [21] initiated the weighted theory for the multilinear
singular operators but it was not until 2009 that Lerner et. al. [29] introduced the
canonical Muckenhoupt vector Ap weight class, denoted by Ap⃗, which provides a
natural analogue of the linear theory.

Definition 1.2 (Multiple weight class Ap⃗, [29]). Let 1 ≤ p1, . . . , pm < ∞, w⃗ =
(w1, . . . , wm), where wi (i = 1, . . . ,m) are nonnegative functions defined on Rn, and

denote vw⃗ =
m∏
j=1

w
p/pj
j . We say w⃗ ∈ Ap⃗ if

[w⃗]Ap⃗
= sup

Q

(
1

|Q|

∫
Q

vw⃗(t)dt

) 1
p

m∏
i=1

(
1

|Q|

∫
Q

w
1−p′i
i (t)dt

) 1
p′
i
< ∞,

where the supremum is taken over all cubesQ ⊂ Rn, and the term
(

1
|Q|

∫
Q
w

1−p′i
i (t)dt

) 1
p′
i

is understood as (infQwi)
−1 when pi = 1.

More general weights class than Ap⃗ has also been considered by Li, Martell, and
Ombrosi in [31]. For m ≥ 2, given p⃗ = (p1, . . . , pm) with 1 ≤ p1, . . . , pm < ∞ and
r⃗ = (r1, . . . , rm+1) with 1 ≤ r1, . . . , rm+1 < ∞, we say that r⃗ ≺ p⃗ whenever

ri < pi, i = 1, . . . ,m and r′m+1 > p, where
1

p
:=

1

p1
+ · · ·+ 1

pm
.

Definition 1.3 (Ap⃗,r⃗ weight class, [31]). Let m ≥ 2 be an integer, p⃗ = (p1, . . . , pm)
with 1 ≤ p1, . . . , pm < ∞ and r⃗ = (r1, . . . , rm+1) with 1 ≤ r1, . . . , rm+1 < ∞.
1/p =

∑m
k=1 1/pk. For each wk > 0, wk ∈ L1

loc, set

w =
m∏
k=1

w
p/pk
k .

We say that w⃗ = (w1, ..., wm) ∈ Ap⃗,r⃗ if 0 < wi < ∞, 1 ≤ i ≤ m and [w]Ap⃗,r⃗
< ∞ with

[w⃗]Ap⃗,r⃗
= sup

Q

( 1

|Q|

∫
Q

w(x)
r′m+1

r′m+1−p dx
)1/p−1/r′m+1

m∏
k=1

( 1

|Q|

∫
Q

wk(x)
− 1

pk
rk

−1 dx
)1/rk−1/pk

.

When rm+1 = 1 the term corresponding to w needs to be replaced by ( 1
|Q|

∫
Q
wdx)

1
p .

Here and afterwards, the expression( 1

|Q|

∫
Q

wk(x)
− 1

pk
rk

−1 dx
)1/rk−1/pk

is understood as esssupQw
−1/pk
k when pk = rk.

When r1 = · · · = rm = 1, Ap⃗,r⃗ coincides with the weight class Ap⃗ introduced by
Lerner et al. [29]
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As an application of the sparse domination, we obtain certain weighted estimates
for TΩ. The first result is concerned with multiple weights while the other with the
one-weight case.

Corollary 1.2. Let Ω ∈ Lr(S2n−1) with r > 4/3 and
∫
S2n−1 Ω dσ = 0. Let q⃗ = (q1, q2),

p⃗ = (p1, p2, p3) with p⃗ ≺ q⃗ and pi > max{24n+3r−4
8n+3r−4

, 24n+r
8n+r

}, i = 1, 2, 3. Let

µv⃗ =
2∏

k=1

v
q/qk
k

and 1
q
= 1

q1
+ 1

q2
, 1 < q < max{24n+3r−4

16n
, 24n+r

16n
} and let q3 = q′. Then there is a

constant C = Cp⃗,q⃗,r,n such that

∥TΩ(f, g)∥Lq(µv⃗) ≤ C∥Ω∥Lr [v⃗]
max1≤i≤3{

pi
qi−pi

}
Aq⃗,p⃗

∥f∥Lq1 (v1)∥g∥Lq2 (v2).

Corollary 1.3. Let Ω ∈ Lr(S2n−1) with r > 4/3 and
∫
S2n−1 Ω dσ = 0. For w ∈ Ap/2,

max{2, 24n+3r−4
8n+3r−4

, 24n+r
8n+r

} < p < max{24n+3r−4
8n

, 24n+r
8n

}, there exists a constant C =
Cw,p,n,r such that

∥TΩ(f1, f2)∥Lp/2(w) ≤ C∥Ω∥Lr∥f1∥Lp(w)∥f2∥Lp(w).

Remark 1.4. We make few comments about Corollaries 1.2 and 1.3.

• The class of weights in Corollary 1.2 is slightly different than that used in [1].
• In Theorem A there is a restriction pi > 2. It is interesting that in Corol-
lary 1.2, when 4

3
< r < 8n it is easy to see that pi > 2, i = 1, 2. However,

when r ≥ 8n, then p1, p2 could be smaller than 2. This means that, in some
sense, qi enjoys more freedom in Corollary 1.2, since we only require q > 1
and there is no need to assume that each qi > 2.

• We guess that the index regions in the above two corollaries are far from
optimal. To find the best region for the above weighted results should be a
very interesting problem.

The main idea in the proof of Theorem 1.1 is to elaborate on the decomposition
[14] for the rough kernel into smooth kernels with controlled (summable) growth of
constants. Let 1

p
= 1

p1
+ 1

p2
, 2 ≤ p1, p2 ≤ ∞ and 1 ≤ p ≤ 2. If Ω ∈ Lr(S2n−1) with∫

S2n−1 Ω dσ = 0, 4/3 < r ≤ ∞, for j > 0 and 0 < δ < 1
r′
, Grafakos, He, and Honzik

[17] showed that ∥Tj∥Lp1 (Rn)×Lp2 (Rn)→Lp(Rn) ≤ C∥Ω∥Lr2(2n−δ)j. Obviously, there is no
appropriate decay on the right side of this inequality. In the proof of Theorem 1.1,
we need to sum over all j ∈ Z. Therefore, this inequality is not sufficient for our
purpose. In this paper, we will handle the decay in j for norm estimate of Tj with
j > 0 by adapting the tensor-type wavelet decompositions techniques from [19] in
order to prove the sparse bound for TΩ.
The article is organized as follows. Section 2 contains definitions and basic lem-

mas. An analysis of the Calderón-Zygmund kernel is given in Section 3. Section 4
and Section 5 are devoted to the demonstration of the proof of Theorem 1.1 and its
corollaries. Throughout this paper, the notation ≲ will be used to denote an inequal-
ity with an inessential constant on the right. We denote by ℓ(Q) the side length of a
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cube Q in Rn and by diam(Q) its diameter. For λ > 0 we use the notation λQ for
the cube with the same center as Q and side length λℓ(Q).

