Looking for an extension of the exponential function $e^{x}(x \in \mathbb{R})$ to the complex plane, we wonder whether we are able to substitute x with a complex number z in (1.6.1). Note that the series in (1.6.1) converges absolutely by an easy application of the ratio test (Example 1.5.24). Consequently, for a complex z we have

$$
\sum_{n=0}^{\infty} \frac{|z|^{n}}{n!}=1+\frac{|z|}{1!}+\frac{|z|^{2}}{2!}+\frac{|z|^{3}}{3!}+\cdots=e^{|z|}<\infty
$$

Thus the series of complex numbers $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ converges absolutely and therefore it converges by Theorem 1.5.20.

Definition 1.6.1. We define the complex exponential function $\exp (z)$ or e^{z} as the convergent series

$$
\begin{equation*}
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \quad \text { for all } z \in \mathbb{C} . \tag{1.6.2}
\end{equation*}
$$

We discuss some fundamental properties of the complex exponential function.
Theorem 1.6.2. Let z and w be arbitrary complex numbers. We have that

$$
\begin{equation*}
e^{z+w}=e^{z} e^{w} \tag{1.6.3}
\end{equation*}
$$

Moreover, e^{z} is never zero and

$$
\begin{align*}
e^{-z} & =\frac{1}{e^{z}} \tag{1.6.4}\\
e^{z-w} & =\frac{e^{z}}{e^{w}} \tag{1.6.5}
\end{align*}
$$

Proof. We have $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ and $e^{w}=\sum_{n=0}^{\infty} \frac{w^{n}}{n!}$, where both series converge absolutely. Applying Theorem 1.5.28 we obtain

$$
\begin{equation*}
\left(\sum_{k=0}^{\infty} \frac{z^{k}}{k!}\right)\left(\sum_{m=0}^{\infty} \frac{w^{m}}{m!}\right)=\sum_{n=0}^{\infty} c_{n} \tag{1.6.6}
\end{equation*}
$$

and c_{n} is defined in (1.5.7) by

$$
\begin{equation*}
c_{n}=\sum_{j=0}^{n} \frac{z^{j}}{j!} \frac{w^{n-j}}{(n-j)!}=\frac{1}{n!} \overbrace{\sum_{j=0}^{n} \frac{n!}{j!(n-j)!} z^{j} w^{n-j}}^{(z+w)^{n}}=\frac{(z+w)^{n}}{n!}, \tag{1.6.7}
\end{equation*}
$$

where the last equality is a consequence of the binomial identity (Exercise 65 in Section 1.3). Now the left hand side of (1.6.6) is $e^{z} e^{w}$, but, in view of (1.6.7), the right hand side is e^{z+w}, hence (1.6.3) holds.

Now (1.6.4) is a consequence of (1.6.3) and of the fact that $e^{0}=1$ since

$$
1=e^{z-z}=e^{z} e^{-z}
$$

