- If x is a positive real number, then $\log x=\ln x$.
- If x is a negative real number, then $\log x=\ln |x|+i \pi$.
- For all z, the identity $e^{\log z}=z$ is true. But, as illustrated by Example 1.8.3(e), $\log \left(e^{z}\right)$ is not always equal to z. In fact, $\log \left(e^{z}\right)=z \Leftrightarrow-\pi<\operatorname{Im} z \leq \pi$.
- Many algebraic properties of $\ln x$ no longer hold for $\log z$. For example, the identity $\ln \left(x_{1} x_{2}\right)=\ln x_{1}+\ln x_{2}$, which holds for all positive real numbers x_{1} and x_{2}, does not hold for $\log z$. Consider the following:

$$
\log ((-1)(-1))=\log (1)=0 \neq \log (-1)+\log (-1)
$$

since $\log (-1)=i \pi$.

Branches of the argument and the logarithm

As we may imagine, we could have specified a different range of values of $\arg z$ in defining a logarithmic function in terms of (1.8.3). In fact, for every real number α we can specify that $\alpha<\arg z \leq \alpha+2 \pi$. This selection assigns a single value to $\arg z$, denoted by $\arg \alpha z$, that lies in the interval $(\alpha, \alpha+2 \pi]$.

Definition 1.8.4. Let α be a fixed real number. For $z \neq 0$, we call the unique value of $\arg z$ that falls in the interval $(\alpha, \alpha+2 \pi]$ the α-th branch of $\arg z$ and we denote it by $\arg _{\alpha} z$. Precisely, we define the α-th branch of $\log z$ by the identity

$$
\begin{equation*}
\log _{\alpha} z=\ln |z|+i \arg _{\alpha} z, \quad \text { where } \alpha<\arg _{\alpha} z \leq \alpha+2 \pi \tag{1.8.6}
\end{equation*}
$$

The ray through the origin along which a branch of the logarithm is discontinuous is called a branch cut.

When $\alpha=-\pi$, this definition leads to the principal value of the logarithm; that is, $\log _{-\pi} z=\log z$.

Since two values of $\arg z$ differ by an integer multiple of 2π, it follows that, for a complex number $z \neq 0$ and real numbers α and β, there is an integer k (depending on z, α, and β), such

$$
\nexists \log _{\alpha} z=\log _{\beta} z+2 k \pi i .
$$

Example 1.8.5. (Different branches of the logarithm) Evaluate

(a) $\log _{0} i$
(b) $\log _{\frac{\pi}{2}} i$
(c) $\log _{\frac{\pi}{2}}(-2)$

Solution. If we know $\log z$, to find $\log _{\alpha} z$, it suffices to choose the value of $\log z$ with imaginary part that lies in the interval $(\alpha, \alpha+2 \pi]$. If we do not know $\log z$, we compute $\log _{\alpha} z$ using (1.8.6).
(a) We have $\alpha=0$ and so the imaginary part of $\log _{0} z, \arg _{0} z$, must be in the interval $(0,2 \pi]$. From Example 1.8.1, $\log i=i \frac{\pi}{2}+2 k \pi i ;$ and so $\log _{0} i=i \frac{\pi}{2}$. Note that $\log i=$

