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So in order to establish the convergence or divergence of a series, we must study the
behavior of the sequence of partial sums.

Example 1.5.13. Show that if |z|< 1 the geometric series ∑
∞
n=0 zn converges and

∞

∑
n=0

zn =
1

1− z
.

Show that the series diverges for all other values of z.

Solution. Consider the partial sum (a
typical case is shown in Figure 1.34):

sn = 1+ z+ z2 + · · ·+ zn.

We multiply by z and add 1 to obtain

1+ zsn = 1+ z+ z2 + z3 + · · ·+ zn+1

which is equal to sn + zn+1. If z 6= 1, we
solve for sn to find

y

x
z
z
zz

zz

Fig. 1.34 Terms in a conver-
gent geometric series (|z| < 1).
To get a partial sum sn, add the
vectors 1, z, . . . , zn.

sn =
(1+ z+ z2 + · · ·+ zn)(1− z)

1− z
=

1− zn+1

1− z
.

From Example 1.5.9, the sequence {zn+1}∞
n=0 converges to 0 if |z| < 1 and di-

verges if |z| > 1 or |z| = 1 and z 6= 1. This implies that {sn}∞
n=0 converges to 1

1−z if
|z|< 1 and diverges for all other values of z, which is what we wanted to show. �

Geometric series may appear in disguise. Basically, whenever you see a series of
the form ∑

∞
n=0 wn you should be able to use the geometric series to sum it. However,

you have to be careful with the region of convergence.

Example 1.5.14. (Geometric series in disguise) Determine the largest open set in
which the series

∞

∑
n=0

1
(4+2z)n

is convergent and find its sum.

Solution. The series is a geometric series of the form ∑
∞
n=0 wn where w = 1

4+2z .


