1 Complex Numbers and Functions

21. Establish identities (1.7.17) and (1.7.19).

22. Let S be the horizontal strip $\{z = x + iy; x \ge 0 - \frac{\pi}{2} \le y \le \frac{\pi}{2}\}$. Find the image of S by the mapping $f(z) = \sinh z$. [Hint: Express $\sinh z$ in terms of $\sin z$.]

23. We study properties of the mapping $z \mapsto \sin z$.

(a) Show that the half-line $x = \frac{\pi}{2}, y \ge 0$, is mapped to the half-line $u \ge 1, v = 0$. (b) Show that the half-line $x = \frac{-\pi}{2}, y \ge 0$, is mapped to the half-line $u \le -1, v = 0$. (c) Conclude that the boundary of the set *S* in Example 1.7.8 is mapped to the boundary of f[S].

(d) Recall from your calculus course that an ellipse of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with 0 < b < a has its foci at $x = \pm \sqrt{a^2 - b^2}$. Show that all the ellipses in Example 1.7.8 have the same foci located on the *u*-axis at $u = \pm 1$.

24. (**Zeros of hyperbolic functions**) Let $z \in \mathbb{C}$. Show that

 $\sinh z = 0 \quad \Leftrightarrow \quad z = ik\pi, \ k \text{ an integer};$

and

$$\cosh z = 0 \quad \Leftrightarrow \quad z = i\left(k + \frac{1}{2}\right)\pi, \ k \text{ an integer.}$$

[Hint: z is a zero of $\sin z \Leftrightarrow iz$ is a zero of the hyperbolic sine (why?). Reason in the same way for the cosine.]

25. (Linearization) Let *m* and *n* be nonnegative integers such that m + n = p. We discuss how to express the product $\cos^{m} \theta \sin^{n} \theta$, as a linear combination of terms involving $\cos(j\theta)$ and $\sin(k\theta)$, where $1 \le j, k \le p$. For example, the identity $\cos^3 \theta = \frac{1}{4} (\cos 3\theta + 3\cos \theta)$ is called the linearization of $\cos^3 \theta$. Derive this identity by raising both sides of (1.7.3) to the third power and simplifying.

26. Linearize $\sin^4 \theta$.

In Exercises 27–52, establish the stated identities. Here z_1, z_2, z are complex numbers and z = x + iywith x, y real. Working with hyperbolic functions, you may want to use the corresponding one for trigonometric functions and (1.7.30) and (1.7.31).

27.	(a) $\sin(-z) = -\sin z$	(b) $\sin(z+2\pi) = \sin z$
28.	(a) $\cos(z+\pi) = -\cos z$	(b) $\sin(z+\pi) = -\sin z$

84