1 Complex Numbers and Functions

- If x is a positive real number, then Log x = ln x.
- If *x* is a negative real number, then $\text{Log } x = \ln |x| + i\pi$.
- For all z, the identity $e^{\text{Log}z} = z$ is true. But, as illustrated by Example 1.8.3(e), Log (e^z) is not always equal to z. In fact, Log $(e^z) = z \Leftrightarrow -\pi < \text{Im} z \le \pi$.
- Many algebraic properties of $\ln x$ no longer hold for Log z. For example, the identity $\ln(x_1x_2) = \ln x_1 + \ln x_2$, which holds for all positive real numbers x_1 and x_2 , does not hold for Log z. Consider the following:

$$Log((-1)(-1)) = Log(1) = 0 \neq Log(-1) + Log(-1),$$

since $\text{Log}(-1) = i\pi$.

Branches of the argument and the logarithm

As we may imagine, we could have specified a different range of values of $\arg z$ in defining a logarithmic function in terms of (1.8.3). In fact, for every real number α we can specify that $\alpha < \arg z \le \alpha + 2\pi$. This selection assigns a single value to $\arg z$, denoted by $\arg_{\alpha} z$, that lies in the interval $(\alpha, \alpha + 2\pi]$.

Definition 1.8.4. Let α be a fixed real number. For $z \neq 0$, we call the unique value of arg *z* that falls in the interval $(\alpha, \alpha + 2\pi]$ the α -th branch of arg *z* and we denote it by arg αz . Precisely, we define the α -th **branch** of log *z* by the identity

$$\log_{\alpha} z = \ln |z| + i \arg_{\alpha} z$$
, where $\alpha < \arg_{\alpha} z \le \alpha + 2\pi$. (1.8.6)

The ray through the origin along which a branch of the logarithm is discontinuous is called a **branch cut**.

When $\alpha = -\pi$, this definition leads to the principal value of the logarithm; that is, $\log_{-\pi} z = \text{Log } z$.

Since two values of arg *z* differ by an integer multiple of 2π , it follows that, for a complex number $z \neq 0$ and real numbers α and β , there is an integer *k* (depending on *z*, α , and β), such

 $\frac{n}{2}\log_{\alpha} z = \log_{\beta} z + 2k\pi i.$

Example 1.8.5. (Different branches of the logarithm) Evaluate (a) $\log_0 i$ (b) $\log_{\frac{\pi}{2}} i$ (c) $\log_{\frac{\pi}{2}} (-2)$

Solution. If we know $\log z$, to find $\log_{\alpha} z$, it suffices to choose the value of $\log z$ with imaginary part that lies in the interval $(\alpha, \alpha + 2\pi]$. If we do not know $\log z$, we compute $\log_{\alpha} z$ using (1.8.6).

(a) We have $\alpha = 0$ and so the imaginary part of $\log_0 z$, $\arg_0 z$, must be in the interval $(0, 2\pi]$. From Example 1.8.1, $\log i = i\frac{\pi}{2} + 2k\pi i$; and so $\log_0 i = i\frac{\pi}{2}$. Note that $\log i = i\frac{\pi}{2} + 2k\pi i$

88