2. Definitions and main lemmas

In this section we consider a general bilinear operator that commutes with trans-
lations

(2.1) T [K](f1, f2)(x) = p.v.

∫
Rn

∫
Rn

K(x− x1, x− x2)f1(x1)f2(x2) dx1 dx2

and assume it is a bounded bilinear operator mapping Lr1(Rn)× Lr2(Rn) → Lα(Rn)
for some r1, r2, α ≥ 1 with 1

r1
+ 1

r2
= 1

α
. It is assumed that the kernel K of T [K] has

a decomposition of the form

K(u, v) =
∑
s∈Z

Ks(u, v),(2.2)

where Ks is a smooth truncation of K that enjoys the property

suppKs ⊂
{
(u, v) ∈ R2n : 2s−2 < |u| < 2s, 2s−2 < |v| < 2s

}
.

The truncation of T [K] is defined as

T [K]t2t1(f1, f2)(x) :=
∑

t1<s<t2

∫
Rn

∫
Rn

Ks(x− x1, x− x2)f1(x1)f2(x2) dx1dx2,(2.3)

where 0 < t1 < t2 < ∞. See Section 2.1 in [1] for remarks on this type of truncated
operators. In this work, we assume that the truncated norm satisfies

sup
0<t1<t2<∞

∥T [K]t2t1∥Lr1×Lr2→Lα < ∞,(2.4)

for some r1, r2, α ≥ 1 satisfying 1
r1
+ 1

r2
= 1

α
. To study bilinear operators T , we often

work with the trilinear form of the type ⟨T (f1, f2), f3⟩ =
∫
Rn T (f1, f2)f3(x) dx. In our

case, the trilinear truncated form is

⟨T [K]t2t1(f1, f2), f3⟩ =
∫
Rn

T [K]t2t1(f1, f2)f3 dx.

Denoting by CT (r1, r2, α) the following constant

(2.5) CT (r1, r2, α) := sup
0<t1<t2<∞

∣∣⟨T [K]t2t1(f1, f2), f3⟩
∣∣

∥f1∥Lr1∥f2∥Lr2∥f3∥Lα′
,

then (2.4) is equivalent to CT (r1, r2, α) < ∞.

Remark 2.1. If a bilinear operator of the form (2.1) is bounded from Lr1×Lr2 → Lα

with α ≥ 1, then so do all of its smooth truncations with kernels

K(u, v)G(u/2t)G(v/2t
′
)

uniformly on t, t′. Here G is any function whose Fourier transform is integrable.
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To see this, we express (2.1) in multiplier form as follows∫
R2n

Ĝ(ξ′1, ξ
′
2)

[ ∫
R2n

K̂(ξ1 − ξ′1, ξ2 − ξ′2)f̂1(ξ1)f̂2(ξ2)e
2πix·(ξ1+ξ2)dξ1dξ2

]
dξ′1 dξ

′
2

and then we pass the Lα(dx) norm on the square bracket.

Definition 2.2 (Stopping collection [8]). Let D be a fixed dyadic lattice in Rn

and Q ∈ D be a fixed dyadic cube in Rn. A collection Q ⊂ D of dyadic cubes is a
stopping collection with top Q if the elements of Q satisfy

L,L′ ∈ Q, L ∩ L′ ̸= ∅ ⇒ L = L′

L ∈ Q ⇒ L ⊂ 3Q,

and enjoy the separation properties

(i) if L,L′ ∈ Q, |sL − sL′ | ≥ 8, then 7L ∩ 7L′ = ∅.
(ii)

⋃
L∈Q

3L∩2Q̸=∅

9L ⊂
⋃

L∈Q
L =: shQ.

Here sL = log2 ℓ(L), where ℓ(L) is the length of the cube L.

Let 1A be the characteristic function of a set A. We use Mp to denote the power
version of the Hardy-Littlewood maximal function

Mp(f)(x) = sup
x∈Q

(
1

|Q|

∫
Q

|f(y)|pdy
) 1

p

,

where the supremum is taken over cubes Q ⊂ Rn containing x.
We need the following definition.

Definition 2.3 (Yp(Q) norm, [8]). Let 1 ≤ p ≤ ∞ and let Yp(Q) be the subspace
of Lp(Rn) of functions satisfying supp h ⊂ 3Q and

∞ > ∥h∥Yp(Q) :=

{
max

{
∥h1Rn\shQ∥∞, sup

L∈Q
inf
x∈L̂

Mph(x)
}
, p < ∞,

∥h∥∞, p = ∞,
(2.6)

where L̂ is the (nondyadic) 25-fold dilation of L. We also denote by Xp(Q) the
subspace of Yp(Q) of functions satisfying

b =
∑
L∈Q

bL, supp bL ⊂ L.

Furthermore, we say b ∈ Ẋp(Q) if

b ∈ Xp(Q),

∫
L

bL = 0, ∀L ∈ Q.

∥b∥Xp(Q) denotes ∥b∥Yp(Q) when b ∈ Xp(Q) and similar notation for b ∈ Ẋp(Q). We
may omit Q and simply write ∥ · ∥Xp or ∥ · ∥Yp .
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Let a ∧ b denote the minimum of two real numbers a and b. Given a stopping
collection Q with top cube Q, we define

ΛQ
t2
t1
(f1, f2, f3) =

1

|Q|

[
⟨T [K]

t2∧sQ
t1 (f11Q, f2), f3⟩ −

∑
L∈Q
L⊂Q

⟨T [K]t2∧sLt1 (f11L, f2), f3⟩
]
.

(2.7)

Then the support condition

suppKs ⊂
{
(u, v) ∈ R2n : 2s−2 < |u| < 2s, 2s−2 < |x2| < 2s

}
.

gives that

ΛQ
t2
t1
(f1, f2, f3) = ΛQ

t2
t1
(f11Q, f2I3Q, f313Q).

For simplicity, we will often suppress the dependence of ΛQ
t2
t1
on t1 and t2 by writing

ΛQ(f1, f2, f3) = ΛQ
t2
t1
(f1, f2, f3), when there is no confusion.

