as small as we wish. Also, if we can find one value of r, say r_0 , such that $B_{r_0}(z)$ is contained in S, then we can find infinitely many values of r such that $B_r(z)$ is contained in S: Just take $0 < r < r_0$. Here are some useful examples to keep in mind.

- The empty set, denoted as usual by Ø, is open. Because there are no points in Ø, the definition of open sets is vacuously satisfied.
- The set of all complex numbers \mathbb{C} is open.
- An *r*-neighborhood, $B_r(z_0)$, is open. We just verified in Example 2.1.3(a) that every point in $B_r(z_0)$ is an interior point.
- The set of all z such that |z z₀| > r is open. This set is called a neighborhood of ∞.

An *r*-neighborhood, $B_r(z_0)$, is more commonly called an **open disk** of radius *r*, centered at z_0 .

One can show that a set is open if and only if it contains none of its boundary points (Exercise 18). Sets that contain all of their boundary points are called **closed**. The complex plane \mathbb{C} and the empty set \emptyset are closed since they trivially contain their empty sets of boundary points. The disk $\{z : |z - z_0| \le r\}$ is closed because it contains all its boundary points consisting of the circle $|z - z_0| = r$ (Figure 2.2). We refer to such a disk as the **closed disk** of radius *r*, centered at z_0 . The smallest closed set that contains a set *A* is called the **closure** of *A* and is denoted by \overline{A} . For instance the closure of the open disk $B_r(z_0)$ is the closed disk $\overline{B_r(z_0)} = \{z : |z - z_0| \le r\}$. The punctured open disk $B'_r(z_0)$ also has the same closure. A point z_0 is called an **accumulation point** of a set *A* if $B'_r(z_0) \cap A \neq \emptyset$ for every r > 0. For instance, every boundary point of an open disk is an accumulation point of it.

Some sets are neither open nor closed. For example, the set

$$S = \{z: |z - z_0| \le r; \text{Im} z > 0\}$$

contains the boundary points on the upper semicircle, but it does not contain its boundary points that lie on the *x*-axis. Hence, this set is neither open nor closed. See Figure 2.4.

Fig. 2.4 S is neither open nor closed.

Next, we introduce some set notation for convenience. If a point *z* is in a set *S*, we say that *z* is an **element** of *S* and write $z \in S$. If *z* does not belong to *S*, we will write $z \notin S$. Let *A* and *B* be two sets of complex numbers. The **union** of *A* and *B*, denoted $A \cup B$, is the set

$$A \cup B = \{z \colon z \in A \text{ or } z \in B\}.$$

The **intersection** of *A* and *B*, denoted $A \cap B$, is the set