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Thus 7 maps the real line onto the unit circle and since it takes z onto the origin, it
follows that T maps the upper half-plane onto the unit disk, and thus 7({) = ®(z, §)
for the upper half-plane.

Example 7.5.5. (Green’s function and Poisson’s formula in the upper half-
plane) (a) Show that the Green’s function for the upper half-plane is
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=5 m’ forz=x+1iy, { =s+ir (y,t >0). (7.5.13)

G(z, €)

Fix z =1+ in the upper half-plane, and plot the function § — G(1+1i, {), for £ in
the upper half-plane. This is the Green’s function for the upper half-plane anchored
at a specific point z = 1 +1 in the upper half-plane.

(b) Derive the Poisson integral formula for the upper half-plane.

Solution. (a) According to (7.5.10), the Im¢
Green’s function for the upper half- i
plane is In|®(z, )|, where ®(z, §) isin . B
(7.5.12). Thus, G
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G(z,0) =1In|=
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_ =8 2 Fig. 7.103 Green’s function G(1 +1, )
2 |z - |2 for the upper half-plane anchored at z =
1 +i. Note that G(1+i, §) = 0 for all
1. (x—8)?2+(y—1) .
- ] ¢ on the boundary and G(1+i, {) has a
2 f (x—5)2+(—y—1)%’ singularity at { = 1+i.

which is equivalent to (7.5.13).The function G(1 +4, {) is plotted in Figure 7.103.
(b) To derive Poisson’s integral formula in the upper half-plane we compute the
normal derivative in (7.5.9). If I" is the real s-axis, then the normal derivative is
clearly the derivative in the negative direction along the imaginary ¢-axis. Thus,
iG(z, ¢) = —lzln—(x_s)2+(y_t)2.
on 20t (x—s5)2+(y+1)?

A straightforward calculation of the derivative, then setting ¢t = 0, yields
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%G(L $) = m

Plugging into (7.5.9) yields