Lemma 2.1 ([1]). Let T be a bilinear operator with kernel K as the above, such that
K can be decomposed as in (2.2) and suppose that the constant CT defined in (2.5)
satisfies

CT = CT (r1, r2, α) < ∞
for some 1 ≤ r1, r2, α < ∞ with 1/r1 + 1/r2 = 1/α. Assume that there exist indices
1 ≤ p1, p2, p3 ≤ ∞ and a positive constant CL such that for all finite truncations,
all dyadic lattices D, and all stopping collections Q with top cube Q, the quantity
ΛQ

ν
µ(f1, f2, f3) satisfies uniformly for all µ < ν:

ΛQ
ν
µ(b, g2, g3) ≤ CL|Q|∥b∥Ẋp1

∥g2∥Yp2
∥g3∥Yp3

;

ΛQ
ν
µ(g1, b, g3) ≤ CL|Q|∥g1∥Y∞∥b∥Ẋp2

∥g3∥Yp3
;(2.8)

ΛQ
ν
µ(g1, g2, b) ≤ CL|Q|∥g1∥Y∞∥g2∥Y∞∥b∥Ẋp3

.

Then there is a constant cn depending only on the dimension n such that the quantity
Λν

µ(f1, f2, f3) = ⟨T [K]νµ(f1, f2), f3⟩ satisfies

sup
0<µ<ν<∞

|Λν
µ(f1, f2, f3)| ≤ cn[CT + CL] sup

S
PSFp⃗

S(f1, f2, f3)

for all fj ∈ Lpj(Rn) with compact support, where p⃗ = (p1, p2, p3) and the supremum
on the right is taken with respect to all sparse collections S.

Lemma 2.1 is a crucial ingredient of our proof as it implies that

|⟨TΩ(f1, f2), f3⟩| ≤ (CT + CL)∥Ω∥Lr(S2n−1) sup
S

PSFp⃗
S(f1, f2, f3),

where p⃗ = (p1, p2, p3).
Next we will consider the interpolation involving Yq-spaces, of which the precursor

can be seen in [11, Proposition 2.1]. We only give the particular cases which we need
to prove Theorem 1.1, however, more general results are available.
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Lemma 2.2. Let 0 < A2 ≤ A1 < ∞, 0 < ϵ < 1, and q = 1 + 2ϵ. Suppose that ΛQ is
a (sub)-trilinear form such that

|ΛQ(b, f, g)| ≲ A1∥b∥Ẋ1
∥f∥Y1∥g∥Y1 ,(2.9)

|ΛQ(b, f, g)| ≲ A2∥b∥Ẋ3
∥f∥Y3∥g∥Y3 .(2.10)

Then we have
|ΛQ(f1, f2, f3)| ≲ A1−ϵ

1 Aϵ
2∥f1∥Ẋq

∥f2∥Yq∥f3∥Yq .

Proof. Without loss of generality, we may assume A2 ≤ A1 = 1, and ∥f1∥Ẋq
=

∥f2∥Yq = ∥f3∥Yq = 1, then it is enough to prove ΛQ(f1, f2, f3) ≲ Aϵ
2.

Fix λ ≥ 1 and denote f>λ = f1|f |>λ. We decompose f1 = b1 + g1, where

b1 :=
∑
L∈Q

(
(f1)>λ −

1

|L|

∫
L

(f1)>λ

)
1L.

For f2 and f3, we decompose f2 = b2 + g2, f3 = b3 + g3, where bi := (fi)>λ, i = 2, 3.
Then it holds that

∥b1∥Ẋ1
≲ λ1−q, ∥g1∥Ẋ1

≤ ∥g1∥Ẋ3
≲ λ1− q

3 ,

∥b2∥Y1 ≲ λ1−q, ∥g2∥Y1 ≤ ∥g2∥Y3 ≲ λ1− q
3 ,

∥b3∥Y1 ≲ λ1−q, ∥g3∥Y1 ≤ ∥g3∥Y3 ≲ λ1− q
3 .

(2.11)

The proofs of these estimates are given at the end of this lemma. Now we estimate
|ΛQ(f1, f2, f3)| by the sum of the following eight terms

|ΛQ(b1, b2, b3)|+ |ΛQ(g1, b2, b3)|+ |ΛQ(b1, g2, b3)|+ |ΛQ(b1, b2, g3)|
+ |ΛQ(g1, g2, b3)|+ |ΛQ(g1, b2, g3)|+ |ΛQ(b1, g2, g3)|+ |ΛQ(g1, g2, g3)|.

For the last term we use assumption (2.10) while we use (2.9) to estimate the re-
maining seven terms. It follows that

|ΛQ(f1, f2, f3)| ≲ λ3−3q + 3λ2−2q + 3λ1−q + A2λ
3−q.

Noting that 1− q = −2ϵ and λ ≥ 1, then we have

|ΛQ(f1, f2, f3)| ≲ 3λ−2ϵ + 3λ−4ϵ + λ−6ϵ + A2λ
3−q

≲ 7λ−2ϵ + A2λ
2−2ϵ

≲ λ−2ϵ(7 + A2λ
2).(2.12)

Let λ = A
− 1

2
2 , then |ΛQ(f1, f2, f3)| ≲ Aϵ

2.
It remains to derive estimates (2.11) for bi and gi. We only demonstrate how to

compute ∥g1∥Y2 ≲ λ1− q
3 as the estimates for b1, b2, b3, g2, g3 follow in a similar way.

Rewrite

g1 = f11Rn\shQ +
∑
L

(f1)≤λ1L +
∑
L

1

|L|

∫
L

(f1)>λ1L := I + II + III.

From the definition in (2.6) we know

∥f11Rn\shQ∥Y3 = 0 ≲ λ1− q
3 .
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Moreover, it is easy to see that

II = f11f1≤λ∩shQ = f11S,

where

S = f1≤λ ∩ shQ.

Combining (2.6) and using the Hölder’s inequality, we have

∥f11S∥Y3 = sup
L

inf
x∈L̂

M2f11S = sup
L

inf
x∈L̂

sup
x∈Q

( 1

|Q|

∫
S∩Q

|f1|3
) 1

3 ≤ λ1− q
3∥f1∥Ẋq

≤ λ1− q
3 .

Now we are in the position to consider III. It is easy to see that

III ≤
∑
L

1

|L̂|

∫
L̂

(f1)>λ1L ≤
∑
L

inf
x∈L̂

Mqf11L ≤
∑
L

1L.

Therefore, by the fact

∥
∑
L

1L∥Y3 ≤ 1 ≤ λ1− q
3 ,

it follows that

∥g1∥Y3 ≲ λ1− q
3 .

