1.6 The Complex Exponential 65

Looking for an extension of the exponential function ¢* (x € R) to the complex
plane, we wonder whether we are able to substitute x with a complex number z in
(1.6.1). Note that the series in (1.6.1) converges absolutely by an easy application
of the ratio test (Example 1.5.24). Consequently, for a complex z we have
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Thus the series of complex numbers }" % converges absolutely and therefore it

converges by Theorem 1.5.20.

Definition 1.6.1. We define the complex exponential function exp(z) or e* as the
convergent series
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We discuss some fundamental properties of the complex exponential function.

Theorem 1.6.2. Let z and w be arbitrary complex numbers. We have that
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Moreover, €° is never zero and
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Proof. We have e* =Y fT’: ande” =Y, V;—';, where both series converge abso-
lutely. Applying Theorem 1.5.28 we obtain
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and ¢, is defined in (1.5.7) by
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where the last equality is a consequence of the binomial identity (Exercise 65 in
Section 1.3). Now the left hand side of (1.6.6) is ¢%¢", but, in view of (1.6.7), the
right hand side is ¢¥™, hence (1.6.3) holds.

Now (1.6.4) is a consequence of (1.6.3) and of the fact that e® = 1 since



