(c) We have
$|-2|=2, \arg (-2)=\pi+2 k \pi \Rightarrow \log (-2)=\ln 2+i(\pi+2 k \pi)=\ln 2+(2 k+1) \pi i$.
More explicitly, $\log (-2)$ consists of the following complex values:

$$
\ln 2+\pi i, \ln 2-\pi i, \ln 2+3 \pi i, \ln 2-3 \pi i, \ln 2 \pm 5 \pi i, \ldots
$$

Note that all values of $\log (-2)$ have identical real parts and their imaginary parts differ by integer multiples of $2 \pi i$. These observations are true in general.

It is clear from Example 1.8.1 and from the definition of $\log z$ that to make $\log z$ single-valued, and hence turn it into a function, it is enough to define a single-valued version of $\arg z$. For example, we can use the principal value of the \arg ument, $\operatorname{Arg} z$ (see Definition 1.3.2) which satisfies $-\pi<\operatorname{Arg} z \leq \pi$.

Definition 1.8.2. The principal value or principal branch of the complex logarithm is defined by

$$
\begin{equation*}
\log z=\ln |z|+i \operatorname{Arg} z \quad(z \neq 0) \tag{1.8.4}
\end{equation*}
$$

Thus $\log z$ is the (particular) value of $\log z$ whose imaginary part is in the interval $(-\pi, \pi]$. Because $\arg z=\operatorname{Arg} z+2 k \pi$, where k is an integer, we see from (1.8.3) and (1.8.4) that all the values of $\log z$ differ from the principal value by $2 k \pi i$. Thus

$$
\begin{equation*}
\log z=\log z+2 k \pi i \quad(z \neq 0) \tag{1.8.5}
\end{equation*}
$$

Example 1.8.3. (Principal values of the logarithm) Compute the expressions
(a) $\log i$
(b) $\log (1+i)$
(c) $\log (-i)$
(d) $\log 5$
(e) $\log \left(e^{6 \pi i}\right)$.

Solution. If we know $\log z$, to find $\log z$, it suffices to choose the value of $\log z$ with imaginary part that lies in the interval $(-\pi, \pi]$. If we do not know $\log z$, we compute $\log z$ using (1.8.4). Appealing to Example 1.8.1, we have for (a) $\log i=i \frac{\pi}{2}$; and for (b) $\log (1+i)=\log (1+i)=\frac{1}{2} \ln 2+i \frac{\pi}{4}$. For (c), we use (1.8.4):

$$
|-i|=1, \operatorname{Arg}(-i)=-\frac{\pi}{2} \Rightarrow \log (-i)=\ln (1)-i \frac{\pi}{2}=-i \frac{\pi}{2}
$$

For (d), we use (1.8.4):

$$
|5|=5, \operatorname{Arg} 5=0 \Rightarrow \log 5=\ln 5
$$

For (e), we use (1.8.4) and note that $e^{6 \pi i}$ is a unimodular number. In fact $e^{6 \pi i}=1$. So

$$
\left|e^{6 \pi i}\right|=1, \operatorname{Arg}\left(e^{6 \pi i}\right)=0 \Rightarrow \log \left(e^{6 \pi i}\right)=\ln 1=0
$$

A few observations are in order to highlight some similarities and differences between the natural logarithm and the complex logarithm.

