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The following theorem is also analogous to one from calculus. Its proof is omit-
ted.

Theorem 1.5.6. Let {an}∞
n=1 and {bn}∞

n=1 be sequences of complex numbers.
(i) Suppose that limn→∞ an = 0 and |bn| ≤ |an| for all n≥ n0. Then limn→∞ bn = 0.
(ii) If limn→∞ an = 0 and {bn}∞

n=1 is a bounded sequence then limn→∞ anbn = 0.

The proof of the next theorem is also left to the reader.

Theorem 1.5.7. If {an}∞
n=1 and {bn}∞

n=1 are convergent sequences of complex num-
bers and α and β are complex numbers, then

lim
n→∞

(αan +βbn) = α lim
n→∞

an +β lim
n→∞

bn;

lim
n→∞

(an bn) = lim
n→∞

an lim
n→∞

bn;

lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn 6= 0;

lim
n→∞

an = lim
n→∞

an ;

lim
n→∞
|an|=

∣∣ lim
n→∞

an
∣∣.

Theorem 1.5.8. Suppose that {zn}∞
n=1 is a sequence of complex numbers and write

zn = xn + i yn, where xn = Rezn and yn = Imzn. Then for x,y real numbers we have

lim
n→∞

zn = x+ i y ⇔ lim
n→∞

xn = x and lim
n→∞

yn = y.

Proof. Suppose that zn→ x+ i y. Then by Theorem 1.5.7 we have that zn→ x+ i y.
Using again Theorem 1.5.7 we obtain zn + zn→ x+ i y+ x+ i y = 2x and zn− zn→
x+ i y−(x+ i y) = 2iy. Thus 2xn→ 2x and 2iyn→ 2iy which implies that xn→ x and
yn→ y as n→∞. Conversely, if xn→ x and yn→ y as n→∞, then by Theorem 1.5.7
we have iyn→ iy and adding yields xn + iyn→ x+ i y. �

Next we show how to use the preceding results along with our knowledge of
real-valued sequences to compute limits of complex-valued sequences.

Example 1.5.9. (A useful limit) Show that

lim
n→∞

zn =

{
0 if |z|< 1,
1 if z = 1.

Moreover, show that the limit does not exist for all other values of z; that is, if |z|> 1,
or |z|= 1 and z 6= 1, then limn→∞ zn does not exist.

Solution. Recall that for a real number r ≥ 0, we have


