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We can use complex series to sum real series.

Example 1.5.16. Show that
∞

∑
n=0

cosnθ

2n converges for all real θ and find the sum.

Solution. We recognize cosnθ as the real
part of (cosθ + isinθ)n, and so the given
series is the real part of the geometric se-
ries

∞

∑
n=0

zn where z =
1
2
(cosθ + isinθ).

From Example 1.5.13, since |z|= 1/2<1,
we have
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Fig. 1.36 Graph of the series
∞

∑
n=0

cosnθ

2n

over [−π,3π].

∞

∑
n=0

zn =
1

1− z
=

1− z
(1− z)(1− z)

=
1− 1

2 cosθ + i
2 sinθ

(1− 1
2 cosθ)2 +( 1

2 sinθ)2
=

4−2cosθ +2i sinθ

5−4cosθ
.

Taking real parts and using Theorem 1.5.15(iii), we obtain

∞

∑
n=0

cosnθ

2n = Re
(

4−2cosθ +2i sinθ

5−4cosθ

)
=

4−2cosθ

5−4cosθ
.

The series is plotted in Figure 1.36 as a function of θ . �

Theorem 1.5.17. (The nth Term Test for Divergence) If ∑
∞
n=0 an is convergent,

then lim
n→∞

an = 0. Equivalently, if limn→∞ an 6= 0 or limn→∞ an does not exist, then

∑
∞
n=0 an diverges.

Proof. Let sn =∑
n
m=0 am. If sn→ s, then also sn−1→ s, and so sn−sn−1→ s−s= 0.

But sn− sn−1 = an, and so an→ 0. �

Applying the nth term test, we see right away that the geometric series ∑
∞
n=0 zn is

divergent if |z|= 1 or |z|> 1.
For m ≥ 1, the expression tm = ∑

∞
n=m+1 an is called a tail of the series ∑

∞
n=0 an.

For fixed m, the tail tm is itself a series, which differs from the original series by
finitely many terms. So it is obvious that a series converges if and only if all its tails
converge. As m→ ∞, we are dropping more and more terms from the tail series; as
a result, we have the following useful fact.

Proposition 1.5.18. If ∑
∞
n=0 an is convergent, then limm→∞ ∑

∞
n=m+1 an = 0. Hence if

a series converges, then its tail tends to 0.

Proof. Let s = ∑
∞
n=0 an, tm = ∑

∞
n=m+1 an, and sm = ∑

m
n=1 an. Since sm is a partial sum

of ∑
∞
n=0 an, we have sm→ s as m→ ∞. For each m, we have


