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In Exercises 21-32, determine whether the series
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is convergent or divergent.
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In Exercises 33-40, use the geometric series to determine the largest ¥egion open set in which the

series converges and find the value of the infinite sum.
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41. The nth partial sum of a series is s, =

converge, what is its limit?

42. Show that if Y, a, is absolutely convergent, then Yoo an| < Yoo |an-
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+. Does the series converge or diverge? If it does

43. Let t > 0 and x be real numbers. Find the sum Y, e~ cosnx. [Hint: Proceed as in Exam-

ple 1.5.16.]

44. (a) The nth term of a series is 1 — % Does the series converge?
(b) The nth partial sum of a series is 1 + % Does the series converge?

45. The terms of a series are defined recursively by
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Does the series ) ,._; a, converge or diverge?

46. The terms of a series are defined recursively by

cos(1)+isin(1)

N

ay =1, Antl = ay.

Does the series Y, a, converge or diverge?

1.6 The Complex Exponential

For a real number x, we recall how to express ¢* in a series as follows:
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