We can use complex series to sum real series.
Example 1.5.16. Show that $\sum_{n=0}^{\infty} \frac{\cos n \theta}{2^{n}}$ converges for all real θ and find the sum.
Solution. We recognize $\cos n \theta$ as the real part of $(\cos \theta+i \sin \theta)^{n}$, and so the given series is the real part of the geometric series

$$
\sum_{n=0}^{\infty} z^{n} \quad \text { where } \quad z=\frac{1}{2}(\cos \theta+i \sin \theta)
$$

From Example 1.5.13, since $|z|=1 / 2<1$, we have

Fig. 1.36 Graph of the series $\sum_{n=0}^{\infty} \frac{\cos n \theta}{2^{n}}$ over $[-\pi, 3 \pi]$.

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}=\frac{1-\bar{z}}{(1-z)(1-\bar{z})}=\frac{1-\frac{1}{2} \cos \theta+\frac{i}{2} \sin \theta}{\left(1-\frac{1}{2} \cos \theta\right)^{2}+\left(\frac{1}{2} \sin \theta\right)^{2}}=\frac{4-2 \cos \theta+2 i \sin \theta}{5-4 \cos \theta} .
$$

Taking real parts and using Theorem 1.5.15(iii), we obtain

$$
\sum_{n=0}^{\infty} \frac{\cos n \theta}{2^{n}}=\operatorname{Re}\left(\frac{4-2 \cos \theta+2 i \sin \theta}{5-4 \cos \theta}\right)=\frac{4-2 \cos \theta}{5-4 \cos \theta} .
$$

The series is plotted in Figure 1.36 as a function of θ.
Theorem 1.5.17. (The nth Term Test for Divergence) If $\sum_{n=0}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$. Equivalently, if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Proof. Let $s_{n}=\sum_{m=0}^{n} a_{m}$. If $s_{n} \rightarrow s$, then also $s_{n-1} \rightarrow s$, and so $s_{n}-s_{n-1} \rightarrow s-s=0$. But $s_{n}-s_{n-1}=a_{n}$, and so $a_{n} \rightarrow 0$.

Applying the nth term test, we see right away that the geometric series $\sum_{n=0}^{\infty} z^{n}$ is divergent if $|z|=1$ or $|z|>1$.

For $m \geq 1$, the expression $t_{m}=\sum_{n=m+1}^{\infty} a_{n}$ is called a tail of the series $\sum_{n=0}^{\infty} a_{n}$. For fixed m, the tail t_{m} is itself a series, which differs from the original series by finitely many terms. So it is obvious that a series converges if and only if all its tails converge. As $m \rightarrow \infty$, we are dropping more and more terms from the tail series; as a result, we have the following useful fact.

Proposition 1.5.18. If $\sum_{n=0}^{\infty} a_{n}$ is convergent, then $\lim _{m \rightarrow \infty} \sum_{n=m+1}^{\infty} a_{n}=0$. Hence if a series converges, then its tail tends to 0 .

Proof. Let $s=\sum_{n=0}^{\infty} a_{n}, t_{m}=\sum_{n=m+1}^{\infty} a_{n}$, and $s_{m}=\sum_{n=1}^{m} a_{n}$. Since s_{m} is a partial sum of $\sum_{n=0}^{\infty} a_{n}$, we have $s_{m} \rightarrow s$ as $m \rightarrow \infty$. For each m, we have

