7.5 Green's Functions

$$u(z) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{u(s)}{(x-s)^2 + y^2} \, ds \quad (z = x + iy),$$

which is Poisson's formula for the upper half-plane.

We give one more example of a Green's function.

Example 7.5.6. (Green's function for a semi-infinite vertical strip) Compute Green's function for a semi-infinite vertical strip.

We can map the strip Ω in Figure 7.104 conformally onto the upper half-plane using the mapping $w = \sin z$. Composing the function (7.5.12) with this, we obtain a one-to-one analytic mapping of Ω onto the unit disk, taking z in Ω onto the origin. Thus the Green's function for Ω is

$$G(z, \zeta) = \ln \left| \frac{\sin z - \sin \zeta}{\sin z - \sin \zeta} \right|. \quad \Box$$

Fig. 7.104 A semi-infinite vertical strip.

Next we prove next some interesting properties of Green's functions.

Theorem 7.5.7. (Properties of Green's Functions) Suppose that Ω is a simply connected region with boundary Γ , and let ϕ , $\Phi(z, \zeta)$, and $G(z, \zeta)$ be as in Theorem 7.5.2. Then the Green's function G has the following properties: (i) $G(z, \zeta) \leq 0$ for all z and ζ in Ω ; (ii) $G(z, \zeta) = 0$ for all z in Ω and ζ on Γ ; (iii) $G(z, \zeta) = G(\zeta, z)$ for all z and ζ in Ω (symmetric property); (iv) for each z in Ω , there is a function $\zeta \mapsto u_1(z, \zeta)$ such that $u_1(z, \zeta)$ is harmonic for all ζ in Ω , $u_1(z, \zeta) = -\ln|z - \zeta|$ for all ζ on the boundary Γ , and $G(z, \zeta) = u_1(z, \zeta) + \ln|z - \zeta|$ for all $\zeta \neq z$ in Ω .

Properties (*i*) and (*ii*) could be verified on the graphs of the Green's functions in Figures 7.102 and 7.103. Before we prove the theorem, we illustrate the properties in Figure 7.105 for a typical case where Ω is the upper half-plane and Green's function is anchored at z = 1 + i.

465