as small as we wish. Also, if we can find one value of r, say r_{0}, such that $B_{r_{0}}(z)$ is contained in S, then we can find infinitely many values of r such that $B_{r}(z)$ is contained in S : Just take $0<r<r_{0}$. Here are some useful examples to keep in mind.

- The empty set, denoted as usual by \emptyset, is open. Because there are no points in \emptyset, the definition of open sets is vacuously satisfied.
- The set of all complex numbers \mathbb{C} is open.
- An r-neighborhood, $B_{r}\left(z_{0}\right)$, is open. We just verified in Example 2.1.3(a) that every point in $B_{r}\left(z_{0}\right)$ is an interior point.
- The set of all z such that $\left|z-z_{0}\right|>r$ is open. This set is called a neighborhood of ∞.

An r-neighborhood, $B_{r}\left(z_{0}\right)$, is more commonly called an open disk of radius r, centered at z_{0}.

One can show that a set is open if and only if it contains none of its boundary points (Exercise 18). Sets that contain all of their boundary points are called closed. The complex plane \mathbb{C} and the empty set \emptyset are closed since they trivially contain their empty sets of boundary points. The disk $\left\{z:\left|z-z_{0}\right| \leq r\right\}$ is closed because it contains all its boundary points consisting of the circle $\left|z-z_{0}\right|=r$ (Figure 2.2). We refer to such a disk as the closed disk of radius r, centered at z_{0}. The smallest closed set that contains a set A is called the closure of A and is denoted by \bar{A}. For instance the closure of the open disk $B_{r}\left(z_{0}\right)$ is the closed disk $\overline{B_{r}\left(z_{0}\right)}=\left\{z:\left|z-z_{0}\right| \leq r\right\}$. The punctured open disk $B_{r}^{\prime}\left(z_{0}\right)$ also has the same closure. A point z_{0} is called an accumulation point of a set A if $B_{r}^{\prime}\left(z_{0}\right) \cap A \neq \emptyset$ for every $r>0$. For instance, every boundary point of an open disk is an accumulation point of it.

Some sets are neither open nor closed. For example, the set

$$
S=\left\{z:\left|z-z_{0}\right| \leq r ; \operatorname{Im} z>0\right\}
$$

contains the boundary points on the upper semicircle, but it does not contain its boundary points that lie on the x-axis. Hence, this set is neither open nor closed. See Figure 2.4.

Fig. 2.4 S is neither open nor closed.

Next, we introduce some set notation for convenience. If a point z is in a set S, we say that z is an element of S and write $z \in S$. If z does not belong to S, we will write $z \notin S$. Let A and B be two sets of complex numbers. The union of A and B, denoted $A \cup B$, is the set

$$
A \cup B=\{z: z \in A \text { or } z \in B\}
$$

The intersection of A and B, denoted $A \cap B$, is the set