This finishes the proof of Lemma 2.2. □

3. Analysis of the kernel

In Section 2, we discussed the generalized kernel K. Here we specialize to rough
kernels. For fixed Ω in Lr(S2n−1) we consider the kernel

(3.1) K(u, v) =
Ω
(
(u, v)/|(u, v)|

)
|(u, v)|2n

.

We introduce the relevant notation. Define ∥[K]∥r and wj,r[K] as follows:

∥[K]∥r := sup
s∈Z

2
2sn
r′
(
∥Ks(u, v)∥Lr(R2n)

)
,

wj,r[K] = sup
s∈Z

2
2sn
r′ sup

h∈Rn,|h|<2s−j−cm

(∥Ks(u, v)−Ks(u+ h, v + h)∥Lr(R2n)).

From the work in [1], we know that if the kernel satisfies ∥[K]∥r < ∞ and∑∞
j=1wj,r[K] < ∞, then the assumption (2.8) of Lemma 2.1 holds. However, it

is difficult to verify ∥[K]∥r < ∞ and
∑∞

j=1wj,r[K] < ∞ in the case K(u, v) =

Ω((u, v)/|(u, v)|)|(u, v)|−2n with Ω ∈ Lr(S2n−1) for r ̸= ∞. We overcome this dif-
ficulty by using the method of Littlewood-Paley decomposition. That is, we de-

compose K =
∞∑

j=−∞
Kj and then actually show that each Kj satisfies the above

properties. We establish below a key lemma concerning the rough kernel K(u, v) =
Ω((u, v)/|(u, v)|)|(u, v)|−2n.

A bilinear Calderón-Zygmund kernel L (see [20]) is a function defined away from
the diagonal on R2n that satisfies (for some bound A > 0)
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(1) the size condition

|L(u, v)| ≤ A∣∣(u, v)∣∣2n , (u, v) ̸= 0

(2) the smoothness condition

|L
(
(u, v)− (u′, v′)

)
− L(u, v)| ≤ A|(u′, v′)|ϵ∣∣(u, v)∣∣2n+ϵ ,

when 0 < 3
2
|(u′, v′)| ≤ |(u, v)|, 0 < ϵ < 1. Such kernels give rise to bilinear Calderón-

Zygmund operators that commute with translations in the following way:

S(f, g)(x) = p.v.

∫
Rn

∫
Rn

L(x− x1, x− x2)f(x1)g(x2) dx1 dx2.

Unfortunately, if Ω lies in Lr(S2n−1) with r < ∞, then the associated K given by
(3.1) is not a bilinear Calderón-Zygmund kernel because property (2) does not hold
in general, but we can decompose it as a sum of Calderón-Zygmund kernels. Given a
rough bilinear kernel K(u, v) = Ω((u, v)/|(u, v)|)|(u, v)|−2n as in (3.1), we decompose
it as follows. We fix a smooth function α in R+ such that α(t) = 1, for t ∈ (0, 1],
α(t) ∈ (0, 1), for t ∈ (1, 2) and α(t) = 0, for t ∈ [2,∞). For (u, v) ∈ R2n and j ∈ Z
we introduce the functions

β(u, v) = α
(
|(u, v)|

)
− α

(
2|(u, v)|

)
.

βj(u, v) = β
(
2−j(u, v)

)
.

We denote ∆j the Littlewood-Paley operator ∆jf = F−1(βj f̂). Here and throughout
this paper F−1 denotes the inverse Fourier transform, which is defined via

F−1(g)(x) =

∫
Rn

g(ξ)e2πix·ξdξ = ĝ(−x),

where ĝ is the Fourier transform of g. Denote

(3.2) Ki = βiK

and

(3.3) Ki
j = ∆j−iK

i

for i, j ∈ Z. Then we decompose the kernel K as follows:

(3.4) K =
∞∑

j=−∞

Kj, with Kj =
∞∑

i=−∞

Ki
j.

The following lemma plays a crucial role in our analysis.

Lemma 3.1. Let K(u, v) = Ω((u, v)/|(u, v)|)|(u, v)|−2n and Ω ∈ Lr(S2n−1), 1 < r ≤
∞, j ∈ Z. Then for any 0 < ϵ < 1, there is a constant Cn,ϵ such that the function

(u, v) 7→ Kj(u, v) =
∑
i∈Z

Ki
j(u, v)

is a bilinear Calderón-Zygmund kernel with bound A ≤ Cn,ϵ∥Ω∥Lr2max(0,j)(ϵ+2n/r).
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Proof. We need to show

|Kj(u, v)| ≤ Cn,ϵ∥Ω∥Lr

2max(0,j)(ϵ+2n/r)

|(u, v)|2n
,(3.5)

|Kj

(
(u, v)− (u′, v′)

)
−Kj(u, v)| ≤ Cn,ϵ∥Ω∥Lr

2max(0,j)(ϵ+2n/r)|(u′, v′)|ϵ

|(u, v)|2n+ϵ
,(3.6)

when 0 < 3
2
|(u′, v′)| ≤ |(u, v)|.

Given x, y ∈ R2n with |x| ≥ 3
2
|y| > 0, we claim that inequality (3.6) follows from

|Ki
j(x− y)−Ki

j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1) min
(
1,

|y|
2i−j

) 2max(0,j)2n/r

2−iϵ2min(j,0)ϵ|x|2n+ϵ
(3.7)

for some ϵ ∈ (0, 1) and all i, j ∈ Z.
To show this claim, let us assume for the time being that inequality (3.7) is true.

Pick an integer N∗ such that (log2 |y|) + j ≤ N∗ < (log2 |y|) + j + 1. We need to
consider two cases j ≥ 0 and j < 0.

The Case for j ≥ 0. If j ≥ 0, then i satisfies 2i−j ≤ |y|, which means i ≤ N∗.
Therefore, we have∑

i≤N∗

|Ki
j(x− y)−Ki

j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i≤N∗

2j2n/r

2−iϵ|x|2n+ϵ

≤ Cn,ϵ∥Ω∥Lr(S2n−1)

2j(ϵ+2n/r)|y|ϵ

|x|2n+ϵ
.

If j ≥ 0, then for i satisfies 2i−j > |y|, which implies that i > N∗, it holds that∑
i>N∗

|Ki
j(x− y)−Ki

j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i>N∗

|y|
2i−j

2j2n/r

2−iϵ|x|2n+ϵ

≤ Cn,ϵ∥Ω∥Lr(S2n−1)

2j(ϵ+2n/r)|y|ϵ

|x|2n+ϵ
.

