6.1 Harmonic Functions

By the mean value property of analytic functions (3.9.4), we have

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{it}) dt = \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt + \frac{i}{2\pi} \int_0^{2\pi} v(z + re^{it}) dt.$$

Now take real parts on both sides to obtain (6.1.11).

We now prove the maximum-minimum modulus principle for harmonic functions, which resembles that for analytic functions. Note the role of ... in the proof.

Theorem 6.1.20. (Maximum and Minimum Modulus Principle) Suppose that u is a harmonic function on a region Ω . If u attains a maximum or a minimum in Ω , then u is constant in Ω .

Proof. By considering -u, we need only prove the statement for maxima. We first prove the result under the assumption that Ω is simply connected. Applying Theorem 6.1.16 we find an analytic function f = u + iv on Ω . Consider the function

$$g = e^f = e^u e^{iv}$$

Then g is analytic in Ω and $|g| = e^u$. Since the real exponential function is strictly increasing, a maximum of e^u corresponds to a maximum of u. By Theorem 3.9.6, if |g| attains a maximum or a minimum in Ω , then g is constant, implying that u is constant in Ω .

We now deal with an arbitrary region Ω . Suppose that *u* attains a maximum *M* at a point in Ω . Let

$$\Omega_0 = \{ z \in \Omega : u(z) < M \}$$

$$\Omega_1 = \{ z \in \Omega : u(z) = M \}.$$

We have $\Omega = \Omega_0 \cup \Omega_1$, Ω_0 is open, and Ω_1 is nonempty by assumption. It is enough to show that Ω_1 is open. By connectedness this will imply that $\Omega = \Omega_1$.

Suppose that z_0 is in Ω_1 and let $B_r(z_0)$ be an open disk in Ω centered at z_0 (Figure 6.9). Since $B_r(z_0)$ is simply connected and the restriction of u to $B_r(z_0)$ is a harmonic function that attains its maximum at z_0 inside $B_r(z_0)$, it follows from the previous case that u is constant in $B_r(z_0)$. Thus u(z) = M for all z in $B_r(z_0)$, implying that $B_r(z_0)$ is contained in Ω_1 . Hence Ω_1 is open.

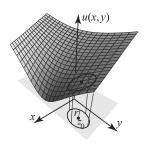


Fig. 6.9 Local existence of the harmonic conjugate.

Note that in Theorem 6.1.20 the minimum principle holds without the further assumption that $u \neq 0$, which was required for the minimum principle for analytic