17.

19.

18.

20.

21. Establish identities (1.7.17) and (1.7.19).
22. Let S be the horizontal strip $\left\{z=x+i y ; x \geq 0-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\right\}$. Find the image of S by the mapping $f(z)=\sinh z$. [Hint: Express $\sinh z$ in terms of $\sin z$.]
23. We study properties of the mapping $z \mapsto \sin z$.
(a) Show that the half-line $x=\frac{\pi}{2}, y \geq 0$, is mapped to the half-line $u \geq 1, v=0$.
(b) Show that the half-line $x=\frac{-\pi}{2}, y \geq 0$, is mapped to the half-line $u \leq-1, v=0$.
(c) Conclude that the boundary of the set S in Example 1.7.8 is mapped to the boundary of $f[S]$.
(d) Recall from your calculus course that an ellipse of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with $0<b<a$ has its foci at $x= \pm \sqrt{a^{2}-b^{2}}$. Show that all the ellipses in Example 1.7.8 have the same foci located on the u-axis at $u= \pm 1$.
24. (Zeros of hyperbolic functions) Let $z \in \mathbb{C}$. Show that

$$
\sinh z=0 \quad \Leftrightarrow \quad z=i k \pi, k \text { an integer; }
$$

and

$$
\cosh z=0 \quad \Leftrightarrow \quad z=i\left(k+\frac{1}{2}\right) \pi, k \text { an integer. }
$$

[Hint: z is a zero of $\sin z \Leftrightarrow i z$ is a zero of the hyperbolic sine (why?). Reason in the same way for the cosine.]
25. (Linearization) Let m and n be nonnegative integers such that $m+n=p$. We discuss how to express the product $\cos ^{m} \theta \sin ^{n} \theta$, as a linear combination of terms involving $\cos (j \theta)$ and $\sin (k \theta)$, where $1 \leq j, k \leq p$. For example, the identity $\cos ^{3} \theta=\frac{1}{4}(\cos 3 \theta+3 \cos \theta)$ is called the linearization of $\cos ^{3} \theta$. Derive this identity by raising both sides of (1.7.3) to the third power and simplifying.
26. Linearize $\sin ^{4} \theta$.

In Exercises 27-52, establish the stated identities. Here z_{1}, z_{2}, z are complex numbers and $z=x+i y$ with x, y real. Working with hyperbolic functions, you may want to use the corresponding one for trigonometric functions and (1.7.30) and (1.7.31).
27. (a) $\sin (-z)=-\sin z$
(b) $\sin (z+2 \pi)=\sin z$
28. (a) $\cos (z+\pi)=-\cos z$
(b) $\sin (z+\pi)=-\sin z$