The case for j < 0. If j < 0, then for i ≤ N∗, it holds that∑
i≤N∗

|Ki
j(x− y)−Ki

j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i≤N∗

1

2−iϵ2jϵ|x|2n+ϵ

≤ Cn,ϵ∥Ω∥Lr(S2n−1)

|y|ϵ

|x|2n+ϵ
.

If j < 0, then for i > N∗, we obtain∑
i>N∗

|Ki
j(x− y)−Ki

j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i>N∗

|y|
2i−j

1

2−iϵ2jϵ|x|2n+ϵ

≤ Cn,ϵ∥Ω∥Lr(S2n−1)

|y|ϵ

|x|2n+ϵ
.
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Combining these estimates yields

|Kj(x− y)−Kj(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

2max(0,j)(ϵ+2n/r)|y|ϵ

|x|2n+ϵ

and this finishes the proof of the claim.
Therefore, to prove inequality (3.6), it is sufficient to prove (3.7). For i ∈ Z, and

x ∈ R2n, it is easy to see that

|Ki(x)| ≤
Ω
(
x/|x|

)
|x|2n

1 1
2
≤ |x|

2i
≤2
(x).

Hence,

∥Ki∥Lr(R2n) ≤
1

22in

(∫ 2i+1

2i−1

∫
S2n−1

|Ω(θ)|ra2n−1dθda
) 1

r ≈ 2−2in/r′∥Ω∥Lr(S2n−1).

Let Ψ(x) = (1 + |x|)−2n−1 be defined on R2n. Note that

|F−1(βi−j)(x)| ≤ Cβ2
−2(i−j)n(1 + 2−(i−j)|x|)−2n−1 = CβΨi−j(x),

then, using Hölder’s inequality, it yields thatKi
j = Ki∗F−1(βi−j) enjoys the following

property

|Ki
j(x− ty)|≲ ∥Ki∥Lr

(∫
2i−1≤|z|≤2i+1

|Ψi−j(x− ty − z)|r′dz
) 1

r′
,(3.8)

for x, y ∈ R2n and t ∈ [0, 1].
Let z = 2iz′, for x, y ∈ R2n, it follows that(∫

2i−1≤|z|≤2i+1

( 2−2(i−j)n

(1 + 2−(i−j)|x− ty − z|)2n+1

)r′

dz
) 1

r′

≲
(∫

1
2
≤|z′|≤2

1

(1 + 2j|x−ty
2i

− z′|)(2n+1)r′
dz′

) 1
r′
2−2(i−j)n2

2in
r′

:= N j
i (x, y, t).

If j ≤ 0, then

N j
i (x, y, t)≲

Cn,ϵ(
1 + 2j max{|x−ty

2i
|, 1}

)2n+ϵ2
−2(i−j)n2

2in
r′ ≲Cn,ϵ

22in/r
′
2iϵ

2jϵ|x|2n+ϵ .

If j > 0, we claim that

N j
i (x, y, t)≲Cn,ϵ

22jn/r22in/r
′
2iϵ

|x|2n+ϵ .

Indeed, for 1
4
≤ |x−ty

2i
| ≤ 4, it holds that

N j
i (x, y, t)≲ 2−

2in
r 2

2jn
r ≤ Cn,ϵ

2−
2in
r 2

2jn
r(

1 + |x−ty
2i

|
)2n+ϵ ≲Cn,ϵ

22jn/r22in/r
′
2iϵ

|x|2n+ϵ .
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As for the case |x−ty
2i

| > 4 or |x−ty
2i

| < 1
4
, it follows that

N j
i (x, y, t)≲

Cn,ϵ(
1 + 2j max{|x−ty

2i
|, 1}

)2n+ϵ2
−2(i−j)n2

2in
r′ ≲Cn,ϵ

22in/r
′
2iϵ

|x|2n+ϵ .

Combining the above estimates, we deduce that

|Ki
j(x− ty)|≲Cn,ϵ∥Ω∥Lr(S2n−1)

2max(0,j)2n/r

2−iϵ2min(j,0)ϵ|x|2n+ϵ
.

This inequality further implies that

(3.9) |Ki
j(x− y)−Ki

j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

2max(0,j)2n/r

2−iϵ2min(j,0)ϵ|x|2n+ϵ

On the other hand∣∣Ki
j(x− y)−Ki

j(x)| =
∣∣∣∣ ∫

R2n

Ki(z)

∫ 1

0

2−2(i−j)n(∇F−1β)(
x− ty − z

2i−j
)

y

2i−j
dt dz

∣∣∣∣
≤ Cn,ϵ

|y|
2i−j

∫ 1

0

∫
R2n

∣∣Ki(z)
∣∣ 22(j−i)n

(1 + 2j−i|x− ty − z|)2n+1
dt dz

≤ Cn,ϵ
|y|
2i−j

∫ 1

0

(|Ki| ∗Ψi−j)(x− ty) dt

≤ Cn,ϵ
|y|
2i−j

∥Ω∥Lr(S2n−1)

2max(0,j)2n/r

2−iϵ2min(j,0)ϵ|x|2n+ϵ
.

This estimate, together with inequality 3.9, yields the inequality 3.7 and hence
inequality 3.6 holds.

For the size condition (3.5), we may let t = 0 in (3.8). Thus∑
i∈Z

|Ki
j(x)| ≤ Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i∈Z

(∫
1
2
≤|z′|≤2

1

(1 + 2j| x
2i
− z′|)(2n+ϵ)r′

dz′
) 1

r′
2−2(i−j)n

≲Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i<Ñ∗

2−2(i−j)n
(∫

1
2
≤|z′|≤2

1(
1 + 2j| x

2i
− z′|

)(2n+ϵ)r′
dz′

) 1
r′

+ Cn,ϵ∥Ω∥Lr(S2n−1)

∑
i>Ñ∗

2−2(i−j)n

≲Cn,ϵ∥Ω∥Lr(S2n−1)

1

|x|2n
+ Cn,ϵ∥Ω∥Lr(S2n−1)

2max(0,j)2n/r

2min(j,0)ϵ|x|2n+ϵ

∑
i<Ñ∗

2iϵ

≲Cn,ϵ∥Ω∥Lr(S2n−1)

2max(0,j)(2n/r+ϵ)

|x|2n
,

where Ñ∗ is the number such that 2Ñ
∗ ≈ 2min(j,j/r′)|x|.

Therefore, we know that Kj is a bilinear Calderón-Zygmund kernel with bound
Cn,ϵ∥Ω∥Lr2max(0,j)(ϵ+2n/r). The proof of this lemma is finished. □
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4. the proof of Theorem 1.1

We begin by stating a known result.

