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Here is a simple application of the comparison test, which illustrates the passage
from complex to real series in establishing the convergence of complex series.

Example 1.5.22. (Comparison test) The series ∑
∞
n=0

2 cos(nθ)+2isin(nθ)
n2+3 is conver-

gent by comparison to the convergent series ∑
∞
n=1

2
n2 , because∣∣∣∣2 cos(nθ)+2isin(nθ)

n2 +3

∣∣∣∣≤ 2 |cos(nθ)+ isin(nθ)|
n2 =

2
n2 .

Theorem 1.5.23. (Ratio Test) Let an be nonzero complex numbers and suppose that

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (1.5.5)

exists or is infinite. Then the complex series ∑
∞
n=0 an converges absolutely if ρ < 1

and diverges if ρ > 1. If ρ = 1 the test is inconclusive.

Example 1.5.24. (Ratio testand the exponential series) The series ∑
∞
n=0

zn

n! con-
verges absolutely for all z. The series is obviously convergent if z = 0. For z 6= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ zn+1 n!
zn (n+1)!

∣∣∣∣= lim
n→∞

|z|
n+1

= 0.

Since ρ < 1, the series is absolutely convergent by the ratio test, hence it is conver-
gent. �

Theorem 1.5.25. (Root Test) Let an be complex numbers and suppose that

ρ = lim
n→∞
|an|1/n (1.5.6)

either exists or is infinite. Then the complex series ∑
∞
n=0 an converges absolutely if

ρ < 1 and diverges if ρ > 1. If ρ = 1 the test is inconclusive.

In general, the ratio test is easier to apply than the root test. But there are situa-
tions that call naturally for the root test. Here is an example.

Example 1.5.26. Test the series ∑
∞
n=0

zn

(n+1)n for convergence.

Solution. The presence of the exponent n in the terms suggests using the root test.
We have

ρ = lim
n→∞

∣∣∣∣ zn

(n+1)n

∣∣∣∣ 1
n

= lim
n→∞

|z|
n+1

= 0.

Since ρ < 1, the series is absolutely convergent for all z. �


