The following theorem is also analogous to one from calculus. Its proof is omitted.

Theorem 1.5.6. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of complex numbers.
(i) Suppose that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left|b_{n}\right| \leq\left|a_{n}\right|$ for all $n \geq n_{0}$. Then $\lim _{n \rightarrow \infty} b_{n}=0$.
(ii) If $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

The proof of the next theorem is also left to the reader.
Theorem 1.5.7. If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are convergent sequences of complex numbers and α and β are complex numbers, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\alpha a_{n}+\beta b_{n}\right)=\alpha \lim _{n \rightarrow \infty} a_{n}+\beta \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0 \\
& \lim _{n \rightarrow \infty} \overline{a_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{} \\
& \lim _{n \rightarrow \infty}\left|a_{n}\right|=\left|\lim _{n \rightarrow \infty} a_{n}\right|
\end{aligned}
$$

Theorem 1.5.8. Suppose that $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a sequence of complex numbers and write $z_{n}=x_{n}+i y_{n}$, where $x_{n}=\operatorname{Re} z_{n}$ and $y_{n}=\operatorname{Im} z_{n}$. Then for x, y real numbers we have

$$
\lim _{n \rightarrow \infty} z_{n}=x+i y \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} x_{n}=x \quad \text { and } \quad \lim _{n \rightarrow \infty} y_{n}=y
$$

Proof. Suppose that $z_{n} \rightarrow x+i y$. Then by Theorem 1.5 .7 we have that $\overline{z_{n}} \rightarrow \overline{x+i y}$. Using again Theorem 1.5 .7 we obtain $z_{n}+\overline{z_{n}} \rightarrow x+i y+\overline{x+i y}=2 x$ and $z_{n}-\overline{z_{n}} \rightarrow$ $x+i y-\overline{(x+i y)}=2 i y$. Thus $2 x_{n} \rightarrow 2 x$ and $2 i y_{n} \rightarrow 2 i y$ which implies that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$. Conversely, if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, then by Theorem 1.5.7 we have $i y_{n} \rightarrow i y$ and adding yields $x_{n}+i y_{n} \rightarrow x+i y$.

Next we show how to use the preceding results along with our knowledge of real-valued sequences to compute limits of complex-valued sequences.

Example 1.5.9. (A useful limit) Show that

$$
\lim _{n \rightarrow \infty} z^{n}= \begin{cases}0 & \text { if }|z|<1 \\ 1 & \text { if } z=1\end{cases}
$$

Moreover, show that the limit does not exist for all other values of z; that is, if $|z|>1$, or $|z|=1$ and $z \neq 1$, then $\lim _{n \rightarrow \infty} z^{n}$ does not exist.
Solution. Recall that for a real number $r \geq 0$, we have