Proposition 4.1 ([17]). Let 1 ≤ p1, p2 < ∞ and 1/p = 1/p1 + 1/p2. Let Ω be in
Lr(S2n−1) with 1 < r ≤ ∞ and let δ ∈ (0, 1/r′). Let Tj be the bilinear Calderón-
Zygmund operator with kernel Kj. Them, for j ≤ 0, the operator Tj maps Lp1(Rn)×
Lp2(Rn) to Lp(Rn) with norm C∥Ω∥Lr(S2n−1)2

−|j|(1−δ).

The following lemma will be crucial in dealing with the adjoints of TΩ. The in-
gredients of its proof are standard but the precise statement below may not have
appeared in the literature.

Lemma 4.2. Let 1 ≤ r < 4, δ > 0, and let b be a smooth function on R2n which
satisfies:

(a) ∥b∥Lr(R2n) ≤ C∗,
(b) |b(ξ, η)| ≤ C∗min(|(ξ, η)|, |(ξ, η)|−δ),
(c) |∂αb(ξ, η)| ≤ CαC∗min(1, |(ξ, η)|−δ).

Let β be a smooth function supported in an annulus in R2n and let βj(y, z) =
β
(
2−j(y, z)

)
for j ∈ Z. Then the multiplier

bj(ξ, η) =
∑
i∈Z

βj−i(ξ, η)b(2
i(ξ, η))

satisfies

∥Tbj∥L2×L2→L1 ≲ j C∗ 2
−δj(1− r

4
).

Proof. Denote bj,0 = βj(ξ, η)b(ξ, η) and write bj = b1j + b2j , where b1j is the diagonal

part of bj according to the wavelet decomposition in [19, Section 4] and b2j is the
off-diagonal part. (In this reference b is denoted by m, bj by mj and bj,0 by mj,0.)
Let

C0 = max
|α|≤⌊ 2n

4−r′ ⌋+1
∥∂αbj,0∥L∞ ≲ C∗2

−δj,

where C∗ depends on the frequency support of the function β and n. By [19, Section
4], we obtain

∥Tb1j
∥L2×L2→L1 ≲ jC

1− r
4

0 ∥bj,0∥
r
4
Lr ≲ jC

1− r
4

0 ∥b∥
r
4
Lr ≲ j(C∗2

−δj)1−
r
4∥b∥

r
4
Lr ≲ jC∗(2

−δj)1−
r
4 .

A similar estimate (without j) holds for the off-diagonal part Tb2j
by the same

procedure as in [17, Section 5]. It follows that

∥Tb2j
∥L2×L2→L1 ≲ 2−δj∥bj,0∥Lr(R2n) ≲C∗2

−δj.

Combining the estimates for b1j and b2j , we obtain

∥Tbj∥L2×L2→L1 ≲ jC∗2
−δj(1− r

4
).

□

We also need the following lemma.
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Lemma 4.3. Let 2 ≤ p1, p2 ≤ ∞, 1 ≤ p ≤ 2, 1/p = 1/p1+1/p2, Ω ∈ Lr(S2n−1). For
j > 0 we have that

∥Tj∥Lp1 (Rn)×Lp2 (Rn)→Lp(Rn) ≲

{
Cj2−jδ(1− r′

4
)∥Ω∥Lr(S2n−1),

4
3
< r ≤ 2, δ < 1

r′
;

Cj2−jδ 1
2∥Ω∥Lr(S2n−1), r > 2, δ < 1/2.

Proof. The techniques of the proof are borrowed from [19]. Introduce the notation:

m = K̂0, mj = K̂j, mj,0 = K̂0βj,

where K0, βj, and Kj are the same as in (3.2), (3.3), and (3.4) are associated with
the fixed Ω in Lr(S2n−1).
We first fix r satisfying 4/3 < r ≤ 2. As r ≤ 2, the Hausdorff-Young inequality

yields that
∥m∥Lr′ ≤ ∥K0∥Lr ≲ ∥Ω∥Lr(S2n−1).

Also, it is not too hard to verify that conditions (b) and (c) in Lemma 4.2 hold (see
[19, Lemma 6.4]) with C∗ = ∥Ω∥Lr(S2n−1) and δ < 1/r′. Applying Lemma 4.2 we
obtain

∥Tmj
∥L2×L2→L1 ≲ j2−δj(1− r′

4
)∥Ω∥Lr(S2n−1).

Now let

(mj)
∗1(ξ1, ξ2) = mj(−(ξ1 + ξ2), ξ2), (mj)

∗2 = mj(ξ1,−(ξ1 + ξ2))

be the two adjoint multipliers associated with mj. Then we have

(mj)
∗1 =

∑
i

(βj−i ◦ At) (β̂iK ◦ At) =
∑
i

(βj−i ◦ At) β̂K(At2i(·))

where A =

(
−In −In
0 In

)
, and In is the n× n identity matrix.

We now notice that the function b(ξ, η) = β̂K(At(ξ, η)) satisfies the hypotheses
of Lemma 4.2 as At(ξ, η) has the same size as (ξ, η). (Here (ξ, η) is thought of as
a column vector.) The same argument works for the other adjoint of mj with the

matrix

(
In 0
−In −In

)
in place of A. It follows that

∥T(mj)
∗1∥L2×L2→L1+∥T(mj)

∗2∥L2×L2→L1 ≲ j2−jδ(1− r′
4
)∥Ω∥Lr(S2n−1).

By duality, we have

∥Tmj
∥L∞×L2→L2+∥Tmj

∥L2×L∞→L2 ≲ j2−jδ(1− r′
4
)∥Ω∥Lr(S2n−1).

For 4/3 < r ≤ 2, interpolating between the above two estimates implies that

∥Tmj
∥Lp1×Lp2→Lp ≲ j2−jδ(1− r′

4
)∥Ω∥Lr(S2n−1), δ <

1

r′
,

where 2 ≤ p1, p2 ≤ ∞, 1 ≤ p ≤ 2 and 1
p1

+ 1
p2

= 1
p
.

Now for r > 2, thanks to the embedding Lr(S2n−1) ⊆ L2(S2n−1), we have

∥Tmj
∥Lp1×Lp2→Lp ≲ j2−jδ(1− 2

4
)∥Ω∥L2(S2n−1) ≲ j2−jδ 1

2∥Ω∥Lr(S2n−1), δ <
1

2
,
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where 2 ≤ p1, p2 ≤ ∞, 1 ≤ p ≤ 2 and 1
p1

+ 1
p2

= 1
p
.

This completes the proof of this lemma. □

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. By Littlewood-Paley decomposition of the kernel, TΩ can be
written as

TΩ(f1, f2)(x) =
∞∑

j=−∞

∫
Rn

∫
Rn

|Kj(x− y, x− z)f1(y)f2(z) dydz :=
∞∑

j=−∞

Tj(f1, f2)(x).

