
1.6 The Complex Exponential 65

Looking for an extension of the exponential function ex (x ∈ R) to the complex
plane, we wonder whether we are able to substitute x with a complex number z in
(1.6.1). Note that the series in (1.6.1) converges absolutely by an easy application
of the ratio test (Example 1.5.24). Consequently, for a complex z we have
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Definition 1.6.1. We define the complex exponential function exp(z) or ez as the
convergent series
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We discuss some fundamental properties of the complex exponential function.

Theorem 1.6.2. Let z and w be arbitrary complex numbers. We have that
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Moreover, ez is never zero and
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and cn is defined in (1.5.7) by
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where the last equality is a consequence of the binomial identity (Exercise 65 in
Section 1.3). Now the left hand side of (1.6.6) is ezew, but, in view of (1.6.7), the
right hand side is ez+w, hence (1.6.3) holds.

Now (1.6.4) is a consequence of (1.6.3) and of the fact that e0 = 1 since

1 = ez−z = ez e−z .


