when $n=5$. If P is bounded, then the point w_{n} is taken to be the initial and terminal point of the closed path P. If P is unbounded, we take $w_{n}=\infty$ and think of P as a polygon with $n-1$ vertices $w_{1}, w_{2}, \ldots, w_{n-1}$ (Figure 7.75). It will be convenient to measure the exterior angle at a vertex, and so we let θ_{j} denote the angle that we make as we turn the corner of the polygon at w_{j}. We choose $0<\left|\theta_{j}\right|<\pi(j=1, \ldots, n)$; a positive value corresponds to a left turn and a negative value corresponds to a right turn. In Figure 7.74, θ_{2} is negative while all other θ_{j} are positive.

Fig. 7.74 Positively oriented polygonal boundary with corner angles measured from the outside.

Fig. 7.75 Unbounded polygonal region with n sides $(n=4)$ and $n-1$ vertices.

Theorem 7.4.1. (Schwarz-Christoffel Transformation) Let Ω be a region bounded by a polygonal path P with vertices at w_{j} (counted consecutively) and corresponding exterior angles θ_{j}. Then there is a one-to-one conformal mapping $f(z)$ of the upper half-plane onto Ω, such that

$$
\begin{equation*}
f^{\prime}(z)=A\left(z-x_{1}\right)^{-\frac{\theta_{1}}{\pi}}\left(z-x_{2}\right)^{-\frac{\theta_{2}}{\pi}} \cdots\left(z-x_{n-1}\right)^{-\frac{\theta_{n-1}}{\pi}}, \tag{7.4.1}
\end{equation*}
$$

where A is a constant, the x_{j} 's are real and satisfy $x_{1}<x_{2}<\cdots<x_{n-1}, f\left(x_{j}\right)=w_{j}$, $\lim _{z \rightarrow \infty} f(z)=w_{n}$, and the complex powers are defined by their principal branches.

The points $x_{j}(j=1, \ldots, n-1)$ on the x-axis are the pre-images of the vertices of the polygonal path P in the w-plane. Two of the x_{j} 's may be chosen arbitrarily, so long as they are arranged in ascending order. We can express the fact that $\lim _{z \rightarrow \infty} f(z)=w_{n}$ by writing $f(\infty)=w_{n}$. In the case of an unbounded polygon P, we have $f(\infty)=\infty$.

Definition 7.4.2. The mapping f whose derivative is the function in (7.4.1) is called a Schwarz-Christoffel transformation, after the German mathematicians Karl Hermann Amandus Schwarz (1843-1921) and Elwin Bruno Christoffel (18291900). Since f is an antiderivative of the function in (7.4.1), we can write

$$
\begin{equation*}
f(z)=A \int\left(z-x_{1}\right)^{-\frac{\theta_{1}}{\pi}}\left(z-x_{2}\right)^{-\frac{\theta_{2}}{\pi}} \cdots\left(z-x_{n-1}\right)^{-\frac{\theta_{n-1}}{\pi}} d z+B \tag{7.4.2}
\end{equation*}
$$