Given a stopping collection Q with top cube Q, let Qj be defined as

ΛQ
t2
j,t1

(f1, f2, f3) =
1

|Q|

[
⟨T [Kj]

t2∧sQ
t1 (f11Q, f2), f3⟩ −

∑
L∈Q
L⊂Q

⟨T [Kj]
t2∧sL
t1 (f11L, f2), f3⟩

]
.

For the sake of simplicity, let’s denote ΛQj(f1, f2, f3) = ΛQ
t2
j,t1

(f1, f2, f3).

Our proof will be divided into two parts
∑

j>0 Tj and
∑

j≤0 Tj. Each part should

satisfy the assumption (2.8) of Lemma 2.1. We therefore consider these two parts
into two steps.

Step 1. Estimate for j > 0.
Fix 0 < γ < 1, by Lemma 3.1, Tj is a bilinear Calderón-Zygmund operator with

kernelKj, and the size and smoothness conditions constant Aj ≤ Cn,γ∥Ω∥Lr2j(γ+2n/r).

Combining the methods in [1, Section 3], we know the kernel of Tj satisfies ∥[Kj]∥p ≲
2j(ϵ+2n/r) < ∞ for fixed j ∈ Z. This enables us to use Lemma 3.1 and Proposition
3.3 in [1] with Aj ≤ Cn,ϵ∥Ω∥Lr2j(γ+2n/r) (Then choose β = 1 and p = 1). Hence

|ΛQj(f1, f2, f3)|≲ ∥Ω∥Lr(S2n−1)2
j(γ+2n/r)|Q|∥f1∥Ẋ1

∥f2∥Y1∥f3∥Y1 .

By Lemma 4.3, choosing p1 = p2 = 3, we have

|ΛQj(f1, f2, f3)|≲ ∥Ω∥Lr(S2n−1)j2
−cj|Q|∥f1∥Ẋ3

∥f2∥Y3∥f3∥Y3 ,

where c < 1/r′(1− r′/4), if 4/3 < r ≤ 2 and c < 1/4 if r > 2.
Interpolating via Lemma 2.2, it follows that for any 0 < ϵ < 1 there exits q = 1+2ϵ

so that

|ΛQj(f1, f2, f3)|≲ ∥Ω∥Lr(S2n−1)2
j(γ+2n/r)(1−ϵ)jϵ2−cjϵ|Q|∥f1∥Ẋq

∥f2∥Yq∥f3∥Yq

≲ j2−jγϵ2j(γ+2n/r)2−(c+2n/r)jϵ∥Ω∥Lr(S2n−1)|Q|∥f1∥Ẋq
∥f2∥Yq∥f3∥Yq .

If we choose γ < c and ϵ = 2n/r+γ
2n/r+c

, then 0 < ϵ < 1. Therefore

|ΛQj(f1, f2, f3)|≲ j2−jγϵ|Q|∥Ω∥Lr(S2n−1)∥f1∥Ẋq
∥f2∥Yq∥f3∥Yq .

Summing over j ∈ Z+, we can conclude that for q = 1 + 22n/r+γ
2n/r+c

|ΛQ(f1, f2, f3)|≲ |Q|∥Ω∥Lr(S2n−1)∥f1∥Ẋq
∥f2∥Yq∥f3∥Yq .
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By symmetry, it also yields that

|ΛQ(f1, f2, f3)|≲ |Q|∥Ω∥Lr(S2n−1)∥f1∥Yq∥f2∥Ẋq
∥f3∥Yq ,

|ΛQ(f1, f2, f3)|≲ |Q|∥Ω∥Lr(S2n−1)∥f1∥Yq∥f2∥Yq∥f3∥Ẋq
.

Step 2. Estimate for j ≤ 0.
By Lemma 3.1, Tj is a bilinear Calderón-Zygmund kernel with constant Aj ≤

∥Ω∥Lr(S2n−1). Hence

|ΛQj(f1, f2, f3)|≲ ∥Ω∥Lr(S2n−1)|Q|∥f1∥Ẋ1
∥f2∥Y1∥f3∥Y1 .

By Proposition 4.1 with p1 = p2 = 2, we have

|ΛQj(f1, f2, f3)|≲ ∥Ω∥Lr(S2n−1)2
−c|j||Q|∥f1∥Ẋ2

∥f2∥Y2∥f3∥Y∞ ,

where c = 1− δ, δ < 1/r′. For any q > 1, by Lemma 4.3 and Lemma 4.4 in [1], then
summing over j ≤ 0, one obtains

|ΛQ(f1, f2, f3)|≲ |Q|∥Ω∥Lr(S2n−1)∥f1∥Ẋq
∥f2∥Yq∥f3∥Yq .

|ΛQ(f1, f2, f3)|≲ |Q|∥Ω∥Lr(S2n−1)∥f1∥Yq∥f2∥Ẋq
∥f3∥Yq .

|ΛQ(f1, f2, f3)|≲ |Q|∥Ω∥Lr∥f1∥Yq∥f2∥Yq∥f3∥Ẋq
.

In conclusion, the above two steps hold for

p >

{
24n+3r−4
8n+3r−4

, 4
3
< r ≤ 2;

24n+r
8n+r

, r > 2.

since the norm of Yq is increasing over q.
Using Theorem A, we can find r1, r2 in [2,∞] and α in [1, 2] such TΩ maps Lr1×Lr2

to Lα. But a smooth truncation of the kernel K(u, v) also gives rise to an operator
with a similar bound (see Remark 2.1), thus we have that CT (r1, r2, α) < ∞ and
(2.4) is valid. Hence, TΩ satisfies Lemma 2.1. Moreover, we can choose c < 1

r′
(1− r′

4
)

if 4
3
< r ≤ 2, and c < 1

4
if r > 2, such that p > 3− 2c

2n/r+c
. Then

|ΛQ(f1, f2, f3)|≲ ∥Ω∥Lr(S2n−1) sup
S

PSFS,p⃗(f1, f2, f3),

this finishes the proof of Theorem 1.1, since the multiplication operators regarding

the remaining truncations satisfy the required PSF
(1,1,1)
S bound [1, Section 6.2]. □

5. derivation of the Corollaries

Proof of Corollary 1.2. The techniques are borrowed from [10], but the weight classes
are different.

