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Here is a simple application of the comparison test, which illustrates the passage
from complex to real series in establishing the convergence of complex series.

2 cos(nB)+2isin(n6)

Example 1.5.22. (Comparison test) The series Y, o is conver-
gent by comparison to the convergent series ) ,._; n%, because
2 cos(nB) + 2isin(n0) ‘ < 2|cos(n@)+isin(n@)| 2 0
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Theorem 1.5.23. (Ratio Test) Let a,, be nonzero complex numbers and suppose that
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(1.5.5)

exists or is infinite. Then the complex series Y ,._,a, converges absolutely if p <1
and diverges if p > 1. If p = 1 the test is inconclusive.

Example 1.5.24. (Ratio testand-the-expenential-series) The series )~ f% con-

verges absolutely for all z. The series is obviously convergent if z = 0. For z # 0,
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Since p < 1, the series is absolutely convergent by the ratio test, hence it is conver-
gent. (]

Theorem 1.5.25. (Root Test) Let a, be complex numbers and suppose that
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either exists or is infinite. Then the complex series Y.,._,a, converges absolutely if
p < 1 and diverges if p > 1. If p = 1 the test is inconclusive.

In general, the ratio test is easier to apply than the root test. But there are situa-
tions that call naturally for the root test. Here is an example.

Example 1.5.26. Test the series ), (nj—n]),, for convergence.

Solution. The presence of the exponent # in the terms suggests using the root test.
We have
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Since p < 1, the series is absolutely convergent for all z. (|
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