(e) Derive the Fourier series expansion of the triangular wave: for all θ ,

$$f(\theta) = \frac{\pi}{2} + \sum_{n \text{ odd}} \frac{4}{\pi n^2} \cos(n\theta) = \frac{\pi}{2} + \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \cos((2k+1)\theta). \tag{6.4.20}$$

- (f) Illustrate the convergence of the Fourier series to $f(\theta)$ by plotting several partial sums.
- **8. Project Problem:** Solve the Dirichlet problem on the unit disk, where the boundary values are $f(\theta) = \theta$, $0 < \theta < 2\pi$. In your solution, follow parts (a)-(d) of the previous exercise.
- **9.** (a) Plot the graph over the interval $-2\pi \le \theta \le 3\pi$ of the 2π -periodic sawtooth function

$$f(\theta) = \begin{cases} \frac{1}{2}(\pi - \theta) & \text{if } 0 < \theta \leq 2\pi, \\ \frac{\text{[6pt]}}{f}f(\theta + 2\pi) & \text{otherwise.} \end{cases}$$

(b) Derive the Fourier series

$$f(\theta) = \sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n}.$$

- **10.** Let the 2π -periodic function f be defined on the interval $[-\pi, \pi)$ by $f(\theta) = |\theta|$ if $-\pi \le \theta < \pi$. Derive the Fourier series $f(\theta) = \frac{\pi}{2} \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \cos\left((2k+1)\theta\right)$.
- 11. Let the 2π -periodic function f be defined on the interval $[-\pi, \pi)$ by

$$f(\theta) = \begin{cases} 1 & \text{if } 0 < \theta < \pi/2, \\ -1 & \text{if } -\pi/2 < \theta < 0, \\ 0 & \text{if } \pi/2 < |\theta| < \pi. \end{cases}$$

Prove that the Fourier series of this function is

$$f(\theta) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 - \cos \frac{n\pi}{2} \right) \sin(n\theta).$$

12. Show that the Fourier series of the 2π -periodic function $|\sin \theta|$, $-\pi \le \theta \le \pi$, is

$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k)^2 - 1} \cos(2k\theta).$$

13. Show that the Fourier series of the 2π -periodic function $|\cos \theta|$, $-\pi \le \theta \le \pi$, is

$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)^2 - 1} \cos(2k\theta).$$

- **14. Reflecting and translating a Fourier series.** Suppose that f is 2π -periodic and let $g(\theta)=f(-\theta)$ and $h(\theta)=f(\theta-\alpha)$, where α is a fixed real number. To avoid confusion we use $a(\phi,n)$ and $b(\phi,n)$ instead of a_n and b_n to denote the Fourier coefficients of a function ϕ .
- (a) Show that a(f, 0) = a(g, 0), a(f, n) = a(g, n), and b(f, n) = -b(g, n) for all $n \ge 1$.
- (b) Show that a(f, 0) = a(h, 0) and that for $n \ge 1$ we have

$$a(h,n) = a(f,n)\cos(n\alpha) - b(f,n)\sin(n\alpha)$$

$$b(h,n) = a(f,n)\sin(n\alpha) + b(f,n)\cos(n\alpha).$$