Define σ = v
− q′

q

w⃗ and choose pi > max{24n+3r−4
8n+3r−4

, 24n+r
8n+r

}, with pi < qi, i = 1, 2 and
p′3 > q. By Theorem 1.1 and duality, for any sparse collection S, it is enough to show
that

(5.1) PSF
(p1,p2,p3)
S (f1, f2, f3) ≲

2∏
i=1

∥fi∥Lqi (vi)∥f3∥Lq′ (σ)

with bounds independent of S.
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Let

w1 = v
p1

p1−q1
1 , w2 = v

p2
p2−q2
2 , w3 = σ

p3
p3−q′

and fi = giw
1
pi
i , i = 1, 2, 3. Then we have

∥fi∥Lqi (vi) = ∥gi∥Lqi (wi), i = 1, 2,

and

∥f3∥Lq′ (σ) = ∥g3∥Lq′ (w3)
.

Let q3 = q′. It follows that

PSF
(p1,p2,p3)
S (f1, f2, f3)

= PSF
(p1,p2,p3)
S

(
g1w

1
p1
1 , g2w

1
p2
2 , g3w

1
p3
3

)
=

∑
Q∈S

( 3∏
j=1

wj(EQ)
1
qj

(⟨gpjj wj⟩Q
⟨wj⟩Q

) 1
pj

)
×
( 3∏

j=1

(
⟨wj⟩Q

) 1
pj

− 1
qj

)
×
(
|Q|

3∏
j=1

( ⟨wj⟩Q
wj(EQ)

) 1
qj

)
.

By a simple calculation, we have

2∏
j=1

⟨wj⟩Q
1
pj

− 1
qj ⟨w3⟩Q

1
p3

− 1
q′ =

2∏
j=1

⟨wj⟩Q
1
pj

− 1
qj ⟨v

p′3
p′3−q

w⃗ ⟩
1
q
− 1

p′3
Q = [v⃗]Aq⃗,p⃗

.

We now deal with the second product using the technique in [27]. Let

x1 =
p1 − q1
p1q1

, x2 =
p2 − q2
p2q2

, x3 =
p3 − q′

p3q′
,

then

w
−x1

2
1 w

−x2
2

2 w
−x3

2
3 = 1.

Hölder’s inequality and the fact that

−x1

2
− x2

2
− x3

2
+

1

2p′1
+

1

2p′2
+

1

2p′3
= 1

imply that
3∏

i=1

(
wi(EQ)

)−xi
2 E

1
2p′

i
Q ⩾

∫
EQ

3∏
i=1

w
−xi

2
i = |EQ|.

The sparseness of S yields that

3∏
i=1

(wi(EQ)

|Q|

)−xi
2 ≥ η−

x1
2
−x2

2
−x3

2 .

Therefore
3∏

i=1

( ⟨wi⟩Q
1
|Q|wi(EQ)

)−xi
2 ≤ η

x1
2
+

x2
2
+

x3
2

3∏
i=1

⟨wi⟩Q−xi
2 .
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By Definition1.3, we have

3∏
i=1

( ⟨wi⟩Q
1
|Q|wi(EQ)

) 1
qi ≤

(
ηx1+x2+x3

3∏
i=1

⟨wi⟩Q−xi
)max(− 1

xiqi
)

≤
(
ηx1+x2+x3 [v⃗]Aq⃗,p⃗

)
max(− 1

xiqi
)
.

Finally note that, by [10], the first product depends on the Lqj(wj)-boundedness of
Mpj ,wj

, where

Mpj ,wj
f(x) = sup

Q∋x

( 1

|w(Q)|

∫
Q

|f |pjwj

) 1
pj .

This concludes the proof of (5.1) □

Proof of Corollary 1.3. For 2 < p < ∞, let σ = w
−2
2−p , ρ = p

p−2
and choose qi >

max{24n+3r−4
8n+3r−4

, 24n+r
8n+r

} such that qi < ρ, and qi < p. By Theorem 1.1 and duality, it is
enough to prove that for any sparse collection S, we have

PSF
(q1,q2,q3)
S (f1, f2, f3) ≲

2∏
i=1

∥fi∥Lp(w)∥f3∥Lρ(σ)

with bounds independent of S. The proof of this fact is omitted as it follows from
the same steps as in Section 5.1 in [1]. □

Next, we provide another corollary which is related to Corollary 1.7 in [10].

Corollary 5.1. Suppose Ω ∈ Lr(S2n−1) with vanishing integral and r > 4/3. For
p1, p2 > max{24n+3r−4

8n+3r−4
, 24n+r

8n+r
}, 1

p
= 1

p1
+ 1

p2
with 1 < p < max{24n+3r−4

16n
, 24n+r

16n
}. Then

for weights w2
1 ∈ Ap1, w

2
2 ∈ Ap2, w = w

p
p1
1 w

p
p2
2 , there exists a constant C = Cw,p1,p2,n,r

such that

∥TΩ(f1, f2)∥Lp(w) ≤ C∥Ω∥Lr(S2n−1)∥f1∥Lp1 (w1)∥f2∥Lp2 (w2).

We end this section with another corollary concerning the commutator of a rough

TΩ with a pair of BMO functions b⃗ = (b1, b2). For a pair α⃗ = (α1, α2) of nonnegative
integers, we define this commutator (acting on a pair of nice functions fj) as follows:

[
TΩ, b⃗

]
α⃗
(f1, f2)(x) = p.v.

∫
R2n

Ω((y1, y2)
′)

|(y1, y2)|2n
f1(x−y1)f2(x−y2)

2∏
i=1

(bi(x)−bi(yi))
αidy1dy2

As a consequence of Proposition 5.1 in [31] and of Corollary 1.2,

Corollary 5.2. Let Ω ∈ Lr(S2n−1) with r > 4/3 and
∫
S2n−1 Ω dσ = 0. Let q⃗ = (q1, q2),

p⃗ = (p1, p2, p3) with p⃗ ≺ q⃗ and pi > max{24n+3r−4
8n+3r−4

, 24n+r
8n+r

}, i = 1, 2, 3. Let

µv⃗ =
2∏

k=1

v
q/qk
k
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and 1
q
= 1

q1
+ 1

q2
, 1 < q < max{24n+3r−4

16n
, 24n+r

16n
} and let q3 = q′. Then there is a

constant C = Cp⃗,q⃗,r,n,α⃗ such that∥∥[TΩ, b⃗
]
α⃗
(f1, f2)

∥∥
Lq(µv⃗)

≤ C∥Ω∥Lr(S2n−1)[v⃗]
max1≤i≤3{

pi
qi−pi

}
Aq⃗,p⃗

∥f1∥Lq1 (v1)∥f2∥Lq2 (v2)

2∏
i=1

∥bi∥αi
BMO.
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